第六章 原核生物表达调控
- 格式:rtf
- 大小:131.27 KB
- 文档页数:14
(完整word版)第六章原核基因表达调控模式思考题答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整word版)第六章原核基因表达调控模式思考题答案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整word版)第六章原核基因表达调控模式思考题答案的全部内容。
第七章原核生物的基因调控思考题答案一、填空题1. 能够诱导操纵子但不是代谢底物的化合物称为春基_诱导物•能够诱导乳糖操纵子的化合物IPTG 就是其中一例.这种化合物同塑遏_蛋白质结合.并使之与操纵基因分离。
乳糖操纵子的体内功能性诱导物是异乳糖.2O色氨酸是一种调节分子,被视为辅阻遏物。
它与一种蛋白质结合形成全阻遏物;乳糖操纵子和色氨酸操纵子是两个控制的例子.cAMP-cAP蛋白通过正控制起作用。
色氨酸操纵子受另一种系统弱化作用的调控.它涉及到第一个结构基因被转录前的转录竺止作用。
二、选择题(单选或多选)1o标出以下所有正确表述:(C )(a) 转录是以半保留方式获得序列相同的两条DNA链的过程(b) 依赖DNA的DNA聚合酶是多亚基酶,它负责DNA的转录(c) 细菌的转录物(mBNA)是多基因的(d) 。
因子指导真核生物hnRNA的转录后加工,最后形成mRNA(e) 促旋酶在模板链产生缺口,决定转录的起始和终止2. 下面哪些真正是乳糖操纵子的诱导物? ( (c) (d))(a)乳糖(b) 0—硝基苯酚一B -半乳糖昔(0NPG)(c) 异丙基既基半乳糖昔(d) 异乳糖3. 氨酸操纵子的调控作用是受两个相互独立的系统控制的,其中一个需要前导肽的翻译,下面哪一个调控这个系统?( (b))(a) 色氨酸(b) 色氨酰一tRNA Trp(c) 色氨酰—tRNA(d) cAMP(e)以上都不是三、判断题1. 下面哪些说法是正确的?(a) LacA的突变体是半乳糖昔透性酶的缺陷(b) 在非诱导的情况下,每个细胞大约有4分子的p—半乳糖昔酶(c) 乳糖是一种安慰诱导物(d) RNA聚合酶同操纵因子结合(e)多顺反子mRNA是协同调节的原因(f) Lac阻遏物是一种由4个相同的亚基组成的四聚体(g) 腺昔酸环化酶将cAMP降解成AMP(h) CAP和CRP蛋白是相同的(i) —35和一10序列对于RNA聚合酶识别启动子都是很重要的(j)色氨酸的合成受基因表达、阻遏、弱化作用和反馈抑制的控制(k) Trp的引导mRNA能够同时形成三个“茎一环”结构(l)在转录终止子柄部的A-T碱基对可以增强结构的稳定性(m)真核生物和原核生物的转录和翻译都是偶联的(n)在色氨酸浓度的控制下,核糖体停泊在Trp引导区一串色氨酸密码,但并不与之脱离(o) Ara c蛋白既可作为激活蛋白,又可作为阻遏蛋白起作用(p) Ara c的表达不受调控正确:b, e, f, h, i, j, n, o四、简答题1.为什么只有DNA双螺旋中的一条链能被正常的转录?答:如果两条链都被转录,每个基因就能编码两个不同的多肽。
第六章原核基因表达调控1.(单选题)下列关于“基因表达”概念叙述,错误的是A. 某些基因表达产物不是蛋白质分子B. 基因表达具有组织特异性C. 基因表达具有阶段特异性D. 基因表达都要经历转录及翻译您的答案:D2.(单选题)原核细胞的RNA聚合酶有A. 多种核心酶和多种σ因子B. 多种核心酶和一种σ因子C. 一种核心酶和多种σ因子D. 一种核心酶和一种σ因子您的答案:C3.(单选题)异丙基-β-D-硫代半乳糖苷(IPTG)是乳糖操纵子的A. 诱导物B. 阻遏物C. 辅阻遏物D. 安慰诱导物您的答案:A4.(单选题)成簇有规律间隔短回文重复序列(CRISPR)可以促进细菌A. 生长B. 清除含有相同和相似序列的病毒C. 繁殖D. 抵御一切病毒您的答案:B5.(单选题)下列关于固氮基因调控体系说法正确的是:A. 固氮基因调控体系是一个级联调控体系B. nifL和nifA 基因位于不同的操纵子上C. 在有氧环境下,NifL 可以结合NifA,激活nif 基因转录D. 细胞中氨的浓度不会影响固氮基因的表达您的答案:6.(单选题)关于大肠杆菌CsrAB 调节系统,下列说法不正确的是:A. CsrA 是一个RNA 结合蛋白B. CsrB是一个编码的RNA 分子C. CsrA可以与CsrB 的RNA 分子相结合D. CsrA 蛋白可激活糖酵解过程您的答案:7.(单选题)若维生素B12合成酶的mRNA与维生素B12结合形成核开关,可以维生素B12合成酶基因的A. mRNA分解B. 转录速度下降C. 翻译速度下降D. 转录和翻译均终止您的答案:8.(多选题)辅诱导物A. 可以和诱导物结合使其失活B. 可以和阻遏蛋白结合使其活化C. 可以同诱导物结合使其活化D. 可以和阻遏蛋白结合使其失活您的答案:9.(多选题)当培养基中含有大量葡萄糖时,正确的说法是:A. cAMP水平增高B. cAMP水平降低C. 乳糖操纵子的表达水平增高D. 乳糖操纵子的表达水平降低您的答案:10.(多选题)下列糖代谢中有关酶的调节,哪些属于降解物敏感型操纵子?A. 山梨醇B. 阿拉伯糖C. 乳糖D. 麦芽糖您的答案:11.(多选题)gal 操纵子有哪些特点:A. 有两个启动子B. mRNA 可从两个不同的起始点开始转录C. 它有两个操纵区D. 操纵区在结构基因galE 内部您的答案:12.(多选题)下列哪些操纵子属于多启动子调控A. 核糖体蛋白SI 操纵子B. rRNA 操纵子C. trp操纵子D. DnaQ 蛋白操纵子您的答案:13.(多选题)关于RNA调节基因表达,下列说法正确的是:A. 细菌响应环境压力的改变,会产生长度在20~50 nt 之间的小RNAB. 原核生物sRNA 以反式编码sRNA 为主C. sRNA抑制或促进靶mRNA的翻译D. sRNA加速或减缓靶mRNA的降解您的答案:14.(多选题)核糖体A位点上未装载氨基酸的空载tRNAA. 促进ppGpp的合成B. 使细菌死亡C. 引发细菌的严谨反应D. 使细菌生长缓慢您的答案:15.(判断题)大肠杆菌mRNA的poly(A)缩短会加速mRNA的降解。
第六章基因的调控1:原核生物基因表达调控第一节概述机体能在基因表达过程的任何阶段进行调控,如调控可在转录阶段、转录后加工阶段和翻译阶段进行。
转录的调控主要发生在起始阶段,这样可避免浪费能量合成不必要的转录产物。
通常不在转录延伸阶段进行调控,但可在终止阶段进行调控,终止可以防止越过终止子而进行下一个基因的转录。
RNA的初级转录产物本身是一个受调控的靶分子,转录物作为一个整体其有效性可以受到调控,例如,它的稳定性可以决定它是否保存下来用于翻译。
此外,初级转录产物转变为成熟分子的加工能力可决定最后mRNA分子的组成和功能。
在真核细胞中,还可对RNA从核到胞浆中的转运进行调控。
但是在细菌中,mRNA只要一合成,就可用于翻译。
翻译也像转录一样,在起始阶段和终止阶段进行调控。
DNA转录的起始和RNA翻译的起始路线也很相似。
在原核生物和真核生物最常见的调控是转录过程的调控。
因此本章先讨论转录调控,然后,再介绍翻译水平的调控。
为了便于理解,在介绍具体的调控过程之前,先介绍一些基本概念。
1.顺式作用组件和反式作用因子基因活性的调控主要通过反式作用因子(通常是蛋白质)与顺式作用组件(通常在DNA上)相互作用而实现。
基因是编码可扩散产物的DNA序列,基因所编码的产物可以是蛋白质(大多数基因都编码蛋白质),也可以是RNA(tRNA和rRNA)。
其最重要的特点是基因产物将从合成的场所扩散到其发挥作用的其他场所。
游离基因产物扩散至其目标场所的过程称为反式作用trans-acting)。
因此反式作用因子(trans-actingfactor)的编码基因与其识别或结合的靶核苷酸序列不在同一个DNA分子上。
顺式作用(cis-acting)的概念用于任一不转变为任何其他形式的DNA序列,它只在原位发挥DNA 序列的作用,它仅影响与其在物理上相连的DNA。
有时顺式调节序列最终发挥作用的分子不是DNA,而是RNA。
因此,顺式作用组件(cis-actingelement)是指对基因表达有调节活性的DNA序列,其活性只影响与其自身同处在一个DNA分子上的基因;同时,这种DNA序列通常不编码蛋白质,多位于基因旁侧或内含子中。
第六章基因调控1:原核生物基因的表达调控分子生物学习题第六章基因调控1:原核生物基因的表达调控分子生物学习题第六章基因表达调控1:原核生物基因表达调控名词解释:操纵子基因表达持家基因正调控和负调控安慰诱导物衰减子(弱化子)魔斑结构基因和调节基因本底水平表达填空1操纵子的基因表达调节系统属水平的调节,乳糖操纵子模型由和1961年明确提出的。
色氨酸操纵子包含和两方面的调控。
2、能够诱导操纵子但不是代谢底物的化合物称为诱导物。
能够诱导乳糖操纵子的化合物就是其中一例。
这种化合物同蛋白质结合,并使之与分离。
乳糖操纵子的体内功能性诱导物是。
3、色氨酸就是一种调节分子,被视作。
它与一种蛋白质融合构成。
通过掌控起至促进作用。
色氨酸操纵子受到另一种系统------的调控,它牵涉至第一个结构基因被mRNA前的mRNA。
4、大肠杆菌乳糖操纵子调节基因编码的与结合,对lac结合,对lac表达实施负调控;与复合物结合于上游部分,对lac表达实施正调控。
5、操纵子中没有基因产物的是和选择题1、下面哪些真正就是乳糖操纵子的诱导物?()a.乳糖b.蜜二糖c.o-硝基苯酚-β-半乳糖苷(onpg)d.异丙基-β-半乳糖苷e.异乳糖2、色氨酸操纵子的调控促进作用就是受到两个相互单一制的系统控制的,其中一个须要前导肽的译者,下面哪一种调控这个系统?()a.色氨酸b.色氨酰-trnatrpc.色氨酰-trnad.campe.以上都不正确3、Dozul蛋白(阻抑蛋白)辨识操纵子中的()a逼舳基因b苯峁够因c辈僮莼因d蹦诤子e蓖庀宰4、乳糖、阿拉伯糖、色氨酸等小分子物质在基因表达调控中作用的共同特点是a庇肫舳子结合b庇dna结合影响模板活性c庇rna聚合酶结合影响其活性d庇氲鞍字式岷疑跋旄玫鞍字式岷dnae庇氩僮莼因融合5.下面那项不属于原核生物压低元的结构a:启动子b:终止子c:操纵子d:内含子6、以下有关操纵子的阐释哪个就是错误的()a操纵子是由启动基因、操纵基因与其所控制的一组功能上相关的结构基因组成的基因表达调控单位b操纵子不包含调节基因c代谢底物往往是该途径的可诱导酶的诱导物,代谢终产物往往是可阻遏酶的辅阻遏物d真核细胞的酶合成也存在诱导和阻遏现象,因此也是由操纵子进行调控的7、操纵子调节系统属于哪一种水平的调节?a复制水平的调控b转录水平调控c转录后加工的调控d翻译水平的调控8、对调节基因下述哪些论述哪些是对的()a是编码阻遏蛋白的结构基因b各种操纵子的调节基因都与启动基因二者紧邻c调节基因就是操纵子的组成部分d 调节基因的抒发Seiches迁移的调控区9、以下有关Dozul蛋白的哪些就是对的()aDozul蛋白就是调节基因表的的产物b可诱导操纵子的阻遏蛋白具有直接与操纵子基因结合的活性,与诱导物相互作用后丧失活性c可以Dozul操纵子的Dozul蛋白没轻易与操纵子基因融合的活性,与辅阻遏物融合后才有此活性d阻遏蛋白可与rna聚合酶竞争同一结合部位10、关于启动基因的下述论点哪些是错误的()a启动基因就是rna聚合酶辨识并最县融合的一段dna序列b启动基因就是最先被rna聚合酶mRNA的dna序列c启动基因就是dna上含有a-t碱基对的部分d启动基因就是引起dna激活的特定序列11、下列有关降解物基因活化蛋白(cap)的哪些论点是正确的()acap-camp可专一地与启动基因结合,促进结构基因的转录bcap可单独与启动子相互作用,促进转录ccap-camp可以与调节基因融合,掌控Dozul蛋白的制备dcap-camp可与rna聚合酶竞争地结合于启动基因,从而阻碍结构基因的转录12、与乳糖操纵子操纵基因结合的物质是()arna聚合酶bdna聚合酶cDozul蛋白d反华密码子是非题1、葡萄糖和乳糖并存时,细菌优先利用乳糖并启动乳糖操纵子()2、小分子物质如itpg诱导乳糖操纵子抒发时起负调控促进作用与操纵基因结合阻抑结构基因的抒发()3、色氨酸操纵子中含有衰减子区,其调控作用主要受trp浓度高低影响()4、色氨酸操纵子(trpoperon)中含有衰减子序列()5、camp在laz操纵子中起正调控作用,其浓度受环境中的葡萄糖影响,与其浓度成正比()6、大肠杆菌乳糖操纵子真正的诱导物不是乳糖,而是它的异构体别乳糖()7、操纵基因又称操纵子,如同启动基因又称启动子一样()8、可诱导操纵子是负责调节糖分解代谢的,可阻遏操纵子是负责调节氨基酸代谢的()问答题:1、试述乳糖操纵子的结构及负控诱导的调控机理2、色氨酸操纵子的结构特点?其弱化子在调控中如何起至促进作用?3、详述色氨酸操纵子中启动子调控促进作用特点。
原核生物基因表达调控的方式
1.DNA、染色体水平调控:基因丢失、基因修饰、基因重排、基因扩增、染色体结构变化。
2.转录水平调控(主要调控方式):转录起始、延伸、终止均有影响。
原核生物借助于操纵子,真核生物通过顺式作用元件和反式作用因子相互作用进行调控。
3.转录后水平调控:主要指真核生物原初转录产物经过加工成为成熟的mRNA,包括加帽、加尾、甲基化修饰等。
4.翻译水平调控:对mRNA稳定性的调控、反义RNA对翻译水平的调控等。
5.翻译后水平调控:蛋白质的剪切、化学修饰(磷酸化、乙酰化、糖基化等)、转运等。
6.mRNA降解的调控。
原核⽣物基因表达调控概述原核⽣物基因表达调控概述基因表达调控是⽣物体内基因表达调节控制机制,使细胞中基因表达的过程在时间,空间上处于有序状态,并对环境条件的变化做出适当的反应复杂过程。
1.基因表达调控意义在⽣命活动中并不是所有的基因都同时表达,代谢过程中所需各种酶和蛋⽩质基因以及构成细胞化学成分的各种编码基因,正常情况下是经常表达的,⽽与⽣物发育过程有关的基因则需在特定的时空才表达,还有许多基因被暂时的或永久的关闭⽽不来表达。
2.原核基因表达调控特点原核⽣物基因表达调控存在于转录和翻译的起始、延伸和终⽌的每⼀步骤中。
这种调控多以操纵⼦为单位进⾏,将功能相关的基因组织在⼀起,同时开启或关闭基因表达即经济⼜有效,保证其⽣命活动的需要。
调控主要发⽣在转录⽔平,有正、负调控两种机制在转录⽔平上对基因表达的调控决定于DNA的结构,RNA 聚合酶的功能、蛋⽩质因⼦及其他⼩分⼦配基的相互作⽤。
细菌的转录和翻译过程⼏乎在同⼀时间内相互偶联。
细胞要控制各种蛋⽩质在不同时期的表达⽔平,有两条途径:(1)细胞控制从其DNA模板上转录其特异的mRNA的速度,这是⼀条经济的途径,可减少从mRNA合成蛋⽩质的⼩分⼦物质消耗,这是⽣物长期进化过程中⾃然选择的结果,这种控制称为转录⽔平调控。
(2)在mRNA合成后,控制从mRNA翻译肽链速度,包括⼀些与翻译有关的酶及其复合体分⼦缔合的装配速度等过程。
这种蛋⽩质合成及其基因表达的控制称为翻译⽔平的调控。
⼆.原核⽣物表达调控的概念(1)细菌细胞对营养的适应细菌必须能够⼴泛适应变化的环境条件。
这些条件包括营养、⽔分、溶液浓度、温度,pH等。
⽽这些条件须通过细胞内的各种⽣化反应途径,为细胞⽣长的繁荣提供能量和构建细胞组分所需的⼩分⼦化合物。
(2)顺式作⽤元件和反式作⽤元件基因活性的调节主要通过反式作⽤因⼦与顺式作⽤元件的相互作⽤⽽实现。
反式作⽤因⼦的编码基因与其识别或结合的靶核苷酸序列在同⼀个DNA分⼦上。
第六章原核生物表达调控第一节概述围绕基因表达过程中发生的各种各样的调节方式都通称为基因表达调控(gene regulation或gene control)。
几个基本概念1、顺式作用元件和反式作用因子:基因活性的调控主要通过反式作用因子(通常是蛋白质)与顺式作用元件(通常在DNA 上)相互作用而实现。
顺式作用元件是指对基因表达有调节活性的DNA序列,其活性只影响与其自身同处在一个DNA分子上的基因;同时,这种DNA序列通常不编码蛋白质,多位于基因旁侧或内含子中,如启动子和终止子,都是典型的顺式作用元件。
反式作用因子是能调节与它们接触的基因的表达的各种扩散分子(通常是蛋白质),如RNA聚合酶、转录因子。
2、结构基因和调节基因:结构基因(structural gene)是编码蛋白质或RNA的基因。
细菌的结构基因一般成簇排列,多个结构基因受单一启动子共同控制,使整套基因或都表达或都不表达。
调节基因(regulator gene)是编码合成那些参与其他基因表达调控的RNA或蛋白质的特异DNA 序列。
调节基因编码的调节物质通过与DNA上的特定位点结合控制转录是调控的关键。
比如:它能使结构基因在需要某种酶时就合成某种酶,不需要时,则停止合成,它对不同染色体上的结构基因有调节作用。
调节物与DNA特定位点的相互作用能以正调控的方式(启动或增强基因表达活性)调节靶基因,也能以负调控的方式(关闭或降低基因表达活性)调节靶基因。
DNA位点通常位于受调节基因的上游,但也有例外.3、操纵基因和阻遏蛋白操纵基因(operator)是操纵子中的控制基因,在操纵子上一般与启动子相邻,通常处于开放状态,使RNA聚合酶能够通过并作用于启动子启动转录。
但当它与调节基因所编码的阻遏蛋白结合时,就从开放状态逐渐转变为关闭状态,使转录过程不能发生。
阻遏蛋白(aporepressor)是负调控系统中由调节基因编码的调节蛋白,它本身或与辅阻遏物(corepressor)一起结合于操纵基因,阻遏操纵子结构基因的转录。
第一节概述围绕基因表达过程中发生的各种各样的调节方式都通称为基因表达调控(gene regulation或gene control)。
几个基本概念1、顺式作用元件和反式作用因子:基因活性的调控主要通过反式作用因子(通常是蛋白质)与顺式作用元件(通常在DNA 上)相互作用而实现。
顺式作用元件是指对基因表达有调节活性的DNA序列,其活性只影响与其自身同处在一个DNA分子上的基因;同时,这种DNA序列通常不编码蛋白质,多位于基因旁侧或内含子中,如启动子和终止子,都是典型的顺式作用元件。
反式作用因子是能调节与它们接触的基因的表达的各种扩散分子(通常是蛋白质),如RNA聚合酶、转录因子。
2、结构基因和调节基因:结构基因(structural gene)是编码蛋白质或RNA的基因。
细菌的结构基因一般成簇排列,多个结构基因受单一启动子共同控制,使整套基因或都表达或都不表达。
调节基因(regulator gene)是编码合成那些参与其他基因表达调控的RNA或蛋白质的特异DNA 序列。
调节基因编码的调节物质通过与DNA上的特定位点结合控制转录是调控的关键。
比如:它能使结构基因在需要某种酶时就合成某种酶,不需要时,则停止合成,它对不同染色体上的结构基因有调节作用。
调节物与DNA特定位点的相互作用能以正调控的方式(启动或增强基因表达活性)调节靶基因,也能以负调控的方式(关闭或降低基因表达活性)调节靶基因。
DNA位点通常位于受调节基因的上游,但也有例外.3、操纵基因和阻遏蛋白操纵基因(operator)是操纵子中的控制基因,在操纵子上一般与启动子相邻,通常处于开放状态,使RNA聚合酶能够通过并作用于启动子启动转录。
但当它与调节基因所编码的阻遏蛋白结合时,就从开放状态逐渐转变为关闭状态,使转录过程不能发生。
阻遏蛋白(aporepressor)是负调控系统中由调节基因编码的调节蛋白,它本身或与辅阻遏物(corepressor)一起结合于操纵基因,阻遏操纵子结构基因的转录。
阻遏蛋白可被诱导物变构失活,从而导致不可阻遏或去阻遏。
4、组成蛋白和调节蛋白细胞内有许多种蛋白质的数量几乎不受外界环境的影响,这些蛋白质称为组成蛋白或持家蛋白。
调节蛋白是一类特殊蛋白,它们可以控制和影响一种或多种基因的表达。
有两种类型的调节蛋白,即正调节蛋白和负调节蛋白,前者是激活蛋白,而后者属于阻遏蛋白。
调节本身也可有被调控,最典型的就是被一些小分子所调控,面这些小分子的产生是周围环境所致。
5、操纵子(operon) :是原核生物在分子水平上基因表达调控的单位,由调节基因、启动子、操纵基因和结构基因等序列组成。
例如:在细菌基因组中,同一个代谢途径的酶的基因一般成簇排列。
把功能密切相关的一组蛋白质编码的结构基因区域加上其调控区域组成的控制单元就叫操纵子。
6、小分子效应物的作用原核生物的操纵子通过调节蛋白与小分子物质相互作用达到诱导状态或阻遏状态。
某些特定的物质能与调控蛋白结合,使调控蛋白的空间构像发生变化,从而改变其对基因转录的影响,这些特定物质可称为效应物(effector)。
细菌细胞有两种类型的效应物。
(1)诱导物:能引起诱导发生的分子;有些阻遏蛋白在自然状态下结合在操纵基因上,当有诱导物存在时,诱导物与阻遏蛋白结合,促使后者空间构象变化,使阻遏蛋白与操纵基因亲和力下降而解离下来, RNA 聚合酶能够进入启动子区域,开启了结构基因的转录表达。
由诱导物存在而使基因表达开放的调节又称为可诱导调节。
如大肠杆菌的乳糖操纵子中的乳糖。
(2)辅阻遏物:能导致阻遏发生的分子。
有些阻遏蛋白本身不具有结合操纵基因的活性,当细胞中有辅阻遏物存在时,它可以结合到阻遏蛋白分子上,提高阻遏蛋白与操纵基因的亲和性。
由辅阻遏物参与引起的调节又称为可阻遏的调节。
如大肠杆菌的色氨酸操纵子中,色氨酸与阻遏蛋白结合,使后者表现出结合操纵基因的活性,阻止了RNA聚合酶与启动子结合的结合,使操纵子关闭。
第二节基因表达调控的基本原理原核生物和真核生物转录的差异原核与真核生物RNA翻译的异同6.2 原核基因表达调控总论基因表达调控的多层次性,主要表现在:1.转录水平上的调控(transcriptional regulation);2.转录后水平上的调控(post-transcriptionalregulation),包括① mRNA加工成熟水平上的调控(differential processing of RNA transcript);②翻译水平上的调控(differential translation of mRNA)。
基因调控的指挥系统也是多样的,不同的生物使用不同的信号来指挥基因调控。
原核生物中,营养状况(nutritional status)和环境因素(environmental factor)对基因表达起着举足轻重的影响。
真核生物尤其是高等真核生物中,激素水平(hormone level)和发育阶段(developmental stage)是基因表达调控的最主要手段,营养和环境因素的影响力大为下降。
在转录水平上对基因表达的调控决定于DNA的结构、RNA聚合酶的功能、蛋白因子及其他小分子配基的相互作用。
原核生物的基因调控主要发生在转录水平上,根据调控机制的不同可分为:负转录调控(negative transcription regulation)正转录调控(positive transcription regulation)在负转录调控系统中,调节基因的产物是阻遏蛋白(repressor),起着阻止结构基因转录的作用。
根据其作用特征又可分为负控诱导和负控阻遏二大类。
在负控诱导系统中,阻遏蛋白与效应物(诱导物)结合时,结构基因转录;在负控阻遏系统中,阻遏蛋白与效应物(辅阻遏物)结合时,结构基因不转录。
阻遏蛋白作用的部位是操纵区。
在正转录调控系统中,调节基因的产物是激活蛋白(activator)。
也可根据激活蛋白的作用性质分为正控诱导系统和正控阻遏系统。
在正控诱导系统中,效应物分子(诱导物)的存在使激活蛋白处于活性状态;在正控阻遏系统中,效应物分子(辅阻遏物)的存在使激活蛋白处于非活性状态。
6.2.2 弱化子对基因活性的影响属于这种调节方式的有大肠杆菌中的色氨酸操纵子、苯丙氨酸操纵子、苏氨酸操纵子、异亮氨酸操纵子等等。
概念:弱化子是指当操纵子被阻遏,RNA合成被终止时,起终止转录信号作用的那一段核苷酸。
弱化子对基因活性的影响是通过影响前导序列mRNA的结构而起作用的。
起调节作用的是某种氨基酰-tRNA的浓度。
具体在Trp操纵子中讲。
6.2.3 降解物对基因活性的调节操纵子学说的核心是使基因从表达抑制状态中解脱出来进行转录,是从负调节的角度来考虑基因表达调控的。
那么,有没有从相反的角度进行正调节以提高基因的转录水平?有葡萄糖存在的情况下,即使在细菌培养基中加入乳糖、半乳糖、阿拉伯糖或麦芽糖等诱导物,与其相对应的操纵子也不会启动,产生出代谢这些糖的酶来,这种现象称为葡萄糖效应或称为降解物抑制作用。
为什么会产生这种效应呢?因为添加葡萄糖后,细菌所需要的能量便可从葡萄糖得到满足,葡萄糖是最方便的能源,细菌无需开动一些不常用的基因去利用这些稀有的糖类。
葡萄糖的存在会抑制细菌的腺苷酸环化酶活性,减少环腺苷酸(cAMP)的合成,与它相结合的蛋白质,即环腺苷酸受体蛋白CRP又称分解代谢物激活蛋白CAP,因找不到配体而不能形成复合物.复合物是启动基因转录的正调节物质(CRP与启动子结合是激活转录的必要条件,而cAMP与CRP的结合能增强CRP对DNA双链的亲和力),从而抑制糖类代谢操纵子的表达。
降解物抑制作用是通过提高转录强度来调节基因表达的,是一种积极的调节方式。
6.2.4细菌的应急反应细菌有时会碰到紧急状况,比如氨基酸饥饿时,就不是缺少一二种氨基酸,而是氨基酸的全面匮乏。
为了紧缩开支,渡过难关,细菌将会产生一个应急反应,包括生产各种RNA、糖、脂肪和蛋白质在内的几乎全部生物化学反应过程均被停止。
实施这一应急反应的信号是鸟苷四磷酸(ppGpp)和鸟苷五磷酸(pppGpp)。
产生这两种物质的诱导物是空载tRNA。
当氨基酸饥饿时,细胞中便存在大量的不带氨基酸的tRNA,这种空载的tRNA 会激活焦磷酸转移酶,使ppGpp大量合成,其浓度可增加10倍以上。
ppGpp的出现会关闭许多基因,当然也会打开一些合成氨基酸的基因,以应付这种紧急状况。
关于ppGpp的作用原理还不大清。
ppGpp与pppGpp的作用范围十分广泛,它们不是只影响一个或几个操纵子,而是影响一大批,所以它们是超级调控因子或称为魔斑。
6.3 操纵子学说(theory of operon)操纵子学说是关于原核生物基因结构及其表达调控的经典学说,由法国巴斯德研究所的Francois Jacob与Jacques Monod于1961年首先提出的。
他们首先提出了操纵子(operon)和操纵基因operator)的概念,他们的操纵子学说(theory of operon)使我们得以从分子水平认识基因表达的调控,是一个划时代的突破,因此他们二人于1965年荣获诺贝尔生理学奖。
大肠杆菌能以乳糖(Lactose)为唯一碳源生长,这是由于它能产生一套利用乳糖的酶。
这些酶受乳糖操纵子的控制。
大肠杆菌乳糖操纵子是大肠杆菌DNA的一个特定区段,由调节基因I,启动基因P,操纵基因O和结构基因Z、Y、A组成。
P(promoter)区是转录起始时RNA聚合酶的结合部位。
O(operator)区是阻遏蛋白的结合部位,其功能是控制结构基因的转录。
平时I基因经常进行转录和翻译,产生有活性的阻遏蛋白。
(弱启动子控制的永久性表达)Z编码β-半乳糖苷酶;Y编码β-半乳糖苷透过酶;A编码β-半乳糖苷乙酰基转移酶。
β-半乳糖苷酶是一种β-半乳糖苷键的专一性酶,除能将乳糖水解成葡萄糖和半乳糖外,还能水解其他β-半乳糖苷。
β-半乳糖苷透过酶的作用是使外界的β-半乳糖苷(如乳糖)能透过大肠杆菌细胞壁和原生质膜进入细胞内。
β-半乳糖苷乙酰基转移酶的作用是把乙酰辅酶A上的乙酰基转到β-半乳糖苷上,形成乙酰半乳糖。
(注:该酶不参与乳糖代谢!在细胞中有许多能被半乳糖苷酶降解的半乳糖苷类物质,其分解产物不能进一步代谢,积累,抑制细胞生长。
半乳糖苷乙酰化后,即无毒. 所以lacA虽不在乳糖降解中起作用,但可抑制有害物质的积累)乳糖操纵元结构乳糖操纵子的控制模型,其主要内容如下:① Z、Y、A基因的产物由同一条多顺反子的mRNA分子所编码。
②这个mRNA分子的启动子紧接着O区,而位于I与O之间的启动子区(P),不能单独起动合成β-半乳糖苷酶和透过酶的生理过程。