最新大肠杆菌乳糖操纵子的结构及其调控机制
- 格式:doc
- 大小:115.50 KB
- 文档页数:3
1阐述操纵子(operon)学说:见课本2、乳糖操纵子的作用机制?/简述乳糖操纵子的结构及其正、负调控机制答:A、乳糖操纵子的组成:大肠杆菌乳糖操纵子含Z、Y、A三个结构基因,分别编码半乳糖苷酶、透酶和半乳糖苷乙酰转移酶,此外还有一个操纵序列O,一个启动子P和一个调节基因I。
B、阻遏蛋白的负性调节:没有乳糖存在时,I 基因编码的阻遏蛋白结合于操纵序列O处,乳糖操纵子处于阻遏状态,不能合成分解乳糖的三种酶;有乳糖存在时,乳糖作为诱导物诱导阻遏蛋白变构,不能结合于操纵序列,乳糖操纵子被诱导开放合成分解乳糖的三种酶。
所以,乳糖操纵子的这种调控机制为可诱导的负调控。
C、CAP的正性调节:在启动子上游有CAP结合位点,当大肠杆菌从以葡萄糖为碳源的环境转变为以乳糖为碳源的环境时,cAMP浓度升高,与CAP结合,使CAP发生变构,CAP结合于乳糖操纵子启动序列附近的CAP结合位点,激活RNA聚合酶活性,促进结构基因转录,调节蛋白结合于操纵子后促进结构基因的转录,对乳糖操纵子实行正调控,加速合成分解乳糖的三种酶。
D、协调调节:乳糖操纵子中的I基因编码的阻遏蛋白的负调控与CAP的正调控两种机制,互相协调、互相制约。
3、基因调控的水平有哪些?基因调控的意义?答:a、DNA水平的调控。
b、转录水平上的调控。
c、转录后的调控。
d、翻译水平的调控。
e、细胞质与基因调控。
意义:适应物理,化学等环境因素变化,调节代谢,维持细胞生长与分裂。
4、简述乳糖操纵子的结构及其正负调控机制。
答:结构:A、Y和Z,以及启动子、控制子和阻遏子。
正调控机制:CAP分解代谢产物激活蛋白质,直接作用于操纵子区上与cAMP结合形成CAP-cAMP复合物,转录进行。
负调控机制:a、无诱导物时结构基因不转录。
b、有诱导物时与阻遏基因相结合,形成无活性阻遏物,RNA聚合酶可与启动子区相结合,起始基因转录。
5、简述Trp操纵子的结构及其调控机制。
答:Trp操纵子由5个结构基因TrpE、TrpD、TrpC、TrpB、TrpA组成一个多顺因子的基因簇,在5'端是启动子、操纵子、前导顺序和弱化子区域。
简述乳糖操纵子的结构与调控原理答:乳糖操纵子是参与乳糖分解的一个基因群,由乳糖系统的阻遏物和操纵序列组成,使得一组与乳糖代谢相关的基因受到同步的调控,是原核生物基因表达调节的典例。
1961年雅各布(F.Jacob)和莫诺德(J.Monod)根据对该系统的研究而提出了著名的操纵子学说。
很好地解释了大肠杆菌能够根据周围环境中有没有乳糖,来决定是否合成半乳糖苷酶的诱导和调控过程。
乳糖操纵子的结构(如下图所示):①结构基因群操纵子中被调控的编码蛋白质的基因称为结构基因。
一个操纵子中有2个以上的结构基因,多的可达十几个,各结构基因头尾衔接,串连排列,组成结构基因群。
在乳糖操纵子中含有LacZ,LacY和LacA 共3个结构基因。
LacZ基因长3150bp,编码1170个氨基酸,分子量为135000的多肽,以四聚体形式组成有活性的β-半乳糖苷酶,催化乳糖转变为半乳糖和葡萄糖。
LacY基因长780bp,编码有260个氨基酸、分子量为30000的半乳糖透过酶,促使环境中的乳糖进入细菌。
LacA基因常825bp,编码275个氨基酸,分子量为32000的转乙酰基酶,以二聚体活性形式催化半乳糖的乙酰化。
其中Z基因的5’侧具有大肠杆菌核糖体识别结合位点特征的SD序列,因此当乳糖操纵子开放时,核糖体能结合在转录的mRNA上。
②启动子启动子是指能被RNA聚合酶识别、结合并启动基因转录的一段DNA序列。
操纵子至少有1个启动子,一般在第二个结构基因5’侧上游,控制整个结构基因群的转录。
不同的启动子序列不同,与RNA聚合酶的亲和力不同,启动转录的频率高低不同,即不同的启动子起动基因转录强弱不同,例如:PL、PR、PT7属于强启动子,而乳糖操纵子的启动子Plac则是较弱的启动子。
③操纵基因操纵基因是指能被调控蛋白特异性结合的一段DNA序列。
操纵基因常与启动子邻近或与启动子序列重叠,当调控蛋白结合在操纵基因序列上,会影响其下游基因转录的强弱。
乳糖操纵子的结构和调控机制1. 引言乳糖操纵子是一种具有重要生理功能的DNA序列。
它在哺乳动物中起着调控乳糖代谢的关键作用。
本文将详细介绍乳糖操纵子的结构和调控机制,以及其在生物学中的重要性。
2. 乳糖操纵子的结构乳糖操纵子通常位于哺乳动物基因组中与乳糖代谢相关基因附近。
它是一个DNA序列,由一系列核苷酸组成。
根据不同物种和基因型的差异,乳糖操纵子可以具有不同长度和组成。
乳糖操纵子通常包含两个重要的元件:增强子和启动子。
增强子位于启动子上游,可以增加启动子活性,促进基因转录。
启动子位于基因上游,包含转录起始位点(TSS),是转录过程中RNA聚合酶与DNA结合的地点。
除了增强子和启动子,乳糖操纵子还可能包含其他调控元件,如转录因子结合位点和DNA甲基化位点。
这些元件的存在与特定物种和基因型相关,对乳糖操纵子的调控起到重要作用。
3. 乳糖操纵子的调控机制乳糖操纵子的调控机制涉及多个因素,包括转录因子、共激活子和染色质结构等。
下面将详细介绍几个重要的调控机制。
3.1 转录因子转录因子是乳糖操纵子调控的关键因素之一。
在乳腺细胞中,乳糖操纵子上的转录因子LacI结合到增强子上,阻止RNA聚合酶与启动子结合,从而抑制基因转录。
而在肝脏细胞中,另一种转录因子HNF-1α结合到增强子上,促进RNA聚合酶与启动子结合,增强基因转录。
3.2 共激活子共激活子是在乳糖操纵子调控过程中发挥重要作用的辅助蛋白质。
它们与转录因子一起结合到乳糖操纵子上,增强转录活性。
共激活子可以通过多种方式影响乳糖操纵子的调控,如改变染色质结构、招募其他转录因子等。
3.3 染色质结构染色质结构在乳糖操纵子调控中起着重要作用。
在非活化状态下,乳糖操纵子通常处于紧密的染色质状态,难以被转录因子和共激活子访问。
而在活化状态下,染色质会发生重塑,使得乳糖操纵子暴露在核内,便于转录因子和共激活子的结合。
4. 乳糖操纵子的生物学重要性乳糖操纵子在生物学中具有重要的功能和意义。
乳糖操纵子的调控机制及其生理意义500字乳糖操纵子是一种具有调节功能的序列,位于大肠杆菌及其他一些革兰氏阴性菌的基因组中。
乳糖操纵子包括结构基因lacZYA和调控基因lacI,它们编码乳糖水解酶(lacZ和lacY)和乳糖再press酶(lacA)以及乳糖重pressor蛋白(LacI)。
乳糖操纵子的调控机制主要通过LacI蛋白实现。
当乳糖操纵子中没有乳糖时,LacI蛋白与操纵子区域上的运算子结合,阻止结构基因的转录。
当乳糖存在于环境中时,乳糖会结合到LacI蛋白上,改变其构象,使其无法结合到运算子上,从而释放结构基因的转录抑制,使结构基因lacZYA得以转录和翻译,从而将乳糖水解为葡萄糖和半乳糖,进一步为细胞提供能量和碳源。
乳糖操纵子的生理意义在于适应细菌对碳源的利用。
大肠杆菌等一些革兰氏阴性菌在肠道中生活,这里含有大量的乳糖。
当食物中的乳糖进入细菌细胞时,乳糖操纵子的调控机制可以快速响应并使结构基因lacZYA 转录,从而将乳糖水解为能够被细菌利用的葡萄糖和半乳糖。
这些产物可以作为能量和碳源供细菌生长和繁殖,增加其竞争优势。
此外,乳糖操纵子的调控机制也可通过“诱导剂适应”作用,使细菌能够适应不同浓度的乳糖,并在适宜的乳糖浓度范围内调节转录水平,使能量分配更加灵活和高效。
总的来说,乳糖操纵子的调控机制及其生理意义是适应细菌生活环境中乳糖碳源的利用,促进细菌生长和繁殖,增强其竞争优势。
这一调控机制的精细调节和高效能量利用是细菌生存和繁殖的重要适应策略。
详细描述乳糖操纵子系统的调控机制。
乳糖操纵子系统是细菌中的一种代谢途径,它能够将乳糖转化为能量和碳源。
这个系统的调控机制非常复杂,包括转录调控、翻译调控、磷酸化调控等多个层面。
下面我们将详细介绍乳糖操纵子系统的调控机制。
1. 转录调控乳糖操纵子系统的转录调控主要由两个转录因子LacI 和CRP 控制。
LacI 是一个负向转录因子,它能够结合到乳糖操纵子系统的启动子上,阻止RNA 聚合酶结合并启动转录。
当乳糖存在时,乳糖会结合到 LacI 上,使其失活,从而允许 RNA 聚合酶结合并启动转录。
CRP 是一个正向转录因子,它能够结合到乳糖操纵子系统的启动子上,促进RNA 聚合酶结合并启动转录。
当细菌处于低糖状态时,cAMP 的浓度会升高,从而使 CRP 活化,促进乳糖操纵子系统的转录。
2. 翻译调控乳糖操纵子系统的翻译调控主要由riboswitch 控制。
riboswitch 是一种RNA 分子,它能够结合到乳糖分子上,从而改变自身的构象,影响翻译的进行。
当乳糖存在时,riboswitch 会结合到乳糖上,从而使翻译终止子暴露在mRNA 上,阻止翻译的进行。
当乳糖不足时,riboswitch 会解离乳糖,从而使翻译终止子被遮盖,允许翻译的进行。
3. 磷酸化调控乳糖操纵子系统的磷酸化调控主要由两个蛋白激酶PhoR 和PtsG 控制。
PhoR 是一种膜蛋白激酶,它能够感知到细胞外的磷酸浓度,从而调控乳糖操纵子系统的磷酸化状态。
当细胞外的磷酸浓度低时,PhoR 会被激活,从而使乳糖操纵子系统的磷酸化水平升高。
PtsG 是一种磷转移酶,它能够将磷酸转移给乳糖,从而影响乳糖的代谢。
当细胞内的磷酸浓度低时,PtsG 会被磷酸化,从而使其活性降低,减少对乳糖的代谢。
乳糖操纵子系统的调控机制非常复杂,包括转录调控、翻译调控、磷酸化调控等多个层面。
这些调控机制相互作用,共同调节乳糖的代谢,从而使细菌能够适应不同的环境条件。
乳糖操纵子的结构和调控原理乳糖操纵子是一种广泛使用的基因表达调控工具。
它的结构和调控原理非常重要,对于科学家设计实验和开发新的应用具有重要意义。
乳糖操纵子是由两部分组成的:乳糖诱导子和乳糖操纵子蛋白。
乳糖诱导子是一种分子,能够与乳糖操纵子蛋白结合,从而改变其构象,使其能够与DNA结合并调控目标基因的表达。
乳糖操纵子蛋白则是一种转录因子,它能够识别并结合到特定的DNA序列上,并调节目标基因的转录水平。
乳糖操纵子蛋白通常被称为拉氏蛋白,因为它最初是从大肠杆菌中的λ噬菌体中分离出来的。
乳糖操纵子的调控原理是基于乳糖诱导子和乳糖操纵子蛋白之间的相互作用。
当乳糖存在时,乳糖诱导子能够与乳糖操纵子蛋白结合,使其构象发生改变,并使其与目标DNA序列结合。
这样,乳糖操纵子蛋白就能够调节目标基因的转录水平,以实现对基因表达的控制。
相反,当乳糖不存在时,乳糖诱导子无法与乳糖操纵子蛋白结合,从而使其无法与DNA结合。
这样,基因的转录就会被抑制。
乳糖操纵子的应用非常广泛,可以用于调控单个基因的表达,也可以用于调控整个基因组的表达。
其应用领域涵盖了基础科学研究、生物医学研究、生物工程、农业和环境保护等多个领域。
例如,在基础科学研究中,科学家可以利用乳糖操纵子来研究基因调控机制,进一步了解基因表达的调控途径。
在生物医学研究中,科学家可以利用乳糖操纵子来探究疾病的发生机制,同时也可以利用其来开发新的治疗方法。
在生物工程中,科学家可以利用乳糖操纵子来生产特定的蛋白质,例如,利用乳糖操纵子来生产重要的药物和酶类。
在农业和环境保护领域中,科学家可以利用乳糖操纵子来改良作物和微生物,提高其产量和抗病能力,同时也可以利用其来处理污染物和废弃物等。
乳糖操纵子的结构和调控原理是非常重要的,对于基因表达的控制和调节具有重要意义。
其应用前景广阔,对于推动生物科学的发展和应用具有重要作用。
乳糖操纵子调节机制
(一)结构:
结构基因: 三个Z、Y、A,分别编码β-半乳糖苷酶,透酶,乙酰基转移酶。
调节基因:操纵序列O、启动序列P、调节基因I、分解代谢物基因活化蛋白CAP结合位点。
P:RNA聚合酶结合位点
I:编码阻遏蛋白
O:阻遏蛋白结合位点阻碍RNA聚合酶与P序列结合,抑制转录启动。
CAP位点:与CAP蛋白结合,促进转录。
调节因素:阻遏蛋白与半乳糖结合后,失去结合O序列能力,促进转录。
CAP蛋白只有与cAMP结合后才能结合到CAP位点,发挥促进转录的作用。
(二)调节机制
E.coli优先利用葡萄糖,没有葡萄糖时才能利用乳糖,这对细菌生
长有利。
调节机制如下:
1.没有乳糖,只有葡萄糖时,不产生利用乳糖的酶。
①有葡萄糖及cAMP浓度低时,CAP
活性低,没有正调控。
②没有乳糖,没有半乳糖时,阻遏
蛋白可与操纵序列结合,起负调
控作用。
由于①、②转录受抑制,不产生利
用乳糖的酶。
2.有葡萄糖,又有乳糖时,不利用乳糖。
①有葡萄糖及cAMP浓度低时,CAP
活性低,没有正调控。
②有乳糖,有半乳糖,阻遏蛋白不
可与操纵序列结合,无负调控。
由于没有正调控,转录处于低水平
状态,不产生利用乳糖的酶,细菌
优先利用葡萄糖。
3.没有葡萄糖,只有乳糖时,利用乳糖。
①没有葡萄糖及cAMP浓度高时,
CAP活性高,有正调控。
②有乳糖,有半乳糖,阻遏蛋白不可与操纵序列结合,无负调控。
转录处于高水平,利用乳糖酶大量合成。
乳糖操纵子的结构和调控原理概述乳糖操纵子是存在于许多哺乳动物体内的一种能够调控乳糖代谢的关键分子。
它是由乳糖操纵子基因编码的蛋白质所组成,起着调控乳糖摄取和消化的重要作用。
本文将详细探讨乳糖操纵子的结构和调控原理。
乳糖操纵子的结构乳糖操纵子是一种单一的蛋白质,通常由若干不同的结构域组成。
根据其序列和结构的特点,乳糖操纵子可分为若干不同的亚型。
其中最为广泛研究的是LACZ、LACY和LACYD等。
LACZ亚型LACZ亚型是乳糖操纵子中最为常见的类型,它主要存在于大肠杆菌等细菌中。
LACZ亚型的乳糖操纵子通常是由若干结构域组成,包括信号肽、螺旋转位器、乳糖结合域和转运域等。
LACY亚型LACY亚型主要存在于大肠杆菌以外的一些细菌和真核生物中。
与LACZ亚型相比,LACY亚型的乳糖操纵子结构略有不同。
它包含了信号肽、乳糖结合域和转运域等主要结构域。
LACZD亚型LACZD亚型也是一种常见的乳糖操纵子亚型,主要存在于大肠杆菌中。
相较于LACZ 和LACY亚型,LACZD亚型的乳糖操纵子在结构上有一些差异,主要表现在转运域的结构上。
乳糖操纵子的调控原理乳糖操纵子的调控主要通过底物诱导和转录调控两种方式实现。
在底物诱导调控中,乳糖的存在会引起乳糖操纵子的构象改变,从而影响其功能。
而在转录调控中,一些转录因子会结合到乳糖操纵子的启动子区域,调节其转录活性。
底物诱导调控底物诱导调控是乳糖操纵子最常见的调控方式之一。
当乳糖存在于细胞外环境中时,它可以通过细胞膜上的乳糖操纵子结合域与乳糖操纵子进行结合。
这个结合过程会导致乳糖操纵子的构象改变,使得其转运功能得以激活。
乳糖操纵子的结构域之间存在着复杂的相互作用,转运态与非转运态之间的切换对乳糖摄取和代谢起着重要的调控作用。
转录调控除了底物诱导调控外,乳糖操纵子的转录也会受到一些转录因子的调控。
这些转录因子会结合到乳糖操纵子的启动子区域,调节其转录活性。
例如,在大肠杆菌中,CAP(catabolite gene activator protein)是一个重要的转录因子,它与RNA聚合酶结合,促进乳糖操纵子的转录。
精品资料
大肠杆菌乳糖操纵子的结构及其调控机制
........................................
大肠杆菌乳糖操纵子的结构及其正、负调控:负控诱导型操纵子
大肠杆菌乳糖操纵子包括三个结构基因:Z、Y、A以及一个操纵序列(启动子序列P、操纵基因序列O、调节基因I)。
转录时RNA聚合酶首先与P启动子区结合,通过操纵子向下游转录出Z、 Y 、A三个基因的多顺反子。
转录的调控是在启动子区和操纵子区进行。
正调控机制:
cAMP-CAP复合物与启动子区的DNA结合改变了此区域DNA的次级结构,促进了RNA聚合酶结合区的解链,增强了转录。
cAMP-CAP复合物的形成取决于细胞内cAMP的浓度(或活性),当细菌以葡萄糖为能源时,因为有葡萄糖降解物的效应(抑制了腺苷酸环化酶的活性),使ATP生成cAMP的浓度降低,因而cAMP-CAP复合物的量低,导致乳糖操纵子结构基因不被转录。
负调控机制:
由调节基因I表达的阻遏蛋白以四聚体的活性结构结合于操纵子基因上,阻绕了RNA聚合酶的转录。
诱导调控:
当有诱导物(异乳糖(乳糖异构体)、IPTG、TMG等)存在时,诱导物可以与调节基因I表达的阻遏蛋白结合,改变其蛋白构象后不能与操纵基因结合,RNA聚合酶可以进行结构基因的转录,也就实现了分解乳糖代谢的相关酶的基因表达,即细菌可以分解和利用乳糖。
大肠杆菌乳糖操纵子的正、负调控协调调节其结构基因的表达。
总结:使大肠杆菌乳糖操纵子高效表达,必须既有诱导物又无葡萄糖效应。
大肠杆菌培养基中有葡萄糖和乳糖时,细菌为何优先利用葡萄糖?
(1)培养基中有葡萄糖,无乳糖时,cAMP-CAP复合物浓度低,即CAP不发挥作用,无诱导物存在
时,阻遏蛋白与操纵基因结合,关闭了下游结构基因的表达。
(2)培养基中既有葡萄糖,又有乳糖时,虽然阻遏蛋白不能与操纵基因结合,但cAMP-CAP复合物浓
度低,即CAP不发挥作用,下游结构基因的表达仍然处于关闭状态。
(3)培养基中无葡萄糖,有乳糖时,cAMP-CAP复合物浓度高,即CAP可以发挥(分解代谢基因激活蛋白的)作用,而且有诱导物,阻遏蛋白不能与操纵基因结合,开放下游结构基因的表达。