新人教八上数学
- 格式:doc
- 大小:407.43 KB
- 文档页数:10
新人教版八上数学教材解读
嘿,朋友们!今天咱就来好好聊聊新人教版八上数学教材!这可真不是一本普通的教材啊,就像一个隐藏着无数知识宝藏的神秘盒子!
你想想看,每一页、每一道例题,那都是数学奇妙世界的入口啊!比如
说吧,在讲三角形那一块,那各种三角形就像是不同性格的小伙伴,有的稳定可靠,像直角三角形;有的则调皮可爱,像等边三角形。
咱学习它们不就像是了解咱们的小伙伴们一样有趣吗?
再看看那些公式,哎呀呀,简直就是打开难题大门的钥匙啊!当我们掌
握了这些公式,就好像有了超能力一般,可以轻松解决那些看似不可能的问题。
“这道题该怎么做呀?”别急,公式用起来呀,马上就迎刃而解啦!
还有那些练习题呢,可别小瞧它们,它们可是我们提升技能的好帮手!
就像游戏里的关卡,每过一关都充满了成就感。
“哇塞,我又做对了一道!”
老师在课堂上讲解教材的时候,就像一个引路人,带着我们在数学的道
路上前行。
我们和老师互动,提出问题,老师耐心解答,这种感觉多棒啊!
同学之间也会互相讨论,“嘿,你这道题怎么做的呀?”“来来来,我给你讲讲。
”
新人教版八上数学教材真的是太重要了!它不仅教给我们知识,更培养了我们的思维能力和解决问题的能力。
我们可不能小瞧它,要认真对待,深入钻研,让它成为我们学习路上的好朋友、好伙伴!相信通过这本教材,我们都能在数学的海洋里畅游,收获满满的快乐和成长!。
新人教版八年级上册数学课件注:直接按Ctrl键点击你所要下载的课件即可.可以长期关注11.1 全等三角形PPT课件.ppt11.2 三角形全等的判定PPT课件1.ppt11.2 三角形全等的判定PPT课件2.ppt11.2 三角形全等的判定(ASA AAS) PPT课件.ppt11.2 三角形全等的判定(SAS) PPT课件.ppt11.2 三角形全等的判定(SSS) PPT课件.ppt11.2 三角形全等的判定2PPT课件.ppt11.2 三角形全等的条件PPT课件.ppt11.3 角的平分线的性质PPT课件1.ppt11.3 角的平分线的性质PPT课件2.ppt12.1 轴对称 PPT课件1a.ppt12.1 轴对称 PPT课件2a.ppt12.1 轴对称 PPT课件3a.ppt12.2 作轴对称图形PPT课件1.ppt12.2 作轴对称图形PPT课件2.ppt12.2 作轴对称图形PPT课件3.ppt12.2 作轴对称图形PPT课件4.ppt12.2.1 作轴对称图形PPT课件.ppt 12.2.2 用坐标表示轴对称PPT课件.ppt 12.3.1 等腰三角形PPT课件1.ppt12.3.1 等腰三角形PPT课件2.ppt12.3.1 等腰三角形的判定课件.ppt 12.3.1 等腰三角形的性质课件1.ppt 12.3.1 等腰三角形的性质课件2.ppt 12.3.1 等腰三角形的性质课件3.ppt 12.3.2 等边三角形PPT课件1.ppt12.3.2 等边三角形PPT课件2.ppt12.3.2 等边三角形PPT课件3.ppt13.1 平方根PPT课件1.ppt13.1 平方根PPT课件2.ppt13.1 平方根PPT课件3.ppt13.1 平方根PPT课件4.ppt13.1 平方根PPT课件5.ppt13.1 算术平方根PPT课件.ppt13.1 习题讲解PPT课件.ppt13.2 立方根PPT课件1.ppt13.2 立方根PPT课件2.ppt13.2 立方根PPT课件3.ppt13.2 平方根、立方根习题课课件.ppt13.2 习题讲解PPT课件.ppt13.3 实数PPT课件1.ppt13.3 实数PPT课件2.ppt13.3 实数PPT课件3.ppt13.3 实数(实数的概念)课件.ppt13.3 实数习题讲解课件.ppt14.1 变量与函数的初步认识课件.ppt14.1.1 变量PPT课件.ppt14.1.2 变量与函数PPT课件1.ppt 14.1.2 变量与函数PPT课件2.ppt 14.1.2 函数PPT课件.ppt14.1.3 函数的图象PPT课件1.ppt 14.1.3 函数的图象PPT课件2.ppt 14.2 一次函数_待定系数法PPT课件.ppt 14.2 一次函数_复习课PPT课件.ppt 14.2 一次函数_实际问题PPT课件.ppt 14.2 一次函数_正比例函数PPT课件.ppt 14.2 一次函数的图象和性质课件.ppt 14.2.1正比例函数(第1课时)课件.ppt 14.2.1正比例函数(第2课时)课件.ppt 14.3 一次函数与一元一次方程(1课时).ppt 14.3 一次函数与一元一次方程(2课时).ppt14.3 一次函数与一元一次方程(3课时).ppt 14.3.1一次函数与一元一次方程课件.ppt 14.3.2一次函数与与一元一次不等式.ppt 14.3.3一次函数与二元一次方程组.ppt14.3.4用函数观点看方程(组)与不等式1.ppt 14.3.4用函数观点看方程(组)与不等式2.ppt14.3.4用函数观点看方程(组)与不等式3.ppt15.1 整式的乘法PPT课件1.ppt15.1 整式的乘法PPT课件2.ppt15.1 整式的乘法(1)PPT课件.ppt15.1 整式的乘法(2)PPT课件.ppt15.1.1 单项式乘以单项式PPT课件.ppt 15.1.2 单项式与多项式相乘课件1.ppt 15.1.2 单项式与多项式相乘课件2.ppt 15.1.3 多项式与多项式相乘课件.ppt15.1.4 同底数幂的乘法PPT课件.ppt15.2 乘法公式(第1课时)PPT课件.ppt 15.2 乘法公式(第2课时)PPT课件.ppt 15.2 乘法公式(第3课时)PPT课件.ppt 15.2 乘法公式_平方差公式课件.ppt15.2.1 平方差公式PPT课件.ppt15.2.2 完全平方公式PPT课件.ppt15.3 整式的除法(第1课时)课件.ppt 15.3 整式的除法(第2课时)课件.ppt 15.3.2 单项式除单项式PPT课件.ppt 15.3.2 整式的除法PPT课件.ppt15.4 因式分解.ppt15.4 因式分解(1).ppt15.4 因式分解(2)(平方差公式).ppt 15.4 因式分解(3)(完全平方公式法).ppt 15.4《因式分解》复习ppt课件.ppt。
人教版八年级上数学知识点总结
一、整数运算
1. 整数的加减法运算
- 同号相加、异号相减
- 借位规则
2. 整数的乘除法运算
- 正数乘除正数为正,负数乘除负数为正
- 正数乘除负数为负,负数乘除正数为负
二、分数与小数
1. 分数的概念与表示方法
- 分子、分母的含义
- 分数的大小比较
2. 分数的加减法运算
- 分数相加减时,先找到相同的分母
3. 分数的乘除法运算
- 乘法:分子相乘,分母相乘- 除法:乘以倒数
4. 小数的概念与表示方法
- 小数位数与数值大小的关系
三、代数式与方程式
1. 代数式的概念与运算
- 字母的含义
- 代数式的加减运算
2. 一元一次方程
- 方程的定义与解法
- 列方程的步骤与技巧
四、正比例与反比例
1. 正比例
- 定义与性质
- 比例关系的表示方法
2. 反比例
- 定义与性质
- 比例关系的表示方法
五、平面图形与坐标系
1. 平面图形的概念与性质
- 直线、曲线、多边形等
2. 坐标系与坐标表示
- 直角坐标系
- 坐标点的表示方式
以上是人教版八年级上数学的主要知识点总结,希望能对同学们复习和学习有所帮助。
八年级数学(上)全册教案(新人教版)第一章:勾股定理1.1 勾股定理的发现导入:通过直角三角形的实际测量,让学生感受勾股定理的背景。
探究:引导学生通过实际操作,发现勾股定理,并能够用字母表示。
练习:让学生通过解决实际问题,巩固勾股定理的应用。
1.2 勾股定理的证明导入:通过回顾三角形知识,引导学生思考勾股定理的证明方法。
探究:让学生通过割补、折叠等方法,尝试证明勾股定理。
练习:让学生通过解决实际问题,加深对勾股定理证明的理解。
第二章:实数与方程2.1 实数的分类导入:通过生活中的实例,引导学生理解实数的概念。
探究:让学生通过分类讨论,理解实数的分类,包括有理数和无理数。
练习:让学生通过解决实际问题,加深对实数分类的理解。
2.2 一元一次方程导入:通过实例引入方程的概念,引导学生理解一元一次方程的特点。
探究:让学生通过解方程的方法,掌握一元一次方程的解法。
练习:让学生通过解决实际问题,巩固一元一次方程的应用。
第三章:不等式与不等式组3.1 不等式的概念导入:通过比较大小引入不等式的概念,引导学生理解不等式的表示方法。
探究:让学生通过实际操作,理解不等式的性质。
练习:让学生通过解决实际问题,加深对不等式概念的理解。
3.2 不等式的解法导入:通过实例引入不等式的解法,引导学生掌握解不等式的方法。
探究:让学生通过实际操作,掌握不等式的解法。
练习:让学生通过解决实际问题,巩固不等式的解法。
第四章:函数及其图象4.1 函数的概念导入:通过实例引入函数的概念,引导学生理解函数的表示方法。
探究:让学生通过实际操作,理解函数的性质。
练习:让学生通过解决实际问题,加深对函数概念的理解。
4.2 一次函数的图象导入:通过实例引入一次函数的图象,引导学生理解一次函数图象的特点。
探究:让学生通过实际操作,绘制一次函数的图象。
练习:让学生通过解决实际问题,巩固一次函数图象的应用。
第五章:平面图形的认识5.1 线段的性质导入:通过实例引入线段的概念,引导学生理解线段的性质。
【导语】以下是为您整理的⼋年级上册数学课本答案新⼈教版【三篇】,供⼤家学习参考。
第2章2.1第1课时三⾓形的有关概念答案 课前预习 ⼀、直线;⾸尾 三、1、等腰三⾓形 2、相等 四、⼤于 课堂探究 【例1】思路导引答案: 1、1 2、2 变式训练1-1:C 变式训练1-2:B 【例2】思路导引答案: 1、2;8 2、4、6;C 变式训练2-1:B 变式训练2-2:B 课堂训练 1~2:A;B 3、2或3或4 4、11或13 5、解:(1)设第三边的长为xcm, 由三⾓形的三边关系得9-4 (2)由(1)知5 所以第三边长可以是6cm,8cm,10cm,12cm. (3)第三边长为6cm时周长最⼩,第三边长为12cm时周长, 所以周长的取值范围是⼤于等于19cm,⼩于等于25cm. 课后提升 12345 BBBAB 6、24 7、6;△ABD,△ADE,△AEC,△ABE,△ADC,△ABC 8、2cm;5cm;5cm 9,解:∵四边形ABCD是长⽅形且CE⊥BD于点E, ∴∠BAD,∠BCD,∠BEC,∠CED是直⾓,并且是三⾓形的⼀个内⾓. (1)直⾓三⾓形有:△ABD、△BCD、△BCE、△CDE. (2)易找锐⾓三⾓形:△ABE,钝⾓三⾓形:△ADE. 10、解:(1)由三⾓形三边关系得 5-2 因为AB为奇数, 所以AB=5, 所以周长为5+5+2=12、 (2)由(1)知三⾓形三边长分别为5,5,2,所以此三⾓形为等腰三⾓形. 第2章2.1第2课时三⾓形的⾼、中线、⾓平分线答案 课前预习 ⼀、⊥;CD;BC;∠2;∠BAC ⼆、中线 课堂探究 【例1】思路导引答案: 1、90 2、ABC;AB 变式训练1-1:C 变式训练1-2:A 【例2】思路导引答案: 1、线段 2、线段;⾓;90° 解:(1)CEB;C (2)∠DAC;∠BAC (3)∠AFC;90° (4)3 变式训练2-1:A 变式训练2-2: 解:(1)S△ABC=1/2AC•BC=1/2×3×4=6(cm²). (2)∵1/2AB•CD=SABC,∴1/2×5×CD=6,∴CD=12/5(cm) 课堂训练 1~3:C;B;C 4、40° 5、解:如图 (1)线段AD即为所画。
三角形一、知识概念:1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.8.多边形的内角:多边形相邻两边组成的角叫做它的内角.9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,13.公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和.性质2:三角形的一个外角大于任何一个和它不相邻的内角.⑶多边形内角和公式:n边形的内角和等于(n2)·180°⑷多边形的外角和:多边形的外角和为360°.⑸多边形对角线的条数:①从n边形的一个顶点出发可以引(n3)条对角线,把多边形分成(n2)个三角形.②n边形共有n(n3)条对角线.2全等三角形一、知识概念:1.基本定义:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.⑷对应边:全等三角形中互相重合的边叫做对应边.⑸对应角:全等三角形中互相重合的角叫做对应角.2.基本性质:⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.3.全等三角形的判定定理:⑴边边边(SSS):三边对应相等的两个三角形全等.⑵边角边(SAS):两边和它们的夹角对应相等的两个三角形全等.⑶角边角(ASA):两角和它们的夹边对应相等的两个三角形全等.⑷角角边(AAS):两角和其中一个角的对边对应相等的两个三角形全等.⑸斜边、直角边(HL):斜边和一条直角边对应相等的两个直角三角形全等.4.角平分线:⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.5.证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.轴对称一、知识概念:1.基本概念:⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.⑵两个图形成轴对称:把一个图形沿其中一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.⑸等边三角形:三条边都相等的三角形叫做等边三角形.2.基本性质:⑴对称的性质:①不管是轴对称图形还是两个图形关于条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.②对称的图形都全等.⑵线段垂直平分线的性质:①线段垂直平分线上的点与这条线段两个端点的距离相等.②与一条线段两个端点距离相等的点在这条线段的垂直平分线上.⑶关于坐标轴对称的点的坐标性质①点P(x,y)关于x轴对称的点的坐标为P\'(x,y).②点P(x,y)关于y轴对称的点的坐标为P\"(x,y).⑷等腰三角形的性质:①等腰三角形两腰相等.②等腰三角形两底角相等(等边对等角).③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合.④等腰三角形是轴对称图形,对称轴是三线合一(1条).⑸等边三角形的性质:①等边三角形三边都相等.②等边三角形三个内角都相等,都等于60°③等边三角形每条边上都存在三线合一.④等边三角形是轴对称图形,对称轴是三线合一(3条).3.基本判定:⑴等腰三角形的判定:①有两条边相等的三角形是等腰三角形.②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边).⑵等边三角形的判定:①三条边都相等的三角形是等边三角形.②三个角都相等的三角形是等边三角形.③有一个角是60°的等腰三角形是等边三角形.4.基本方法:⑴做已知直线的垂线:⑵做已知线段的垂直平分线:⑶作对称轴:连接两个对应点,作所连线段的垂直平分线.⑷作已知图形关于直线的对称图形:⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短.整式的乘除与分解因式一、知识概念:1.基本运算:⑴同底数幂的乘法:am an am n ⑵幂的乘方:am amn n⑶积的乘方:ab anbn 2.整式的乘法:⑴单项式单项式:系数系数,同字母同字母,不同字母为积的因式.⑵单项式多项式:用单项式乘以多项式的每个项后相加.⑶多项式多项式:用一个多项式每个项乘以另一个多项式每个项后相加.3.计算公式:⑴平方差公式:a b a b a2b2⑵完全平方公式:a b a22ab b2;a b a22ab b24.整式的除法:⑴同底数幂的除法:am an am n⑵单项式单项式:系数系数,同字母同字母,不同字母作为商的因式.⑶多项式单项式:用多项式每个项除以单项式后相加.⑷多项式多项式:用竖式.5.因式分解:把一个多项式化成几个整式的积的形式,这种变形叫做把这个式子因式分解.22n6.因式分解方法:⑴提公因式法:找出最大公因式.⑵公式法:①平方差公式:a2b2a b a b②完全平方公式:a22ab b2a b③立方和:a3b3(a b)(a2ab b2) ④立方差:a3b3(a b)(a2ab b2)⑶十字相乘法:x2p q x pq x p x q⑷拆项法⑸添项法分式一、知识概念:1.分式:形如A,A、B是整式,B中含有字母且B不等于0的整式叫做分式.其中A叫做分式的B2分子,B叫做分式的分母.2.分式有意义的条件:分母不等于0.3.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变.4.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分.5.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.6.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式.7.分式的四则运算:⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:aba b ccc⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分acad cb式,然后再按同分母分式的加减法法则进行计算.用字母表示为:bdbd⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分acac母相乘的积作为积的分母.用字母表示为:bdbd⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.用字母表示为:acadad bdbcbcan a⑸分式的乘方法则:分子、分母分别乘方.用字母表示为:nb b8.整数指数幂:⑴am an am n(m、n是正整数)⑵am amn(m、n是正整数)nn⑶ab anbn(n是正整数)⑷am an am n(a0,m、n是正整数,m n)nan a⑸n(n是正整数)b b⑹a n1(a0,n是正整数) ann9.分式方程的意义:分母中含有未知数的方程叫做分式方程.10.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).《新人教版八年级数学上册知识点总结.doc》。
八年级数学(上)全册教案(新人教版)教案内容:一、第一章:勾股定理1. 教学目标:理解勾股定理的定义和证明;能够运用勾股定理解决实际问题。
2. 教学重点:勾股定理的表述和证明;勾股定理的应用。
3. 教学难点:勾股定理的证明;解决实际问题时的计算和应用。
4. 教学准备:教学课件;练习题。
5. 教学过程:导入:介绍勾股定理的背景和意义;讲解:讲解勾股定理的表述和证明;练习:学生练习解决实际问题;总结:回顾本节课的重点和难点。
二、第二章:平行四边形1. 教学目标:理解平行四边形的定义和性质;能够识别和判断平行四边形。
2. 教学重点:平行四边形的定义和性质;平行四边形的判定。
3. 教学难点:平行四边形的性质证明;平行四边形的判定方法。
4. 教学准备:教学课件;练习题。
5. 教学过程:导入:介绍平行四边形的背景和意义;讲解:讲解平行四边形的定义和性质;练习:学生练习识别和判断平行四边形;总结:回顾本节课的重点和难点。
三、第三章:三角形1. 教学目标:理解三角形的定义和性质;能够识别和判断三角形。
2. 教学重点:三角形的定义和性质;三角形的判定。
3. 教学难点:三角形的性质证明;三角形的判定方法。
4. 教学准备:教学课件;练习题。
5. 教学过程:导入:介绍三角形的背景和意义;讲解:讲解三角形的定义和性质;练习:学生练习识别和判断三角形;总结:回顾本节课的重点和难点。
四、第四章:数的开方与乘方1. 教学目标:理解数的开方和乘方的概念;能够熟练进行数的开方和乘方运算。
2. 教学重点:数的开方和乘方的概念;数的开方和乘方的运算规则。
3. 教学难点:数的乘方运算;数的开方和乘方的逆运算。
4. 教学准备:教学课件;练习题。
5. 教学过程:导入:介绍数的开方和乘方的意义;讲解:讲解数的开方和乘方的概念和运算规则;练习:学生练习进行数的开方和乘方运算;总结:回顾本节课的重点和难点。
五、第五章:实数1. 教学目标:理解实数的定义和性质;能够运用实数解决实际问题。
第十三章 轴对称1、轴对称图形:一个图形沿一条直线对折,直线两旁的部分能够完全重合。
这条直线叫做对称轴。
互相重合的点叫做对应点。
2、轴对称:两个图形沿一条直线对折,其中一个图形能够与另一个图形完全重合。
这条直线叫做对称轴。
互相重合的点叫做对应点。
3、轴对称图形与轴对称的区别与联系: (1)区别。
轴对称图形讨论的是“一个图形与一条直线的对称关系” ;轴对称讨论的是“两个图形与一条直线的对称关系”。
(2)联系。
把轴对称图形中“对称轴两旁的部分看作两个图形”便是轴对称;把轴对称的“两个图形看作一个整体”便是轴对称图形。
4、轴对称的性质:(1)成轴对称的两个图形全等。
(2)对称轴与连结“对应点的线段”垂直。
(3)对应点到对称轴的距离相等。
(4)对应点的连线互相平行。
5、线段的垂直平分线:(1)定义。
经过线段的中点且与线段垂直的直线,叫做线段的垂直平分线。
如图2, ∵CA=CB ,直线m ⊥AB 于C ,∴直线m 是线段AB 的垂直平分线。
(2)性质。
线段垂直平分线上的点与线段两端点的距离相等。
如图3,∵CA=CB ,直线m ⊥AB 于C ,点P 是直线m 上的点。
∴PA=PB 。
(3)判定。
与线段两端点距离相等的点在线段的垂直平分线上。
如图3,∵PA=PB ,直线m 是线段AB 的垂直平分线, ∴点P 在直线m 上 。
6、等腰三角形:mCA B 图2 mCA B P 图3(1)定义。
有两条边相等的三角形,叫做等腰三角形。
①相等的两条边叫做腰。
第三条边叫做底。
②两腰的夹角叫做顶角。
③腰与底的夹角叫做底角。
说明:顶角=180°- 2底角底角=顶角顶角21-902180︒=-︒可见,底角只能是锐角。
(2)性质。
①等腰三角形是轴对称图形,其对称轴是“底边的垂直平分线” ,只有一条。
②等边对等角。
如图5,在△ABC 中 ∵AB=AC∴∠B=∠C 。
③三线合一。
(3)判定。
①有两条边相等的三角形是等腰三角形。
如图5,在△ABC 中, ∵AB=AC∴△ABC 是等腰三角形 。
②有两个角相等的三角形是等腰三角形。
如图5,在△ABC 中 ∵∠B=∠C ∴△ABC 是等腰三角形 。
7、等边三角形: (1)定义。
三条边都相等的三角形,叫做等边三角形。
说明:等边三角形就是腰和底相等的等腰三角形,因此,等边三角形是特殊的等腰三角形。
(2)性质。
①等边三角形是轴对称图形,其对称轴是“三边的垂直平分线” ,有三条。
②三条边上的中线、高线及三个内角平分线都相交于一点。
③等边三角形的三个内角都等于60°。
如图6,在△ABC 中 ∵AB=AC=BC∴∠A=∠B=∠C=60°。
(3)判定。
①三条边都相等的三角形是等边三角形。
如图6,在△ABC 中 ∵AB=AC=BC图 6 D'D C'B'A'K J IH 底边底角底角顶角腰腰D CBA 图5 ABC 图4∴△ABC 是等边三角形 。
②三个内角都相等的三角形是等边三角形。
如图6,在△ABC 中 ∵∠A=∠B=∠C∴△ABC 是等边三角形 。
③有一个内角是60°的等腰三角形是等边三角形。
如图6,在△ABC 中∵AB=AC (或AB=BC,AC=BC )∠A=60°(∠B=60°,∠C=60°) ∴△ABC 是等边三角形 。
(4)重要结论。
在Rt △中,30°角所对直角边等于斜边的一半。
如图7,∵在Rt △ABC 中,∠C=90°,∠A=30° ∴BC=21AB 或AB=2BC8、平面直角坐标系中的轴对称: (1)),(),(b a x b a -横不变,纵反向轴对称关于(2)),(),(b a y b a -横反向,纵不变轴对称关于说明:要作出一个图形关于坐标轴(或直线)成轴对称的图形,只需根据作出各顶点的对称点,再顺次连结各对称点。
对称点的作法见11(1)。
9、对称轴的画法:在一个轴对称图形或成轴对称的两个图形中,连结其中一对对应点并作出所得线段的垂直平分线。
注意:①有的轴对称图形只有一条对称轴,有的不止一条,要画出所有的对称轴。
②成轴对称的两个图形只有一条对称轴。
10、常见的轴对称图形: (1)英文字母。
A B D E H I K M O T U V W X Y(2)中文。
日,目,木,土,十,士,中,一,二,三,六,米,山,甲,由,田,天,又,只,支,圭,凹,凸,出,兰,合,全,仝,人,关,甘,等等。
(3)数字。
0 3 8 (4)图形。
说明:①圆有无数条对称轴。
②正n 边形有n 条对称轴。
11、掌握几个作图:(1)作出点A 关于直线m 对称的点A / 。
图7作法:如图①以点A 为圆心,适当的长为半径画圆弧。
使圆弧与直线MN 交于两点C 、D 。
②分别以点C,D 为圆心,大于CD 21的长为半径画圆弧,设两条圆弧交于点E 。
③作射线AE ,设交直线mn 于点F 。
○4在射线AE 上截取FA /=FA ,点A /即为所求。
(2)课本34页例题。
(3)课本37页9、10题。
(4)课本42页12.2-8 图2基础部分习题一、选择题(每题2分,共20分)1.如图,下列图案是我国几家银行的标志,其中是轴对称图形的有( C )A.1个 B.2个 C.3个 D.4个 2.下列图形中对称轴最多的是( A )A.圆B.正方形C.等腰三角形D.长方形3.下列图形中不一定为轴对称图形的是( C )A.等腰三角形B.正五角星C.梯形D.长方形4.下列图形:①角;②两相交直角;③圆;④正方形。
其中轴对称图形有( A )A.4个B.3个C.2个D.1个5.下列说法中,正确的是( A )A.关于某直线对称的两个三角形是全等三角形B.全等三角形是关于某直线对称的C.两个图形关于某直线对称,则这两个图形一定分别位于这条直线的两侧D.有一条公共边变得两个全等三角形关于公共边所在的直线对称6.下列说法正确的是( D )A.等腰三角形的高、中线、角平分线互相重合B.顶角相等的两个等腰三角形全等C.等腰三角形一边不可一是另一边的二倍D.等腰三角形的两个底角相等7.已知等腰三角形的一个外角等于100°,则它的顶角是( C ) A.80° B.20° C.80°或20° D.不能确定8.△ABC 中,AB=AC ,外角∠CAD=100°,则∠B 的度数( B )A.80°B.50°C.40°D.30°9.如图,在已知△ABC 中,AB=AC , BD=DC ,则下列结论中错误的是( A )A.∠BAC=∠BB.∠1=∠2C.AD ⊥BCD.∠B=∠CABCD 1210.到△ABC 的三个顶点距离相等到的点是( D )A.三条中线的交点B.三条角平分线的交点C.三条高线的交点 D 三条边的垂直平分线的交点二、填空题(每题2分,共20分)1.△ABC 中,AB=AC ,∠A=∠C ,则∠B=___60°__2.如果点P (4,-5)和点Q(a ,b)关于y 轴对称,则a =___-4___,b=__-5__。
3.点(-2,1)点关于x 轴对称的点坐标为_(-2,-1)__;关于y 轴对称的点坐标为_(2,1)_。
4.等腰三角形中的一个角等于100°,则另外两个内角的度数分别为_40°_40°_。
5.已知△ABC 中∠ACB=90°,CD ⊥AB 于点D ,∠A=30°,BC=2cm ,则AD=___3cm __6.Rt △ABC 中,CD 是斜边AB 上的高,∠B=30°,AD=2cm ,则AB 的长度是___8___cm 。
7.已知等腰三角形中的一边长为5,另一边长为9,则它的周长为_19或23__。
8. 如下图,点D 在AC 上,点E 在AB 上,且AB=AC ,BC=BD ,AD=DE=BE ,则∠A=__45°_9.如图,DE 是△ABC 中AC 边的垂直平分线,若BC=8cm ,AB=10cm ,则△ABD 的周长为___18__。
10.如图,△ABC 是等边三角形,CD 是∠ACB 的平分线,过点D 作BC 的平行线交AC 于点E ,已知△ABC 的边长为a ,则EC 的边长是__0.5a __。
三、解答题(共60分)1.如图,AC 和BD 相交于点O ,且AB//DC ,OC=OD ,求证:OA=OB 。
证明:∵OC=OD∴∠D=∠C (等边对等角)∵AB//DC∴∠B =∠D ,∠A =∠C (两直线平行,内错角相等)∴∠A =∠B ∴OA=OB2.如图,点D 、E 在△ABC 的边BC 上,AD=AE ,AB=AC ,证明BD=EC 。
证明:过点A ,作AF ⊥BC 。
∵AD=AE ,AF ⊥BC ∴DF=EF (三线合一)AB CDE10题图A B C E D9题图A B C DE 4题图O AB C D ABCD EF∵AB=AC,AF⊥BC∴BF=CF(三线合一)∴BF- DF =CF- EF 即BD=EC3.如图,点D、E在△ABC的边BC上,AD=AE,BD=EC,证明AB=AC。
证明:∵AD=AE∴∠ADC =∠AEB(等边对等角)∴∠ADB =∠AEC(等角的补角相等)在△ABD和△ACE中AD=AE∠ADB =∠AEBD=EC∴△ABD≌△ACE(SAS)∴AB=AC4.在△ABC中,AB=AC,点D在AC上,且BD=BC=AD.求△ABC各角的度数.参照课本50页例1四、作图题(保留作图痕迹)(1)作线段AB的中垂线EF(5分)AB CDAAB CD E(2)作∠AOB 的角平分线OC (5分)(3)要在公路MN 上修一个车站P ,使得P 向A ,B 两个地方的距离和最小,请在图中画出P 的位置。
(10分)A BOM N A B能力提高部分一、选择题1.下列命题中:①两个全等三角形合在一起是一个轴对称图形;②等腰三角形的对称轴是底边上的中线;③等边三角形一边上的高就是这边的垂直平分线;④一条线段可以看着是以它的垂直平分线为对称轴的轴对称图形. 正确的说法有( )个 A .1个 B .2个 C .3个 D .4个 2.下列图形中:①平行四边形;②有一个角是30°的直角三角形;③长方形;④等腰三角形. 其中是轴对称图形有( )个 A .1个 B .2个 C .3个 D .4个 3.已知∠AOB =30°,点P 在∠AOB 的内部,P 1与P 关于OA 对称,P 2与P 关于OB 对称,则△P 1OP 2是 ( ) A .含30°角的直角三角形; B .顶角是30的等腰三角形;C .等边三角形D .等腰直角三角形.4.如图:等边三角形ABC 中,BD =CE ,AD 与BE 相交于点P ,则 ∠APE 的度数是 ( ) A .45° B .55° C .60° D .75°5. 等腰梯形两底长为4cm 和10cm ,面积为21cm 2,则 这个梯形较小的底角是( )度. A .45° B .30° C .60° D .90° 6.已知点P 在线段AB 的中垂线上,点Q 在线段AB 的中垂线外,则 ( ) A .PA+PB >QA+QB B .PA+PB <QA+QB D .PA+PB =QA+QB D .不能确定7.已知△ABC 与△A 1B 1C 1关于直线MN 对称,且BC 与B 1C 1交与直线MN 上一点O , 则 ( ) A .点O 是BC 的中点 B .点O 是B 1C 1的中点 C .线段OA 与OA 1关于直线MN 对称 D .以上都不对8.如图:已知∠AOP=∠BOP=15°,PC ∥OA ,PD ⊥OA ,若PC=4,则PD= ( ) A .4 B .3C .2D .1 9.∠AOB 的平分线上一点P 到OA 的距离 为5,Q 是OB 上任一点,则 ( ) A .PQ >5 B .PQ≥5C .PQ <5D .PQ≤510.等腰三角形的周长为15cm ,其中一边长为3cm .则该等腰三角形的底长为 ( ) A .3cm 或5cm B .3cm 或7cm C .3cm D .5cm 二.填空题11.线段轴是对称图形,它有_______条对称轴. 12.等腰△ABC 中,若∠A=30°,则∠B=________.B AD PO C PAECB D13.在Rt △ABC 中,∠C=90°,AD 平分∠BAC 交BC 于D ,若CD=4,则点D 到AB 的距离是__________. 14.等腰△ABC 中,AB=AC=10,∠A=30°,则腰AB 上的高等于___________. 15.如图:等腰梯形ABCD 中,AD ∥BC ,AB=6,AD=5,BC=8,且AB ∥DE ,则△DEC的周长是____________.16.等腰梯形的腰长为2,上、下底之和为10且有一底角为60°,则它的两底长分别为____________.17.若D 为△ABC 的边BC 上一点,且AD=BD ,AB=AC=CD , 则∠BAC=____________.18.△ABC 中,AB 、AC 的垂直平分线分别交BC 于点E 、F ,若∠BAC=115°,则∠EAF=___________. 三.解答题19.如图:已知∠AOB 和C 、D 两点,求作一点P ,使PC=PD ,且P 到∠AOB 两边的距离相等.20.如图:AD 为△ABC 的高,∠B=2∠C ,用轴对称图形说明:CD=AB+BD .21.有一本书折了其中一页的一角,如图:测得AD=30cm,BE=20cm ,∠BEG=60°,求折痕EF 的长.BECD A AC ··D OBACDB22.如图:△ABC 中,AB=AC=5,AB 的垂直平分线DE 交AB 、AC 于E 、D ,① 若△BCD 的周长为8,求BC 的长;② 若BC=4,求△BCD 的周长.23.等边△ABC 中,点P 在△ABC 内,点Q 在△ABC 外,且∠ABP=∠ACQ ,BP=CQ ,问△APQ 是什么形状的三角形?试说明你的结论.参 考 答 案 第一章 轴对称图形1.A 2.B 3.C 4.C 5.A 6.D 7.C 8.C 9.B 10.C 11.2 12.30°、75°、120° 13.4 14.5 15.15 16.4、6 17.72° 18.50° 19.提示:作CD 的中垂线和∠AOB 的平分线,两线的交点即为所作的点P ; 20.提示:在CD 上取一点E 使DE =BD ,连结AE ; 21.EF =20㎝; 22.①BC =3,② 9;23.提示:△APQ 为等边三角形,先证△ABP ≌△ACQ 得AP =AQ ,再证∠PAQ =60°即可.B CD EAA CBPQ。