河北饶阳中学高三数学题组训练:3.7正弦定理和余弦定理
- 格式:doc
- 大小:229.76 KB
- 文档页数:3
2019年高考数学一轮总复习第三章三角函数、解三角形3.7 正弦定理和余弦定理的应用课时跟踪检测理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019年高考数学一轮总复习第三章三角函数、解三角形3.7 正弦定理和余弦定理的应用课时跟踪检测理)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019年高考数学一轮总复习第三章三角函数、解三角形3.7 正弦定理和余弦定理的应用课时跟踪检测理的全部内容。
3.7 正弦定理和余弦定理的应用[课时跟踪检测][基础达标]1.一船自西向东匀速航行,上午10时到达一座灯塔P的南偏西75°距塔68海里的M处,下午2时到达这座灯塔的东南方向的N处.则这只船的航行速度为( )A。
错误!海里/时B.34错误!海里/时C。
错误!海里/时D.34错误!海里/时解析:如图,在△PMN中错误!=错误!,∴MN=错误!=34错误!,∴v=错误!=错误!(海里/时).答案:A2.如图,一条河的两岸平行,河的宽度d=0。
6 km,一艘客船从码头A 出发匀速驶往河对岸的码头B.已知AB=1 km,水的流速为2 km/h,若客船从码头A驶到码头B所用的最短时间为6 min,则客船在静水中的速度为()A.8 km/h B.6 2 km/hC.2错误! km/h D.10 km/h解析:设AB与河岸线所成的角为θ,客船在静水中的速度为v km/h,由题意知sinθ=错误!=错误!,从而cosθ=错误!,所以由余弦定理得错误!2=错误!2+12-2×错误!×2×1×错误!,解得v=6错误!。
高考正弦定理和余弦定理练习题及答案一、选择题1. 已知△ABC中,a=c=2,A=30°,则b=A. 错误!B. 2错误!C. 3错误!D. 错误!+1答案:B解析:∵a=c=2,∴A=C=30°,∴B=120°.由余弦定理可得b=2错误!.2. △ABC中,a=错误!,b=错误!,sin B=错误!,则符合条件的三角形有A. 1个B. 2个C. 3个D. 0个答案:B解析:∵a sin B=错误!,∴a sin B<b=错误!<a=错误!,∴符合条件的三角形有2个.3.2010·天津卷在△ABC中,内角A,B,C的对边分别是a,b,c.若a2-b2=错误! bc,sin C=2错误!sin B,则A=A.30° B.60°C.120° D.150°答案:A解析:利用正弦定理,sin C=2错误!sin B可化为c=2错误!b.又∵a2-b2=错误!bc,∴a2-b2=错误!b×2错误!b=6b2,即a2=7b2,a=错误!b.在△ABC中,cos A=错误!=错误!=错误!,∴A=30°.4.2010·湖南卷在△ABC中,角A,B,C所对的边长分别为a,b,c,若∠C=120°,c=错误!a,则A.a>b B.a<bC.a=b D.a与b的大小关系不能确定答案:A解析:由正弦定理,得错误!=错误!,∴sin A=错误!=错误!>错误!.∴A>30°.∴B=180°-120°-A<30°.∴a>b.5. 如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为A. 错误!B. 错误!C. 错误!D. 错误!答案:D解析:方法一:设三角形的底边长为a,则周长为5a,∴腰长为2a,由余弦定理知cosα=错误!=错误!.方法二:如图,过点A作AD⊥BC于点D,则AC=2a,CD=错误!,∴sin错误!=错误!,∴cosα=1-2sin2错误!=1-2×错误!=错误!.6. 2010·泉州模拟△ABC中,AB=错误!,AC=1,∠B=30°,则△ABC的面积等于A. 错误!B. 错误!C. 错误!或错误!D. 错误!或错误!答案:D解析:∵错误!=错误!,∴sin C=错误!·sin30°=错误!.∴C=60°或C=120°.当C=60°时,A=90°,S△ABC=错误!×1×错误!=错误!,当C=120°时,A=30°,S△ABC=错误!×1×错误!sin30°=错误!.即△ABC的面积为错误!或错误!.二、填空题7.在△ABC中,若b=1,c=错误!,∠C=错误!,则a=________.答案:1解析:由正弦定理错误!=错误!,即错误!=错误!,sin B=错误!.又b<c,∴B=错误!,∴A=错误!.∴a=1.8.2010·山东卷在△ABC中,角A,B,C所对的边分别为a,b,c.若a=错误!,b =2,sin B+cos B=错误!,则角A的大小为________.答案:错误!解析:∵sin B+cos B=错误!,∴sin B+错误!=1.又0<B<π,∴B=错误!.由正弦定理,知错误!=错误!,∴sin A=错误!.又a<b,∴A<B,∴A=错误!.9. 2010·课标全国卷在△ABC中,D为边BC上一点,BD=错误!DC,∠ADB=120°,AD=2.若△ADC的面积为3-错误!,则∠BAC=________.答案:60°解析:S△ADC=错误!×2×DC×错误!=3-错误!,解得DC=2错误!-1,∴BD=错误!-1,BC=3错误!-1.在△ABD中,AB2=4+错误!-12-2×2×错误!-1×cos120°=6,∴AB=错误!.在△ACD中,AC2=4+2错误!-12-2×2×2错误!-1×cos60°=24-12错误!,∴AC=错误!错误!-1,则cos∠BAC=错误!=错误!=错误!,∴∠BAC=60°.三、解答题10. 如图,△OAB是等边三角形,∠AOC=45°,OC=错误!,A、B、C三点共线.1求sin∠BOC的值;2求线段BC的长.解:1∵△AOB是等边三角形,∠AOC=45°,∴∠BOC=45°+60°,∴sin∠BOC=sin45°+60°=sin45°cos60°+cos45°sin60°=错误!.2在△OBC中,错误!=错误!,∴BC=sin∠BOC×错误!=错误!×错误!=1+错误!.11. 2010·全国Ⅱ卷△ABC中,D为边BC上的一点,BD=33,sin B=错误!,cos ∠ADC=错误!,求AD.解:由cos∠ADC=错误!>0知B<错误!,由已知得cos B=错误!,sin∠ADC=错误!,从而sin∠BAD=sin∠ADC-B=sin∠ADC cos B-cos∠ADC sin B=错误!×错误!-错误!×错误!=错误!.由正弦定理得错误!=错误!,AD=错误!=错误!=25.12. 2010·安徽卷设△ABC是锐角三角形,a,b,c分别是内角A,B,C所对边长,并且sin2A=sin错误!sin错误!+sin2B.1求角A的值;2若错误!·错误!=12,a=2错误!,求b,c其中b<c.解:1因为sin2A=错误!错误!+sin2B=错误!cos2B-错误!sin2B+sin2B=错误!,所以sin A=±错误!.又A为锐角,所以A=错误!.2由错误!·错误!=12,可得cb cos A=12.①由1知A=错误!,所以cb=24.②由余弦定理知a2=c2+b2-2cb cos A,将a=2错误!及①代入,得c2+b2=52,③③+②×2,得c+b2=100,所以c+b=10.因此c,b是一元二次方程t2-10t+24=0的两个根.解此方程并由c>b知c=6,b=4.。
正弦定理、余弦定理考试要求 1.掌握正弦定理、余弦定理及其变形.2.能利用正弦定理、余弦定理解决一些简单的三角形度量问题.知识梳理1.正弦定理与余弦定理定理正弦定理余弦定理内容asin A=b sin B =csin C=2R a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C变形(1)a =2R sin A ,b =2R sin B ,c =2R sin C ;(2)a sin B =b sin A ,b sin C =c sin B , a sin C =c sin Acos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ac ;cos C =a 2+b 2-c 22ab2.三角形中常用的面积公式 (1)S =12ah a (h a 表示边a 上的高);(2)S =12ab sin C =12ac sin B =12bc sin A ;(3)S =12r (a +b +c )(r 为三角形的内切圆半径).常用结论在△ABC 中,常有以下结论: (1)∠A +∠B +∠C =π.(2)任意两边之和大于第三边,任意两边之差小于第三边. (3)a >b ⇔A >B ⇔sin A >sin B ,cos A <cos B .(4)sin(A +B )=sin C ;cos(A +B )=-cos C ;tan(A +B )=-tan C ;sinA +B2=cosC2;cosA +B2=sin C2. (5)三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B . 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)三角形中三边之比等于相应的三个内角之比.( × ) (2)在△ABC 中,若sin A >sin B ,则A >B .( √ )(3)在△ABC 的六个元素中,已知任意三个元素可求其他元素.( × ) (4)当b 2+c 2-a 2>0时,△ABC 为锐角三角形.( × ) 教材改编题1.在△ABC 中,AB =5,AC =3,BC =7,则∠BAC 等于( ) A.π6 B.π3 C.2π3D.5π6答案 C解析 因为在△ABC 中,设AB =c =5,AC =b =3,BC =a =7, 所以由余弦定理得cos∠BAC =b 2+c 2-a 22bc =9+25-4930=-12,因为∠BAC 为△ABC 的内角, 所以∠BAC =2π3.2.在△ABC 中,若A =60°,a =43,b =42,则B =. 答案 45°解析 由正弦定理知a sin A =bsin B ,则sin B =b sin A a =42×3243=22.又a >b ,则A >B ,所以B 为锐角,故B =45°.3.在△ABC 中,a =2,b =3,C =60°,则c =,△ABC 的面积=. 答案7 332解析 易知c =4+9-2×2×3×12=7,△ABC 的面积等于12×2×3×32=332.题型一 利用正弦定理、余弦定理解三角形例1 (12分)(2021·新高考全国Ⅰ)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知b 2=ac ,点D 在边AC 上,BD ·sin∠ABC =a sin C . (1)证明:BD =b ;[切入点:角转化为边](2)若AD =2DC ,求cos∠ABC .[关键点:∠BDA 和∠BDC 互补]高考改编在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知b sin C +a sin A =b sin B +c sin C . (1)求A ;(2)设D 是线段BC 的中点,若c =2,AD =13,求a . 解 (1)根据正弦定理,由b sin C +a sin A =b sin B +c sin C , 可得bc +a 2=b 2+c 2, 即bc =b 2+c 2-a 2,由余弦定理可得,cos A =b 2+c 2-a 22bc =12,因为A 为三角形内角,所以A =π3.(2)因为D 是线段BC 的中点,c =2,AD =13, 所以∠ADB +∠ADC =π, 则cos∠ADB +cos∠ADC =0,所以AD 2+BD 2-AB 22AD ·BD +AD 2+DC 2-AC 22AD ·DC=0,即13+a 24-22213·a 2+13+a 24-b2213·a2=0,整理得a 2=2b 2-44,又a 2=b 2+c 2-2bc cos A =b 2+4-2b , 所以b 2+4-2b =2b 2-44, 解得b =6或b =-8(舍), 因此a 2=2b 2-44=28, 所以a =27.思维升华 解三角形问题的技巧(1)解三角形时,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理,以上特征都不明显时,则要考虑两个定理都有可能用到.(2)三角形解的个数的判断:已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.跟踪训练1 (2021·北京)已知在△ABC 中,c =2b cos B ,C =2π3.(1)求B 的大小;(2)在下列三个条件中选择一个作为已知,使△ABC 存在且唯一确定,并求出BC 边上的中线的长度.①c =2b ;②周长为4+23;③面积为S △ABC =334.解 (1)∵c =2b cos B ,则由正弦定理可得sin C =2sin B cos B , ∴sin2B =sin2π3=32,∵C =2π3, ∴B ∈⎝ ⎛⎭⎪⎫0,π3,2B ∈⎝⎛⎭⎪⎫0,2π3, ∴2B =π3,解得B =π6.(2)若选择①:由正弦定理结合(1)可得 c b =sin C sin B =3212=3, 与c =2b 矛盾,故这样的△ABC 不存在; 若选择②:由(1)可得A =π6,设△ABC 的外接圆半径为R , 则由正弦定理可得a =b =2R sinπ6=R , c =2R sin2π3=3R , 则周长为a +b +c =2R +3R =4+23, 解得R =2,则a =2,c =23, 由余弦定理可得BC 边上的中线的长度为232+12-2×23×1×cosπ6=7; 若选择③:由(1)可得A =π6,即a =b ,则S △ABC =12ab sin C =12a 2×32=334,解得a =3,则由余弦定理可得BC 边上的中线的长度为b 2+⎝ ⎛⎭⎪⎫a 22-2×b ×a 2×cos 2π3=3+34+3×32=212. 题型二 正弦定理、余弦定理的简单应用 命题点1 三角形形状判断 例2 在△ABC 中,c -a 2c =sin 2 B 2(a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A .直角三角形B .等边三角形C .等腰三角形或直角三角形D .等腰直角三角形 答案 A解析 由cos B =1-2sin 2B2,得sin 2B 2=1-cos B2,所以c -a 2c =1-cos B2, 即cos B =ac.方法一 由余弦定理得a 2+c 2-b 22ac =ac,即a 2+c 2-b 2=2a 2,所以a 2+b 2=c 2.所以△ABC 为直角三角形,无法判断两直角边是否相等. 方法二 由正弦定理得cos B =sin Asin C ,又sin A =sin(B +C )=sin B cos C +cos B sin C , 所以cos B sin C =sin B cos C +cos B sin C , 即sin B cos C =0,又sin B ≠0,所以cos C =0,又角C 为三角形的内角,所以C =π2,所以△ABC 为直角三角形,无法判断两直角边是否相等.延伸探究将“c -a 2c =sin 2 B 2”改为“sin A sin B =a c,(b +c +a )(b +c -a )=3bc ”,试判断△ABC 的形状.解 因为sin A sin B =ac ,所以a b =a c,所以b =c . 又(b +c +a )(b +c -a )=3bc , 所以b 2+c 2-a 2=bc ,所以cos A =b 2+c 2-a 22bc =bc 2bc =12.因为A ∈(0,π),所以A =π3, 所以△ABC 是等边三角形.思维升华 判断三角形形状的两种思路(1)化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.(2)化角:通过三角恒等变形,得出内角的关系,从而判断三角形的形状.此时要注意应用A +B +C =π这个结论. 命题点2 三角形的面积例3 (2022·沧州模拟)在①sin A ,sin C ,sin B 成等差数列;②a ∶b ∶c =4∶3∶2;③b cos A =1这三个条件中任选一个,补充在下面问题中.若问题中的三角形存在,求该三角形面积的值;若问题中的三角形不存在,说明理由.问题:是否存在△ABC ,它的内角A ,B ,C 的对边分别为a ,b ,c ,且a (sin A -sin B )+b sinB =c sinC ,c =1,?注:如果选择多个条件分别解答,按第一个解答计分. 解 因为a (sin A -sin B )+b sin B =c sin C , 由正弦定理得a (a -b )+b 2=c 2, 即a 2+b 2-c 2=ab ,所以cos C =a 2+b 2-c 22ab =12,又C ∈(0,π), 所以C =π3.选择①:因为sin A ,sin C ,sin B 成等差数列, 所以sin A +sin B =2sin C ,即a +b =2c =2, 由a 2+b 2-c 2=a 2+b 2-1=ab , 得(a +b )2-3ab =1,所以ab =1, 故存在满足题意的△ABC ,S △ABC =12ab sin C =12×1×sin π3=34. 选择②:因为a ∶b ∶c =4∶3∶2, 所以A >B >C =π3,这与A +B +C =π矛盾,所以△ABC 不存在. 选择③: 因为b cos A =1,所以b ·b 2+1-a 22b=1,得b 2=1+a 2=c 2+a 2, 所以B =π2,此时△ABC 存在.又C =π3,所以A =π6,所以a =1×tanπ6=33, 所以S △ABC =12ac =36.思维升华 三角形面积公式的应用原则(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化. 命题点3 与平面几何有关的问题例4 如图,在平面四边形ABCD 中,已知A =π2,B =2π3,AB =6.在AB 边上取点E ,使得BE=1,连接EC ,ED .若∠CED =2π3,EC =7.(1)求sin∠BCE 的值; (2)求CD 的长.解 (1)在△BEC 中,由正弦定理, 知BE sin∠BCE =CEsin B.∵B =2π3,BE =1,CE =7,∴sin∠BCE =BE ·sin B CE =327=2114. (2)∵∠CED =B =2π3,∴∠DEA =∠BCE ,∴cos∠DEA =1-sin 2∠DEA =1-sin 2∠BCE =1-328=5714. ∵A =π2,∴△AED 为直角三角形,又AE =5,∴ED =AE cos∠DEA =55714=27.在△CED 中,CD 2=CE 2+DE 2-2CE ·DE ·cos∠CED=7+28-2×7×27×⎝ ⎛⎭⎪⎫-12=49. ∴CD =7. 教师备选1.在△ABC 中,已知a 2+b 2-c 2=ab ,且2cos A sin B =sin C ,则该三角形的形状是( ) A .直角三角形 B .等腰三角形 C .等边三角形 D .钝角三角形答案 C解析 ∵a 2+b 2-c 2=ab ,∴cos C =a 2+b 2-c 22ab =12,又C ∈(0,π), ∴C =π3,由2cos A sin B =sin C ,得cos A =sin C 2sin B =c 2b =c 2+b 2-a22bc ,∴b 2=a 2,即b =a ,又C =π3,故三角形为等边三角形.2.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a cos C -c cos(B +C )=-b3cos A +B .(1)求tan C ;(2)若c =3,sin A sin B =1627,求△ABC 的面积.解 (1)∵a cos C -c cos(B +C ) =-b3cos A +B ,∴a cos C +c cos A =b3cos C.由正弦定理得sin A cos C +sin C cos A =sin B3cos C ,∴sin(A +C )=sin B3cos C ,即sin B =sin B3cos C ,又∵sin B ≠0, ∴cos C =13,∴sin C =1-⎝ ⎛⎭⎪⎫132=223, tan C =sin Ccos C =2 2.(2)若c =3,由正弦定理asin A =bsin B =csin C,得asin A =b sin B =3223=924, 则a =924sin A ,b =924sin B ,则ab =924sin A ·924sin B =16216sin A sin B=16216×1627=6, ∴S △ABC =12ab sin C =12×6×223=2 2.思维升华 平面几何图形中研究或求与角有关的长度、角度、面积的最值、优化设计等问题,通常是转化到三角形中,利用正、余弦定理通过运算的方法加以解决.在解决某些具体问题时,常先引入变量,如边长、角度等,然后把要解三角形的边或角用所设变量表示出来,再利用正、余弦定理列出方程,解之,若研究最值,常使用函数思想.跟踪训练 2 (1)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,若c -a cos B = (2a -b )cos A ,则△ABC 的形状为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形答案 D解析 因为c -a cos B =(2a -b )cos A ,C =π-(A +B ),所以由正弦定理得sin C -sin A cos B=2sin A cos A -sin B cos A ,所以sin A cos B +cos A sin B -sin A cos B=2sin A cos A -sin B cos A ,所以cos A (sin B -sin A )=0,所以cos A =0或sin B =sin A ,所以A =π2或B =A 或B =π-A (舍去), 所以△ABC 为等腰或直角三角形.(2)(2022·郑州模拟)如图,在△ABC 中,AB =9,cos B =23,点D 在BC 边上,AD =7,∠ADB 为锐角.①求BD ;②若∠BAD =∠DAC ,求sin C 的值及CD 的长.解 ①在△ABD 中,由余弦定理得AB 2+BD 2-2AB ·BD ·cos B =AD 2,整理得BD 2-12BD +32=0,所以BD =8或BD =4.当BD =4时,cos∠ADB =16+49-812×4×7=-27,则∠ADB >π2,不符合题意,舍去; 当BD =8时,cos∠ADB =64+49-812×8×7=27,则∠ADB <π2,符合题意,所以BD =8.②在△ABD 中,cos∠BAD =AB 2+AD 2-BD 22AB ·AD =92+72-822×9×7=1121,所以sin∠BAD =8521,又sin∠ADB =357,所以sin C =sin(∠ADB -∠CAD )=sin(∠ADB -∠BAD )=sin∠ADB cos∠BAD -cos∠ADB sin∠BAD=357×1121-27×8521=175147,在△ACD 中,由正弦定理得CD sin∠CAD =ADsin C ,即CD =ADsin C ·sin∠CAD =7175147×8521=39217.课时精练1.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若△ABC 的面积为a 2+b 2-c 24,则C 等于() A.π2 B.π3C.π4D.π6答案 C 解析 根据题意及三角形的面积公式知12ab sin C =a 2+b 2-c 24, 所以sin C =a 2+b 2-c 22ab=cos C , 所以在△ABC 中,C =π4. 2.(2022·北京西城区模拟)在△ABC 中,C =60°,a +2b =8,sin A =6sin B ,则c 等于( ) A.35 B.31 C .6D .5答案 B解析 因为sin A =6sin B ,由正弦定理可得a =6b ,又a +2b =8,所以a =6,b =1,因为C =60°,所以c 2=a 2+b 2-2ab cos C ,即c 2=62+12-2×1×6×12, 解得c =31.3.(2022·济南质检)已知△ABC 的内角A ,B ,C 对应的边分别为a ,b ,c ,a =4,cos2A = -725,则△ABC 外接圆半径为( ) A .5B .3C.52D.32答案 C解析 因为cos2A =-725, 所以1-2sin 2A =-725, 解得sin A =±45, 因为A ∈(0,π),所以sin A =45,又a =4,所以2R =a sin A =445=5, 所以R =52. 4.(2022·河南九师联盟联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若c =2b ,sin 2A -3sin 2B =12sin A sin C ,则角C 等于( ) A.π6B.π3C.π2D.2π3答案 B解析 ∵sin 2A -3sin 2B =12sin A sin C , 由正弦定理可得a 2-3b 2=12ac , ∵c =2b ,∴a 2-3b 2=12a ·2b =ab , 由余弦定理可得cos C =a 2+b 2-c 22ab =a 2-3b 22ab =12, ∵0<C <π,∴C =π3. 5.(多选)(2022·山东多校联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,2b sin A =5a cos B ,AB =2,AC =26,D 为BC 的中点,E 为AC 上的点,且BE 为∠ABC 的平分线,下列结论正确的是( )A .cos∠BAC =-66 B .S △ABC =3 5 C .BE =2D .AD = 5答案 AD解析 由正弦定理可知2sin B sin A =5sin A cos B ,∵sin A ≠0,∴2sin B =5cos B .又sin 2B +cos 2B =1,∴sin B =53,cos B =23,在△ABC 中,AC 2=AB 2+BC 2-2AB ·BC cos B ,得BC =6.A 项,cos∠BAC =AB 2+AC 2-BC 22AB ·AC =4+24-362×2×26=-66;B 项,S △ABC =12AB ·BC sin B =12×2×6×53=25;C 项,由角平分线性质可知AEEC =AB BC =13,∴AE =62.BE 2=AB 2+AE 2-2AB ·AE cos A =4+32-2×2×62×⎝ ⎛⎭⎪⎫-66=152,∴BE =302;D 项,在△ABD 中,AD 2=AB 2+BD 2-2AB ·BD cos B=4+9-2×2×3×23=5,∴AD = 5.6.(多选)(2022·张家口质检)下列命题中,正确的是( )A .在△ABC 中,A >B ,则sin A >sin BB .在锐角△ABC 中,不等式sin A >cos B 恒成立C .在△ABC 中,若a cos A =b cos B ,则△ABC 必是等腰直角三角形D .在△ABC 中,若B =60°,b 2=ac ,则△ABC 必是等边三角形答案 ABD解析 对于A ,由A >B ,可得a >b ,利用正弦定理可得sin A >sin B ,正确;对于B ,在锐角△ABC 中,A ,B ∈⎝ ⎛⎭⎪⎫0,π2,∵A +B >π2, ∴π2>A >π2-B >0, ∴sin A >sin ⎝ ⎛⎭⎪⎫π2-B =cos B , ∴不等式sin A >cos B 恒成立,正确;对于C ,在△ABC 中,由a cos A =b cos B ,利用正弦定理可得sin A cos A =sin B cos B ,∴sin2A =sin2B ,∵A ,B ∈(0,π),∴2A =2B 或2A =π-2B ,∴A =B 或A +B =π2, ∴△ABC 是等腰三角形或直角三角形,∴是假命题,错误;对于D ,由于B =60°,b 2=ac ,由余弦定理可得b 2=ac =a 2+c 2-ac ,可得(a -c )2=0,解得a =c ,可得A =C =B =60°,故正确.7.(2022·潍坊质检)已知△ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,且b =3,a -c =2,A =2π3.则△ABC 的面积为. 答案 1534解析 由余弦定理得a 2=b 2+c 2-2bc cos A ,∵b =3,a -c =2,A =2π3, ∴(c +2)2=32+c 2-2×3c ×⎝ ⎛⎭⎪⎫-12, 解得c =5,则△ABC 的面积为S =12bc sin A =12×3×5×32=1534. 8.(2021·全国乙卷)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,面积为3,B =60°,a 2+c 2=3ac ,则b =.答案 2 2解析 由题意得S △ABC =12ac sin B =34ac =3,则ac =4,所以a 2+c 2=3ac =3×4=12,所以b 2=a 2+c 2-2ac cos B =12-2×4×12=8,则b =22(负值舍去).9.(2022·南平模拟)在①2c cos B =2a -b ,②△ABC 的面积为34(a 2+b 2-c 2),③cos 2A -cos 2C =sin 2B -sin A sin B ,这三个条件中任选一个,补充在下面的问题中,并加以解答.(如果选择多个条件作答,则按所选的第一个条件给分)已知△ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,且.(1)求角C 的大小;(2)若c =2且4sin A sin B =3,求△ABC 的面积.解 (1)若选条件①2c cos B =2a -b ,则2c ·a 2+c 2-b 22ac=2a -b , 即a 2+b 2-c 2=ab ,所以cos C =12, 又因为C ∈(0,π),所以C =π3. 若选条件②△ABC 的面积为34(a 2+b 2-c 2), 则34(a 2+b 2-c 2)=12ab sin C , 即sin C =3cos C ,所以tan C =3,又因为C ∈(0,π),所以C =π3. 若选条件③cos 2A -cos 2C =sin 2B -sin A sin B ,则(1-sin 2A )-(1-sin 2C )=sin 2B -sin A sin B ,即sin 2A +sin 2B -sin 2C =sin A sin B ,即a 2+b 2-c 2=ab ,所以cos C =12,又因为C ∈(0,π),所以C =π3. (2)因为c =2, 所以a sin A =b sin B =c sin C =2sin π3=43, 所以sin A =34a ,sin B =34b , 又因为4sin A sin B =3,所以ab =4,△ABC 的面积为12ab sin C = 3. 10.(2022·湘豫联盟联考)如图,在△ABC 中,∠B =60°,AB =8,AD =7,点D 在BC 上,且cos∠ADC =17.(1)求BD ;(2)若cos∠CAD =32,求△ABC 的面积. 解 (1)∵cos∠ADB =cos(π-∠ADC )=-cos∠ADC =-17. 在△ABD 中,由余弦定理得82=BD 2+72-2·BD ·7·cos∠ADB ,解得BD =3或BD =-5(舍).(2)由已知sin∠ADC =437,sin∠CAD =12, ∴sin C =sin(∠ADC +∠CAD )=437×32+17×12=1314. 由正弦定理得CD =AD sin∠CAD sin C =7×121314=4913, ∴BC =3+4913=8813,∴S △ABC =12×8×8813×32=176313.11.在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为S ,且4S =(a+b )2-c 2,则sin ⎝ ⎛⎭⎪⎫π4+C 等于 ( ) A .1B .-22C.22D.32 答案 C解析 因为S =12ab sin C , cos C =a 2+b 2-c 22ab, 所以2S =ab sin C ,a 2+b 2-c 2=2ab cos C .又4S =(a +b )2-c 2=a 2+b 2-c 2+2ab ,所以2ab sin C =2ab cos C +2ab .因为ab ≠0,所以sin C =cos C +1.因为sin 2C +cos 2C =1,所以(cos C +1)2+cos 2C =1,解得cos C =-1(舍去)或cos C =0,所以sin C =1,则sin ⎝ ⎛⎭⎪⎫π4+C =22(sin C +cos C )=22. 12.(2022·焦作模拟)在△ABC 中,内角A ,B ,C 的对边a ,b ,c 依次成等差数列,△ABC 的周长为15,且(sin A +sin B )2+cos 2C =1+sin A sin B ,则cos B 等于( )A.1314B.1114C.12D .-12答案 B解析 因为(sin A +sin B )2+cos 2C=1+sin A sin B ,所以sin 2A +sin 2B +2sin A ·sin B +1-sin 2C=1+sin A ·sin B ,所以由正弦定理得a 2+b 2-c 2=-ab ,又a ,b ,c 依次成等差数列,△ABC 的周长为15,即a +c =2b ,a +b +c =15, 由⎩⎪⎨⎪⎧ a 2+b 2-c 2=-ab ,a +c =2b ,a +b +c =15,解得⎩⎪⎨⎪⎧ a =3,b =5,c =7.cos B =a 2+c 2-b 22ac =32+72-522×3×7=1114. 13.(2022·开封模拟)在平面四边形ABCD 中,BC ⊥CD ,∠B =3π4,AB =32,AD =210,若AC =35,则CD 为.答案 1或5解析 因为在△ABC 中,∠B =3π4,AB =32, AC =35,由正弦定理可得AC sin B =AB sin∠ACB, 所以sin∠ACB =AB ·sin B AC =32×2235=55, 又BC ⊥CD ,所以∠ACB 与∠ACD 互余,因此cos∠ACD =sin∠ACB =55, 在△ACD 中,AD =210,AC =35,由余弦定理可得cos∠ACD =55=AC 2+CD 2-AD 22AC ·CD =5+CD 265CD, 所以CD 2-6CD +5=0,解得CD =1或CD =5.14.(2022·大连模拟)托勒密(Ptolemy)是古希腊天文学家、地理学家、数学家,托勒密定理就是由其名字命名,该定理指出:圆的内接凸四边形两组对边乘积的和等于两条对角线的乘积.已知凸四边形ABCD 的四个顶点在同一个圆的圆周上,AC ,BD 是其两条对角线,AB =AD ,∠BAD =120°,AC =6,则四边形ABCD 的面积为.答案 9 3 解析 在△ABD 中,设AB =a ,由余弦定理得BD 2=AB 2+AD 2-2AB ·AD ·cos∠BAD =3a 2,所以BD =3a ,由托勒密定理可得a (BC +CD )=AC ·3a ,即BC +CD =3AC ,又∠ABD =∠ACD =30°,所以四边形ABCD 的面积 S =12BC ·AC sin30°+12CD ·AC sin30°=14(BC +CD )·AC =34AC 2=9 3.15.(多选)中国南宋时期杰出数学家秦九韶在《数书九章》中提出了“三斜求积术”,即以小斜幂,并大斜幂,减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂,减上,余四约之,为实;一为从隅,开平方得积.把以上文字写成公式,即S =14⎣⎢⎡⎦⎥⎤c 2a 2-⎝ ⎛⎭⎪⎫c 2+a 2-b 222(S 为三角形的面积,a ,b ,c 为三角形的三边).现有△ABC 满足sin A ∶si n B ∶sin C =2∶3∶7,且△ABC 的面积S △ABC =63,则下列结论正确的是( )A .△ABC 的周长为10+27B .△ABC 的三个内角满足A +B =2CC .△ABC 的外接圆半径为4213D .△ABC 的中线CD 的长为3 2答案 AB解析 A 项,设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,因为sin A ∶sin B ∶sin C =2∶3∶7,所以由正弦定理可得a ∶b ∶c =2∶3∶7,设a =2t ,b =3t ,c =7t (t >0),因为S △ABC =63,所以63=14⎣⎢⎡⎦⎥⎤7t 2×4t 2-⎝ ⎛⎭⎪⎫7t 2+4t 2-9t 222,解得t =2,则a =4,b =6,c =27,故△ABC 的周长为10+27,A 正确;B 项,因为cos C =a 2+b 2-c 22ab =16+36-282×4×6=12, 所以C =π3,A +B =π-π3=2π3=2C , 故B 正确;C 项,因为C =π3,所以sin C =32, 由正弦定理得2R =c sin C =2732=4213, R =2213, C 错误;D 项,由余弦定理得cos B =a 2+c 2-b 22ac =16+28-362×4×27=714, 在△BCD 中,BC =4,BD =7,由余弦定理得cos B =16+7-CD 22×4×7=714, 解得CD =19,D 错误.16.(2021·新高考全国Ⅱ)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,b =a +1,c =a +2.(1)若2sin C =3sin A ,求△ABC 的面积;(2)是否存在正整数a ,使得△ABC 为钝角三角形?若存在,求出a 的值;若不存在,说明理由. 解 (1)因为2sin C =3sin A ,则2c =2(a +2)=3a ,则a =4,故b =5,c =6,cos C =a 2+b 2-c 22ab =18,所以C 为锐角, 则sin C =1-cos 2C =378,因此, S △ABC =12ab sin C =12×4×5×378=1574. (2)显然c >b >a ,若△ABC 为钝角三角形,则C 为钝角,由余弦定理可得cos C =a 2+b 2-c 22ab =a 2+a +12-a +222a a +1=a 2-2a -32a a +1<0,则0<a <3,由三角形三边关系可得a +a +1>a +2, 可得a >1,因为a ∈N *,故a =2.。
2021年高考数学专题复习第23讲正弦定理和余弦定理练习新人教A版[考情展望] 1.利用正、余弦定理实现边、角的转化,从而解三角形或判断三角形的形状.2.利用正、余弦定理求三角形(或多边形)的面积.3.与平面向量、三角恒等变换等知识相融合,考查学生灵活运用知识的能力.一、正弦定理和余弦定理定理正弦定理余弦定理内容asin A=bsin B=csin C=2Ra2=b2+c2-2bc·cos_A,b2=c2+a2-2ca·cos_B,c2=a2+b2-2ab·cos C.变形形式①a=2R sin_A,b=2R sin_B,c=2R sin_C;②a∶b∶c=sin_A∶sin_B∶sin_C;③a+b+csin A+sin B+sin C=asin A.cos A=b2+c2-a22bc;cos B=c2+a2-b22ca;cos C=a2+b2-c22ab.解决问题①已知两角和任一边,求另一角和其他两条边;②已知两边和其中一边的对角,求另一边和其他两角.①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两个角.在△ABC中,已知a,b和角A时,解的情况A为锐角A为钝角或直角二、三角形常用面积公式1.S =12a ·h a (h a 表示边a 上的高);2.S =12ab sin C =12ac sin B =12bc sin A .3.S =12r (a +b +c )(r 为内切圆半径).三角形中的常用结论 (1)A +B =π-C ,A +B 2=π2-C2. (2)在三角形中大边对大角,反之亦然.(3)任意两边之和大于第三边,任意两边之差小于第三边.(4)在△ABC 中,tan A +tan B +tan C =tan A ·tan B ·tan C (A 、B 、C ≠π2).1.在△ABC 中,a =15,b =10,A =60°,则cos B =( ) A.63B.223C .-63D .-223【解析】 由正弦定理,得sin B =b ·sin A a =33. ∵a >b ,A =60°,∴B <60°,cos B =1-sin 2B =63. 【答案】 A2.在△ABC 中,若a =18,b =24,A =45°,则此三角形有( ) A .无解 B .两解C .一解D .解的个数不确定【解析】∵b sin A=24sin 45°=122<18,∴b sin A<a<b,故此三角形有两解.【答案】 B3.已知△ABC中,∠A,∠B,∠C的对边分别为a,b,c.若a=c=6+2,且A=75°,则b=( )A.2 B.4+2 3C.4-2 3 D.6- 2【解析】在△ABC中,易知B=30°,由余弦定理b2=a2+c2-2ac cos 30°=4.∴b=2.【答案】 A4.△ABC中,B=120°,AC=7,AB=5,则△ABC的面积为________.【解析】由余弦定理知AC2=AB2+BC2-2AB·BC cos 120°,即49=25+BC2+5BC,解得BC=3.故S△ABC=12AB·BC sin 120°=12×5×3×32=1534.【答案】153 45.(xx·湖南高考)在锐角△ABC中,角A,B所对的边长分别为a,b.若2a sin B=3 b,则角A等于( )A.π12B.π6C.π4D.π3【解析】在△ABC中,a=2R sin A,b=2R sin B(R为△ABC的外接圆半径).∵2a sin B=3b,∴2sin A sin B=3sin B.∴sin A=32.又△ABC为锐角三角形,∴A=π3.【答案】 D6.(xx·陕西高考)设△ABC的内角A,B,C所对的边分别为a,b,c,若b cos C+c cos B=a sin A,则△ABC的形状为( )A.锐角三角形B.直角三角形C.钝角三角形D.不确定【解析】∵b cos C+c cos B=b ·b 2+a 2-c 22ab +c ·c 2+a 2-b 22ac=b 2+a 2-c 2+c 2+a 2-b 22a=2a22a=a =a sin A ,∴sin A =1. ∵A ∈(0,π),∴A =π2,即△ABC 是直角三角形.【答案】 B考向一 [065] 利用正、余弦定理解三角形(xx·临沂模拟)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且b sin A =3a cos B .(1)求角B 的大小;(2)若b =3,sin C =2sin A ,求a ,c 的值.【思路点拨】 (1)利用正弦定理把边转化为对角的正弦求解. (2)利用正弦定理把角的正弦转化为边的关系,借助余弦定理求解. 【尝试解答】 (1)由b sin A =3a cos B 及正弦定理a sin A =bsin B ,得sin B =3cos B .所以tan B =3,所以B =π3.(2)由sin C =2sin A 及a sin A =csin C,得c =2a . 由b =3及余弦定理b 2=a 2+c 2-2ac cos B , 得9=a 2+c 2-ac . 所以a =3,c =2 3.规律方法1 1.正、余弦定理可以处理四大类解三角形问题,其中已知两边及其一边的对角,既可以用正弦定理求解也可以用余弦定理求解.2.利用正、余弦定理解三角形其关键是运用两个定理实现边角互化,从而达到知三求三的目的.对点训练 (1)△ABC 中,若b =1,c =3,∠C =2π3,则a 的值( )A.32B.33C.22D .1(2)已知△ABC 中,sin A ∶sin B ∶sin C =3∶2∶4,则cos C 等于( ) A.14 B .-14C.13D .-13(3)(xx·南昌模拟)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若a 2-b 2=3bc ,sin C =23sin B ,则A =( )A .30° B.60° C.120° D.150°【解析】 (1)法一 ∵c 2=a 2+b 2-2ab cos C ,∴(3)2=a 2+1-2a cos 2π3,∴a 2+a -2=0,∴(a +2)(a -1)=0,∴a =1.法二 由正弦定理b sin B =csin C得sin B =b sin Cc =12. ∵b <c ,∴B <C ,∴B =π6.又A +B +C =π,∴A =π-B -C =π6,∴a =b =1.(2)由sin A ∶sin B ∶sin C =3∶2∶4可知a ∶b ∶c =3∶2∶4,设a =3x ,b =2x ,c =4x , 则cos C =9x 2+4x 2-16x22·3x ·2x=-14.(3)由sin C =23sin B 可知c =23b . 又a 2-b 2=3bc ,∴a =7b .∴cos A =b 2+c 2-a 22bc =b 2+12b 2-7b 243b2=32.∴A =30°.【答案】 (1)D (2)B (3)A考向二 [066] 利用正弦、余弦定理判断三角形的形状(xx·吉林模拟)在△ABC 中,a ,b ,c 分别表示三个内角A ,B ,C 的对边,如果(a 2+b 2)sin(A -B )=(a 2-b 2)·sin(A +B ),试判断该三角形的形状.【思路点拨】 求解本题可采用两种思路,一是化边为角,二是化角为边. 【尝试解答】 法一(化边为角):∵(a 2+b 2)sin(A -B )=(a 2-b 2)·sin(A +B ), ∴a 2[sin(A -B )-sin(A +B )] =b 2[-sin(A +B )-sin(A -B )], ∴2a 2cos A sin B =2b 2sin A cos B .由正弦定理得2sin 2A cos A sinB =2sin 2B sin A cos B , 即sin 2A ·sin A sin B =sin 2B ·sin A sin B . ∵0<A <π,0<B <π,∴sin 2A =sin 2B , ∴2A =2B 或2A =π-2B ,即A =B 或A +B =π2. ∴△ABC 是等腰三角形或直角三角形. 法二(化角为边): 同法一可得2a 2cos A sin B =2b 2cos B sin A ,由正弦、余弦定理得a 2b ·b 2+c 2-a 22bc =b 2a ·a 2+b 2-b 22ac∴a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2), 即(a 2-b 2)(c 2-a 2-b 2)=0. ∴a =b 或c 2=a 2+b 2,∴△ABC 为等腰三角形或直角三角形. 规律方法2 判定三角形形状的两种常用途径 1通过正弦定理和余弦定理,化边为角,利用三角变换得出三角形内角之间的关系进行判断.2利用正弦定理、余弦定理,化角为边,通过代数恒等变换,求出边与边之间的关系进行判断.【提醒】 在判断三角形形状时一定要注意解是否唯一,并注重挖掘隐含条件.另外,在变形过程中要注意角A ,B ,C 的范围对三角函数值的影响.对点训练 在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sinB +(2c +b )sinC .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状. 【解】 (1)由已知,根据正弦定理得 2a 2=(2b +c )b +(2c +b )c ,即a 2=b 2+c 2+bc . 由余弦定理,a 2=b 2+c 2-2bc cos A , ∴bc =-2bc cos A ,cos A =-12.又0<A <π,∴A =23π.(2)由(1)知sin 2A =sin 2B +sin 2C +sin B sin C , ∴sin 2A =(sinB +sinC )2-sin B sin C . 又sin B +sin C =1,且sin A =32, ∴sin B sin C =14,因此sin B =sin C =12.又B 、C ∈(0,π2),故B =C . 所以△ABC 是等腰的钝角三角形.考向三 [067] 与三角形面积有关的问题(xx·浙江高考)在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c 且2a sin B =3b .(1)求角A 的大小;(2)若a =6,b +c =8,求△ABC 的面积【思路点拨】 (1)利用已知条件和正弦定理可求出sin A ,进而求出A ;(2)利用余弦定理求出bc ,再用面积公式求面积.【尝试解答】 (1)由2a sin B =3b 及正弦定理asin A =b sin B , 得sin A =32. 因为A 是锐角,所以A =π3.(2)由余弦定理a 2=b 2+c 2-2bc cos A , 得b 2+c 2-bc =36. 又b +c =8,所以bc =283.由三角形面积公式S =12bc sin A ,得△ABC 的面积为12×283×32=733.规律方法3 1.本例2在求解中通过,“b 2+c 2-bc =b +c2-3bc ”实现了“b+c ”与“bc ”间的互化关系.2.在涉及到三角形面积时,常常借助余弦定理实现“和与积”的互化.对点训练 (xx·湖北高考)在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c ,已知cos 2A -3cos(B +C )=1.(1)求角A 的大小;(2)若△ABC 的面积S =53,b =5,求sin B sin C 的值. 【解】 (1)由cos 2A -3cos(B +C )=1,得2cos 2A +3cos A -2=0,即(2cos A -1)(cos A +2)=0. 解得cos A =12或cos A =-2(舍去).因为0<A <π,所以A =π3.(2)由S =12bc sin A =12bc ·32=34bc =53,得bc =20.又b =5,所以c =4.由余弦定理,得a 2=b 2+c 2-2bc cos A =25+16-20=21,故a =21. 又由正弦定理,得sin B sin C =ba sin A ·c a sin A =bc a 2·sin 2A =2021×34=57.规范解答之六 正、余弦定理在解三角形中的巧用 ———— [1个示范例] ———— [1个规范练] ————(12分)(xx·课标全国卷Ⅰ)如图3-7-1,在△ABC 中,∠ABC =90°,AB =3,BC =1,P 为△ABC 内一点,∠BPC =90°.图3-7-1(1)若PB =12,求PA ;(2)若∠APB =150°,求tan ∠PBA .【规范解答】 (1)由已知得∠PBC =60°,所以∠PBA =30°.2分 在△PBA 中,由余弦定理得PA 2=3+14-2×3×12cos 30°=74.4分故PA =72.6分 (2)设∠PBA =α,由已知得PB =sin α.7分 在△PBA 中,由正弦定理得3sin 150° =sin αsin 30°-α,9分化简得3cos α=4sin α,11分 所以tan α=34,即tan ∠PBA =34.12分 【名师寄语】 1熟练掌握正、余弦定理的使用条件及可解三角形的范畴是解答此类问题的关键.2学会用“执果索因”的方式把待求的边角化归到一个三角形中,应用两定理求解.如图3-7-2,在△ABC 中,已知∠B =45°,D 是BC 边上的一点,AD =10,AC =14,DC =6,求AB 的长.图3-7-2【解】 在△ADC 中,AD =10,AC =14,DC =6,由余弦定理得cos ∠ADC =AD 2+DC 2-AC 22AD ·DC=100+36-1962×10×6=-12,∴∠ADC =120°,∴∠ADB =60°.在△ABD 中,AD =10,∠B =45°,∠ADB =60°, 由正弦定理得AB sin ∠ADB =ADsin B,∴AB =AD ·sin∠ADB sin B =10sin 60°sin 45°=10×3222=5 6.37235 9173 酳39106 98C2 飂k31069 795D 祝36511 8E9F 躟N27943 6D27 洧29283 7263 牣20437 4FD5 俕35534 8ACE 諎 27497 6B69 歩Ky32046 7D2E 紮。
高考数学《正弦定理、余弦定理及解三角形》真题练习含答案一、选择题1.设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,若a =2 ,b =3 ,B =π3,则A =( )A .π6B .56 πC .π4D .π4 或34 π答案:C解析:由正弦定理得a sin A =b sin B ,∴sin A =a sin B b =2×323=22 ,又a <b ,∴A为锐角,∴A =π4.2.在△ABC 中,b =40,c =20,C =60°,则此三角形解的情况是( ) A .有一解 B .有两解C .无解D .有解但解的个数不确定 答案:C解析:由正弦定理b sin B =c sin C ,∴sin B =b sin Cc =40×3220 =3 >1,∴角B 不存在,即满足条件的三角形不存在.3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =2,b =3,c =7 ,则角C =( )A .π6B .π4C .π3D .π2答案:C解析:由余弦定理得c 2=a 2+b 2-2ab cos C ,得cos C =a 2+b 2-c 22ab =4+9-72×2×3 =12,又C 为△ABC 内角,∴C =π3 .4.已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a 2=b 2+c 2-bc ,bc =4,则△ABC 的面积为( )A .12 B .1 C .3 D .2答案:C解析:由余弦定理得a 2=b 2+c 2-2bc cos A ,又a 2=b 2+c 2-bc ,∴2cos A =1,cos A =12 ,∴sin A =1-cos 2A =32 ,∴S △ABC =12 bc sin A =12 ×4×32=3 . 5.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边.若b sin A =3c sin B ,a =3,cos B =23,则b =( )A.14 B .6 C .14 D .6 答案:D解析:∵b sin A =3c sin B ,由正弦定理得ab =3bc ,∴a =3c ,又a =3,∴c =1,由余弦定理得b 2=a 2+c 2-2ac ·cos B =9+1-2×3×23=6,∴b =6 .6.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定 答案:B解析:∵b cos C +c cos B =a sin A ,∴sin B cos C +sin C cos B =sin 2A ,∴sin A =1,又A 为△ABC 的内角,∴A =90°,∴△ABC 为直角三角形.7.钝角三角形ABC 的面积是12,AB =1,BC =2 ,则AC =( )A .5B .5C .2D .1 答案:B解析:∵S △ABC =12 AB ×BC ×sin B =22 sin B =12 ,∴sin B =22,若B =45°,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC ·cos 45°=1+2-2×2 ×22 =1,则AC =1,则AB 2+AC 2=BC 2,△ABC 为直角三角形,不合题意;当B =135°时,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC cos 135°=1+2+2×2 ×22=5,∴AC =5 .8.如图,设A ,B 两点在河的两岸,一测量者在A 所在的同侧河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点的距离为( )A .502 mB .503 mC .252 mD .2522m答案:A解析:由正弦定理得AC sin B =ABsin C,∴AB =AC ·sin Csin B =50×22sin (180°-45°-105°) =502 .9.[2024·全国甲卷(理)]记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知B =60°,b 2=94ac ,则sin A +sin C =( )A .32 B .2C .72D .32答案:C解析:∵b 2=94 ac ,∴由正弦定理可得sin 2B =94sin A sin C .∵B =60°,∴sin B =32 ,∴34 =94 sin A sin C ,∴sin A sin C =13.由余弦定理可得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac ,将b 2=94 ac 代入整理得,a 2+c 2=134ac ,∴由正弦定理得sin 2A +sin 2C =134 sin A sin C ,则(sin A +sin C )2=sin 2A +sin 2C +2sin A sin C =134 sin A sin C+2sin A sin C =214 sin A sin C =214 ×13 =74 ,∴sin A +sin C =72 或-72(舍).故选C.二、填空题10.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若(a +b +c )(a -b +c )=ac ,则B =________.答案:23π解析:由(a +b +c )(a -b +c )=ac 得a 2+c 2-b 2+ac =0.由余弦定理得cos B =a 2+c 2-b 22ac =-12 ,又B 为△ABC 的内角,∴B =23π.11.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且c =a cos B ,①则A =________;②若sin C =13,则cos (π+B )=________.答案:①90° ②-13解析:①∵c =a ·cos B ,∴c =a ·a 2+c 2-b 22ac,得a 2=b 2+c 2,∴∠A =90°;②∵cos B =cos (π-A -C )=sin C =13 .∴cos (π+B )=-cos B =-sin C =-13 .12.[2023·全国甲卷(理)]在△ABC 中,∠BAC =60°,AB =2,BC =6 ,∠BAC 的角平分线交BC 于D ,则AD =________.答案:2 解析:方法一 由余弦定理得cos 60°=AC 2+4-62×2AC ,整理得AC 2-2AC -2=0,得AC=1+3 .又S △ABC =S △ABD +S △ACD ,所以12 ×2AC sin 60°=12 ×2AD sin 30°+12 AC ×AD sin30°,所以AD =23AC AC +2 =23×(1+3)3+3=2.方法二 由角平分线定理得BD AB =CD AC ,又BD +CD =6 ,所以BD =26AC +2,CD =6AC AC +2 .由角平分线长公式得AD 2=AB ×AC -BD ×CD =2AC -12AC(AC +2)2 ,又由方法一知AC =1+3 ,所以AD 2=2+23 -12×(1+3)(3+3)2=2+23 -(23 -2)=4,所以AD =2.[能力提升]13.(多选)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,a =8,b <4,c =7,且满足(2a -b )cos C =c ·cos B ,则下列结论正确的是( )A .C =60°B .△ABC 的面积为63 C .b =2D .△ABC 为锐角三角形 答案:AB解析:∵(2a -b )cos C =c cos B ,∴(2sin A -sin B )cos C =sin C cos B ,∴2sin A cos C =sin B cos C +cos B sin C ,即2sin A cos C =sin (B +C ),∴2sin A cos C =sin A .∵在△ABC 中,sin A ≠0,∴cos C =12 ,∴C =60°,A 正确.由余弦定理,得c 2=a 2+b 2-2ab cos C ,得49=64+b 2-2×8b cos 60°,即b 2-8b +15=0,解得b =3或b =5,又b <4,∴b =3,C 错误.∴△ABC 的面积S =12 ab sin C =12 ×8×3×32 =63 ,B 正确.又cos A =b 2+c 2-a 22bc=9+49-642×3×7<0,∴A 为钝角,△ABC 为钝角三角形,D 错误. 14.[2023·全国甲卷(理)]已知四棱锥P ABCD 的底面是边长为4的正方形,PC =PD =3,∠PCA =45°,则△PBC 面积为( )A .22B .32C .42D .62 答案:C解析:如图,过点P 作PO ⊥平面ABCD ,垂足为O ,取DC 的中点M ,AB 的中点N ,连接PM ,MN ,AO ,BO .由PC =PD ,得PM ⊥DC ,又PO ⊥DC ,PO ∩PM =P ,所以DC ⊥平面POM ,又OM ⊂平面POM ,所以DC ⊥OM .在正方形ABCD 中,DC ⊥NM ,所以M ,N ,O 三点共线,所以OA =OB ,所以Rt △P AO ≌Rt △PBO ,所以PB =P A .在△P AC 中,由余弦定理,得P A =PC 2+AC 2-2PC ·AC cos 45° =17 ,所以PB =17 .在△PBC 中,由余弦定理,得cos ∠PCB =PC 2+BC 2-BP 22PC ·BC =13 ,所以sin ∠PCB =223 ,所以S △PBC =12 PC ·BCsin ∠PCB =42 ,故选C.15.[2022·全国甲卷(理),16]已知△ABC 中,点D 在边BC 上,∠ADB =120°,AD =2,CD =2BD .当ACAB取得最小值时,BD =________.答案:3 -1解析:以D 为坐标原点,DC 所在的直线为x 轴,DC →的方向为x 轴的正方向,过点D 且垂直于DC 的直线为y 轴,建立平面直角坐标系(图略),易知点A 位于第一象限.由AD =2,∠ADB =120°,得A (1,3 ).因为CD =2BD ,所以设B (-x ,0),x >0,则C (2x ,0).所以AC=(2x -1)2+(0-3)2=4x 2-4x +4,AB =(-x -1)2+(0-3)2=x 2+2x +4 ,所以⎝⎛⎭⎫AC AB 2=4x 2-4x +4x 2+2x +4.令f (x )=4x 2-4x +4x 2+2x +4,x >0,则f ′(x )=(4x 2-4x +4)′(x 2+2x +4)-(4x 2-4x +4)(x 2+2x +4)′(x 2+2x +4)2=(8x -4)(x 2+2x +4)-(4x 2-4x +4)(2x +2)(x 2+2x +4)2=12(x 2+2x -2)(x 2+2x +4)2 .令x 2+2x -2=0,解得x =-1-3 (舍去)或x =3 -1.当0<x <3 -1时,f ′(x )<0,所以f (x )在(0,3 -1)上单调递减;当x >3 -1时,f ′(x )>0,所以f (x )在(3 -1,+∞)上单调递增.所以当x =3 -1时,f (x )取得最小值,即ACAB 取得最小值,此时BD =3 -1.16.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为S ,且6S =(a +b )2-c 2,则tan C =________.答案:125解析:由余弦定理得2ab cos C =a 2+b 2-c 2,又6S =(a +b )2-c 2,所以6×12 ab sin C =(a +b )2-c 2=a 2+b 2-c 2+2ab =2ab cos C +2ab ,化简得3sin C =2cos C +2,结合sin 2C +cos 2C =1,解得sin C =1213 ,cos C =513 ,所以tan C =125.。
第6节 正弦定理和余弦定理课标要求:借助向量的运算,探索三角形边长与角度的关系,掌握余弦定理、正弦定理.知 识 梳 理1.正弦定理____=____=____=2R ,其中R 是三角形外接圆的半径.2.余弦定理a 2=________________,b 2=________________,c 2=________________.3.在△ABC 中,a =b cos C +c cos B ,b =__________,c =__________.(此定理称作“射影定理”,亦称第一余弦定理)4.三角形面积公式S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R 、r .5.在△ABC 中,已知a ,b 和A 时,解的情况如下:[1.由正弦定理可以变形为:(1)a :b :c =_______:_______:_______;(2)a =2R sin A ,b =2R sin B ,c =__________;(3)sin A =a 2R ,sin B =b 2R,sin C =______等形式,以解决不同的三角形问题. 2.余弦定理可以变形为:cos A =b 2+c 2-a 22bc,cos B =______________,cos C =______________. 3. S △ABC =abc 4R =12(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R 、r .基 础 自 测1.判断下列说法是否正确(请在括号中打“√”或“×”).(1)在△ABC 中,A >B 必有sin A >sin B . ( )(2)在△ABC 中,若b 2+c 2>a 2,则△ABC 为锐角三角形. ( )(3)在△ABC 中,若A =60°,a =43,b =42,则∠B =45°或∠B =135°. ( )(4)若满足条件C =60°,AB =3,BC =a 的△ABC 有两个,则实数a 的取值范围是(3,2).( )(5)在△ABC 中,若a cos B =b cos A ,则△ABC 是等腰三角形. ( )(6)在△ABC 中,若tan A =a 2,tan B =b 2,则△ABC 是等腰三角形. ( )2.在△ABC 中中,如果4:3:2sin :sin :sin =C B A ,那么=C cos .3.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a =5,c =2,cos A =23,则b =( ). A. 2 B. 3 C .2 D .34.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,cos2A =sin A ,bc =2,则△ABC 的面积为( ).A.12B.14C .1D .2 5.在ABC △中,角A B C ,,所对的边分别为a b c ,,,若bc a c b c b a 3))((=-+++,则=A .6.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若2b cos B =a cos C +c cos A ,则B =________.考点1应用正弦、余弦定理解三角形【例1】已知△ABC 的面积为S ,且22BC CA CB S =⋅+. (1)求B 的大小; (2)若12S =,且1BC BA -=,试求△ABC 最长边的长度.[规律方法]破解平面向量与“三角”相交汇题的常用方法是“化简转化法”,即先活用诱导公式、同角三角函数的基本关系式、倍角公式、辅助角公式等对三角函数进行巧“化简”;然后把以向量共线、向量垂直形式出现的条件转化为“对应坐标乘积之间的关系”;再活用正、余弦定理,对三角形的边、角进行互化.【训练1】(1)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知C =60°,b =6,c =3,则A =________.(2)在△ABC 中,cos C 2=55,BC =1,AC =5,则AB =( ). A .42 B.30 C.29 D .25考点2三角形解得个数问题【例2】在△ABC 中,如果A =60°,c =4,a =______个解.[规律方法]解三角形问题首先要判断是否会出现多解或无解的情况:对于“已知两角与任一边,求其他两边和一角”的题型不可能有多个解,也不可能无解;对于“已知两边与其中一边的对角,求另一边的对角(从而进一步求出其他边和角)”的题型,可能出现多解或无解的情况. 验证解的情况可用数形结合法.【训练2】在△ABC 中, c b a ,,分别是△ABC 中角C B A ,,的对边,若︒===45,2,B b x a ,且此三角形有两解,则x 的取值范围( ).A .2B .52C .1D .考点3利用正弦、余弦定理判定三角形的【例3】1.若△ABC 中,满足222sin sin sin C A B =+,则该三角形的形状是 三角形.2在△ABC 中,角,,A B C 的对边分别为,,a b c ,若,,a b c 成等比数列,且3B π=,则△ABC的形状为 三角形.[规律方法]常见的三角变换方法和原则都适用,同时要注意“三统一”,即“统一角、统一函数、统一结构”,这是使问题获得解决的突破口.【训练3】在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,若c -a cos B =(2a -b )cos A ,则△ABC 的形状为( ).A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形考点4与三角形面积有关的问题【例4】 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且∠A =π3,c =37a . (1)求sin C 的值; (2)若a =7,求△ABC 的面积.[规律方法]高考中主要涉及利用正弦、余弦定理求三角形的边长、角、面积等基本计算,或将两个定理与三角恒等变换相结合综合解三角形.【训练4】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin C +c sin B =4a sin B sin C ,b 2+c 2-a 2=8,则△ABC 的面积为________.[思维升华](1)在解三角形中,如果表达式中含有角的余弦或边的二次式时,则优先考虑使用余弦定理。
§4.6 正弦定理、余弦定理及解三角形1. 正弦、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则2. S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R 、r .3. 在△ABC 中,已知a 、b 和A 时,解的情况如下:4. 实际问题中的常用角(1)仰角和俯角与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯角(如图①).(2)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°等. (3)方位角指从正北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图②). (4)坡度:坡面与水平面所成的二面角的正切值.1. 判断下面结论是否正确(请在括号中打“√”或“×”)(1)在△ABC 中,A >B 必有sin A >sin B .( √ )(2)若满足条件C =60°,AB =3,BC =a 的△ABC 有两个,那么a 的取值范围是(3,2).( √ ) (3)若△ABC 中,a cos B =b cos A ,则△ABC 是等腰三角形.( √ ) (4)在△ABC 中,tan A =a 2,tan B =b 2,那么△ABC 是等腰三角形.( × )(5)从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为α+β=180°.( × )2. (2013·湖南)在锐角△ABC 中,角A ,B 所对的边长分别为a ,b ,若2a sin B =3b ,则角A 等于( )A.π12B.π6C.π4D.π3答案 D解析 在△ABC 中,利用正弦定理得 2sin A sin B =3sin B ,∴sin A =32. 又A 为锐角,∴A =π3.3. (2013·陕西)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sinA ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定答案 B解析 由b cos C +c cos B =a sin A ,得sin B cos C +sin C cos B =sin 2A ,即sin(B +C )=sin 2A ,所以sin A =1,由0<A <π,得A =π2,所以△ABC 为直角三角形.4. 在△ABC 中,B =60°,AC =3,则AB +2BC 的最大值为________.答案 27解析 由正弦定理知AB sin C =3sin 60°=BCsin A, ∴AB =2sin C ,BC =2sin A .又A +C =120°,∴AB +2BC =2sin C +4sin(120°-C ) =2(sin C +2sin 120°cos C -2cos 120°sin C ) =2(sin C +3cos C +sin C )=2(2sin C +3cos C )=27sin(C +α), 其中tan α=32,α是第一象限角, 由于0°<C <120°,且α是第一象限角, 因此AB +2BC 有最大值27.5. 一船以每小时15 km 的速度向东航行,船在A 处看到一个灯塔M 在北偏东60°方向,行驶4 h 后,船到B 处,看到这个灯塔在北偏东15°方向,这时船与灯塔的距离为______ km. 答案 30 2解析 如图所示,依题意有AB =15×4=60,∠MAB =30°,∠AMB =45°, 在△AMB 中,由正弦定理得60sin 45°=BM sin 30°,解得BM =30 2 (km).题型一 正、余弦定理的简单应用例1 (1)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若a 2-b 2=3bc ,sin C =23sin B ,则A 等于( )A .30°B .60°C .120°D .150°(2)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C ,则sin B +sin C 的最大值为( )A .0B .1C.12D. 2思维启迪 (1)由sin C =23sin B 利用正弦定理得b 、c 的关系,再利用余弦定理求A . (2)要求sin B +sin C 的最大值,显然要将角B ,C 统一成一个角,故需先求角A ,而题目给出了边角之间的关系,可对其进行化边处理,然后结合余弦定理求角A . 答案 (1)A (2)B解析 (1)∵sin C =23sin B ,由正弦定理得c =23b , ∴cos A =b 2+c 2-a 22bc =-3bc +c 22bc =-3bc +23bc 2bc =32,又A 为三角形的内角,∴A =30°.(2)已知2a sin A =(2b +c )sin B +(2c +b )sin C , 根据正弦定理,得2a 2=(2b +c )b +(2c +b )c , 即a 2=b 2+c 2+bc .由余弦定理得a 2=b 2+c 2-2bc cos A ,故cos A =-12,又A 为三角形的内角,∴A =120°.故sin B +sin C =sin B +sin(60°-B )=32cos B +12sin B =sin(60°+B ), 故当B =30°时,sin B +sin C 取得最大值1.思维升华 (1)在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息,一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到. (2)解题中注意三角形内角和定理的应用及角的范围限制.(1)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知8b =5c ,C =2B ,则cos C 等于( )A.725B .-725C .±725D.2425(2)已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若a =1,b =3,A +C =2B ,则角A 的大小为________. 答案 (1)A (2)π6解析 (1)由正弦定理b sin B =csin C ,将8b =5c 及C =2B 代入得bsin B =85b sin 2B ,化简得1sin B =852sin B cos B ,则cos B =45,所以cos C =cos 2B =2cos 2B -1=2×(45)2-1=725,故选A.(2)∵A +C =2B 且A +B +C =π,∴B =π3.由正弦定理知:sin A =a sin B b =12,又a <b ,∴A <B ,∴A =π6.题型二 正弦定理、余弦定理的综合应用例2 (2012·课标全国)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a cos C +3a sinC -b -c =0. (1)求A ;(2)若a =2,△ABC 的面积为3,求b ,c .思维启迪 利用正弦定理将边转化为角,再利用和差公式可求出A ;面积公式和余弦定理相结合,可求出b ,c .解 (1)由a cos C +3a sin C -b -c =0及正弦定理得sin A cos C +3sin A sin C -sin B -sin C =0.因为B =π-A -C ,所以3sin A sin C -cos A sin C -sin C =0. 由于sin C ≠0,所以sin ⎝⎛⎭⎫A -π6=12. 又0<A <π,故A =π3.(2)△ABC 的面积S =12bc sin A =3,故bc =4.而a 2=b 2+c 2-2bc cos A ,故b 2+c 2=8. 解得b =c =2.思维升华 有关三角形面积问题的求解方法: (1)灵活运用正、余弦定理实现边角转化.(2)合理运用三角函数公式,如同角三角函数的基本关系、二倍角公式等.在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c .(1)若c =2,C =π3,且△ABC 的面积为3,求a ,b 的值;(2)若sin C +sin(B -A )=sin 2A ,试判断△ABC 的形状. 解 (1)∵c =2,C =π3,∴由余弦定理c 2=a 2+b 2-2ab cos C 得a 2+b 2-ab =4. 又∵△ABC 的面积为3,∴12ab sin C =3,ab =4.联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,ab =4,解得a =2,b =2.(2)由sin C +sin(B -A )=sin 2A , 得sin(A +B )+sin(B -A )=2sin A cos A ,即2sin B cos A =2sin A cos A ,∴cos A ·(sin A -sin B )=0, ∴cos A =0或sin A -sin B =0, 当cos A =0时,∵0<A <π, ∴A =π2,△ABC 为直角三角形;当sin A -sin B =0时,得sin B =sin A , 由正弦定理得a =b , 即△ABC 为等腰三角形.∴△ABC 为等腰三角形或直角三角形. 题型三 解三角形的实际应用例3 某渔轮在航行中不幸遇险,发出呼救信号,我海军舰艇在A 处获悉后,立即测出该渔轮在方位角为45°,距离为10 n mile 的C 处,并测得渔轮正沿方位角为105°的方向,以9 n mile/h 的速度向某小岛靠拢,我海军舰艇立即以21 n mile/h 的速度前去营救,求舰艇的航向和靠近渔轮所需的时间.思维启迪 本题中所涉及的路程在不断变化,但舰艇和渔轮相遇时所用时间相等,先设出所用时间t ,找出等量关系,然后解三角形.解 如图所示,根据题意可知AC =10,∠ACB =120°,设舰艇靠近渔轮所需的时间为t h ,并在B 处与渔轮相遇,则AB =21t ,BC =9t ,在△ABC 中,根据余弦定理得AB 2=AC 2+BC 2-2AC ·BC ·cos 120°,所以212t 2=102+92t 2+2×10×9t ×12,即360t 2-90t -100=0,解得t =23或t =-512(舍去).所以舰艇靠近渔轮所需的时间为23 h .此时AB =14,BC =6.在△ABC 中,根据正弦定理得BC sin ∠CAB =ABsin 120°,所以sin ∠CAB =6×3214=3314,即∠CAB ≈21.8°或∠CAB ≈158.2°(舍去). 即舰艇航行的方位角为45°+21.8°=66.8°.所以舰艇以66.8°的方位角航行,需23h 才能靠近渔轮.思维升华 求解测量问题的关键是把测量目标纳入到一个可解三角形中,三角形可解,则至少要知道这个三角形的一条边长.解题中注意各个角的含义,根据这些角把需要的三角形的内角表示出来,注意不要把角的含义弄错,不要把这些角与要求解的三角形的内角之间的关系弄错.在斜度一定的山坡上的一点A 测得山顶上一建筑物顶端对于山坡的斜度为15°,如图所示,向山顶前进100 m 后,又从B 点测得斜度为45°,设建筑物的高为50 m .求此山对于地平面的斜度θ的余弦值.解 在△ABC 中,∠BAC =15°,∠CBA =180°-45°=135°,AB =100 m , 所以∠ACB =30°.由正弦定理,得100sin 30°=BC sin 15°,即BC =100sin 15°sin 30°.在△BCD 中,因为CD =50,BC =100sin 15°sin 30°,∠CBD =45°,∠CDB =90°+θ,由正弦定理,得50sin 45°=100sin 15°sin 30°sin (90°+θ),解得cos θ=3-1.因此,山对地面的斜度的余弦值为3-1.代数式化简或三角运算不当致误典例:(12分)在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)·sin(A +B ),试判断△ABC 的形状.易错分析 (1)从两个角的正弦值相等直接得到两角相等,忽略两角互补情形; (2)代数运算中两边同除一个可能为0的式子,导致漏解; (3)结论表述不规范. 规范解答解 ∵(a 2+b 2)sin(A -B )=(a 2-b 2)sin(A +B ),∴b 2[sin(A +B )+sin(A -B )]=a 2[sin(A +B )-sin(A -B )], ∴2sin A cos B ·b 2=2cos A sin B ·a 2, 即a 2cos A sin B =b 2sin A cos B .[4分]方法一 由正弦定理知a =2R sin A ,b =2R sin B , ∴sin 2A cos A sin B =sin 2B sin A cos B , 又sin A ·sin B ≠0,∴sin A cos A =sin B cos B , ∴sin 2A =sin 2B .[8分]在△ABC 中,0<2A <2π,0<2B <2π,∴2A =2B 或2A =π-2B ,∴A =B 或A +B =π2.∴△ABC 为等腰或直角三角形.[12分] 方法二 由正弦定理、余弦定理得: a 2b b 2+c 2-a 22bc =b 2a a 2+c 2-b 22ac,∴a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2), ∴(a 2-b 2)(a 2+b 2-c 2)=0, ∴a 2-b 2=0或a 2+b 2-c 2=0. 即a =b 或a 2+b 2=c 2.∴△ABC 为等腰或直角三角形.[12分]温馨提醒 (1)判断三角形形状要对所给的边角关系式进行转化,使之变为只含边或只含角的式子然后判断;注意不要轻易两边同除以一个式子.(2)在判断三角形形状时一定要注意解是否唯一,并注重挖掘隐含条件.另外,在变形过程中要注意角A ,B ,C 的范围对三角函数值的影响.方法与技巧1. 应熟练掌握和运用内角和定理:A +B +C =π,A 2+B 2+C 2=π2中互补和互余的情况,结合诱导公式可以减少角的种数.2. 正、余弦定理的公式应注意灵活运用,如由正、余弦定理结合得sin 2A =sin 2B +sin 2C -2sin B ·sin C ·cos A ,可以进行化简或证明. 3. 合理利用换元法、代入法解决实际问题. 失误与防范1. 在利用正弦定理解已知三角形的两边和其中一边的对角求另一边的对角,进而求出其他的边和角时,有时可能出现一解、两解,所以要进行分类讨论.2. 利用正、余弦定理解三角形时,要注意三角形内角和定理对角的范围的限制.A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题1. 在△ABC ,已知∠A =45°,AB =2,BC =2,则∠C 等于( )A .30°B .60°C .120°D .30°或150°答案 A解析 在△ABC 中,AB sin C =BC sin A ,∴2sin C =2sin 45°,∴sin C =12,又AB <BC ,∴∠C <∠A ,故∠C =30°.2. △ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若cb<cos A ,则△ABC 为( )A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形答案 A解析 依题意得sin Csin B <cos A ,sin C <sin B cos A ,所以sin(A +B )<sin B cos A ,即sin B cos A +cos B sin A -sin B cos A <0,所以cos B sin A <0.又sin A >0,于是有cos B <0,B 为钝角,△ABC 是钝角三角形.3. (2012·湖南)△ABC 中,AC =7,BC =2,B =60°,则BC 边上的高等于( )A.32B.332C.3+62D.3+394答案 B解析 设AB =a ,则由AC 2=AB 2+BC 2-2AB ·BC cos B 知7=a 2+4-2a ,即a 2-2a -3=0,∴a =3(负值舍去). ∴BC 边上的高为AB ·sin B =3×32=332. 4. (2013·辽宁)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a sin B cos C +c sin B cosA =12b ,且a >b ,则∠B 等于( )A.π6B.π3C.2π3D.5π6答案 A解析 由条件得a b sin B cos C +c b sin B cos A =12,依正弦定理,得sin A cos C +sin C cos A =12,∴sin(A +C )=12,从而sin B =12,又a >b ,且B ∈(0,π),因此B =π6.5. 在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,已知b 2=c (b +2c ),若a =6,cos A=78,则△ABC 的面积等于 ( )A.17B.15C.152D .3答案 C解析 ∵b 2=c (b +2c ),∴b 2-bc -2c 2=0, 即(b +c )·(b -2c )=0,∴b =2c .又a =6,cos A =b 2+c 2-a 22bc =78,解得c =2,b =4.∴S △ABC =12bc sin A =12×4×2×1-(78)2=152.二、填空题6. (2013·安徽)设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c .若b +c =2a,3sin A =5sinB ,则角C =________. 答案2π3解析 由已知条件和正弦定理得:3a =5b ,且b +c =2a , 则a =5b 3,c =2a -b =7b 3cos C =a 2+b 2-c 22ab =-12,又0<C <π,因此角C =2π3.7. 在△ABC 中,若b =5,∠B =π4,tan A =2,则a =________.答案 210解析 由tan A =2得sin A =2cos A . 又sin 2A +cos 2A =1得sin A =255. ∵b =5,∠B =π4,根据正弦定理,有a sin A =bsin B ,∴a =b sin A sin B =2522=210.8. 如图,设A ,B 两点在河的两岸,一测量者在点A 的同侧的河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°,则A ,B 两点的距离为________. 答案 50 2 m 解析 由正弦定理得AB sin ∠ACB =ACsin B,所以AB =AC ·sin ∠ACBsin B =50×2212=50 2.三、解答题9. (2013·北京)在△ABC 中,a =3,b =26,∠B =2∠A .(1)求cos A 的值; (2)求c 的值.解 (1)在△ABC 中,由正弦定理 a sin A =b sin B ⇒3sin A =26sin 2A =262sin A cos A,∴cos A =63. (2)由余弦定理,a 2=b 2+c 2-2bc cos A ⇒32=(26)2+c 2-2×26c ×63则c 2-8c +15=0. ∴c =5或c =3.当c =3时,a =c ,∴A =C .由A +B +C =π,知B =π2,与a 2+c 2≠b 2矛盾.∴c =3舍去.故c 的值为5.10.(2013·江西)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,已知cos C +(cos A -3sin A )cos B =0. (1)求角B 的大小;(2)若a +c =1,求b 的取值范围.解 (1)由已知得-cos(A +B )+cos A cos B -3sin A cos B =0 即有sin A sin B -3sin A cos B =0, 因为sin A ≠0,所以sin B -3cos B =0, 即3cos B =sin B . 因为0<B <π, 所以sin B >0, 所以cos B >0, 所以tan B =3, 即B =π3.(2)由余弦定理得b 2=a 2+c 2-2ac cos B , 因为a +c =1,cos B =12,所以b 2=(a +c )2-3ac ≥(a +c )2-3⎝⎛⎭⎫a +c 22=14(a +c )2=14, ∴b ≥12.又a +c >b ,∴b <1,∴12≤b <1.B 组 专项能力提升 (时间:25分钟,满分:43分)1. △ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =2a ,则ba等于( )A .2 3B .2 2C. 3D. 2答案 D解析 ∵a sin A sin B +b cos 2A =2a , ∴sin A sin A sin B +sin B cos 2A =2sin A , ∴sin B =2sin A ,∴b a =sin Bsin A= 2.2. 有一长为1的斜坡,它的倾斜角为20°,现高不变,将倾斜角改为10°,则斜坡长为( )A .1B .2sin 10°C .2cos 10°D .cos 20°答案 C解析 如图,∠ABC =20°,AB =1,∠ADC =10°, ∴∠ABD =160°.在△ABD 中,由正弦定理得AD sin 160°=ABsin 10°,∴AD =AB ·sin 160°sin 10°=sin 20°sin 10°=2cos 10°.3. (2013·浙江)在△ABC 中,∠C =90°,M 是BC 的中点.若sin ∠BAM =13,则sin ∠BAC =________. 答案63解析 因为sin ∠BAM =13,所以cos ∠BAM =223.如图,在△ABM 中,利用正弦定理,得BM sin ∠BAM =AM sin B ,所以BM AM =sin ∠BAM sin B =13sin B =13cos ∠BAC .在Rt △ACM 中,有CMAM =sin ∠CAM =sin(∠BAC -∠BAM ).由题意知BM =CM ,所以13cos ∠BAC=sin(∠BAC -∠BAM ).化简,得22sin ∠BAC cos ∠BAC -cos 2∠BAC =1. 所以22tan ∠BAC -1tan 2∠BAC +1=1,解得tan ∠BAC = 2.再结合sin 2∠BAC +cos 2∠BAC =1,∠BAC 为锐角可解得sin ∠BAC =63.4. (2012·江西)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知A =π4,b sin ⎝⎛⎭⎫π4+C -c sin ⎝⎛⎭⎫π4+B =a . (1)求证:B -C =π2;(2)若a =2,求△ABC 的面积.(1)证明 由b sin ⎝⎛⎭⎫π4+C -c sin ⎝⎛⎭⎫π4+B =a ,应用正弦定理,得sin B sin ⎝⎛⎭⎫π4+C -sin C sin ⎝⎛⎭⎫π4+B =sin A , sin B ⎝⎛⎭⎫22sin C +22cos C -sin C⎝⎛⎭⎫22sin B +22cos B =22, 整理得sin B cos C -cos B sin C =1, 即sin(B -C )=1.由于0<B ,C <34π,从而B -C =π2.(2)解 B +C =π-A =3π4,因此B =5π8,C =π8.由a =2,A =π4,得b =a sin B sin A =2sin 5π8,c =a sin C sin A =2sin π8,所以△ABC 的面积S =12bc sin A =2sin 5π8sin π8=2cos π8sin π8=12.5. 已知△ABC 的三个内角A ,B ,C 成等差数列,角B 所对的边b =3,且函数f (x )=23sin 2x+2sin x cos x -3在x =A 处取得最大值. (1)求f (x )的值域及周期; (2)求△ABC 的面积.解 (1)因为A ,B ,C 成等差数列, 所以2B =A +C ,又A +B +C =π, 所以B =π3,即A +C =2π3.因为f (x )=23sin 2x +2sin x cos x - 3 =3(2sin 2x -1)+sin 2x =sin 2x -3cos 2x=2sin ⎝⎛⎭⎫2x -π3, 所以T =2π2=π.又因为sin ⎝⎛⎭⎫2x -π3∈[-1,1], 所以f (x )的值域为[-2,2]. (2)因为f (x )在x =A 处取得最大值, 所以sin ⎝⎛⎭⎫2A -π3=1. 因为0<A <23π,所以-π3<2A -π3<π,故当2A -π3=π2时,f (x )取到最大值,所以A =512π,所以C =π4.由正弦定理,知3sin π3=csinπ4⇒c = 2. 又因为sin A =sin ⎝⎛⎭⎫π4+π6=2+64, 所以S △ABC =12bc sin A =3+34.。
正、余弦定理掌握正、余弦定理的内容,并能解决一些简单的三角形度量问题.知识点 正弦定理和余弦定理 1.正弦定理a sin A =b sin B =c sin C=2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形: (1)a ∶b ∶c =sin_A ∶sin_B ∶sin_C . (2)a =2R sin_A ,b =2R sin B ,c =2R sin_C . 2.余弦定理a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.3.三角形中常用的面积公式 (1)S =12ah (h 表示边a 上的高).(2)S =12bc sin A =12ac sin B =12ab sin C .(3)S =12r (a +b +c )(r 为三角形的内切圆半径).易误提醒 (1)由正弦定理解已知三角形的两边和其中一边的对角求另一边的对角时易忽视解的判断.(2)在判断三角形形状时,等式两边一般不要约去公因式,应移项提取公因式,以免漏解. 必记结论 三角形中的常用结论 (1)A +B =π-C ,A +B 2=π2-C2.(2)在三角形中大边对大角,反之亦然.(3)任意两边之和大于第三边,任意两边之差小于第三边.(4)在△ABC 中,tan A +tan B +tan C =tan A ·tan B ·tan C (A ,B ,C ≠π2).[自测练习]1.已知△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,若a =c =6+2,且A =75°,则b =( )A .2B .4+2 3C .4-2 3D.6- 2解析:在△ABC 中,易知∠B =30°,由余弦定理b 2=a 2+c 2-2ac cos 30°=4.∴b =2. 答案:A2.在△ABC 中,若∠A =60°,∠B =45°,BC =32,则AC =( ) A .4 3 B .2 3 C. 3D.32 解析:在△ABC 中,根据正弦定理,得AC sin B =BCsin A, ∴AC =BC ·sin B sin A=32×2232=2 3.答案:B3.△ABC 中,B =120°,AC =7,AB =5,则△ABC 的面积为________. 解析:由余弦定理知AC 2=AB 2+BC 2-2AB ·BC cos 120°, 即49=25+BC 2+5BC ,解得BC =3.故S △ABC =12AB ·BC sin 120°=12×5×3×32=1534.答案:1534考点一 利用正弦、余弦定理解三角形|1.(2015·高考广东卷)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =2,c =23,cos A =32且b <c ,则b =( ) A .3 B .2 2 C .2D. 3解析:由余弦定理a 2=b 2+c 2-2bc cos A ,即4=b 2+12-6b ⇒b 2-6b +8=0⇒(b -2)(b -4)=0,由b <c ,得b =2.答案:C2.(2015·高考安徽卷)在△ABC 中,AB =6,∠A =75°,∠B =45°,则AC =________. 解析:因为∠A =75°,∠B =45°,所以∠C =60°,由正弦定理可得AC sin 45°=6sin 60°,解得AC =2.答案:23.(2015·高考福建卷)若锐角△ABC 的面积为103,且AB =5,AC =8,则BC 等于________. 解析:因为△ABC 的面积S △ABC =12AB ·AC sin A ,所以103=12×5×8×sin A ,解得sin A =32,因为角A 为锐角,所以cos A =12.根据余弦定理,得BC 2=52+82-2×5×8×cos A =52+82-2×5×8×12=49,所以BC =7.答案:7正、余弦定理的应用原则(1)正弦定理是一个连比等式,在运用此定理时,只要知道其比值或等量关系就可以通过约分达到解决问题的目的,在解题时要学会灵活运用.(2)运用余弦定理时,要注意整体思想的运用.考点二 利用正、余弦定理判断三角形形状|(2015·沈阳模拟)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状. [解] (1)由已知,根据正弦定理得2a 2=(2b +c )b +(2c +b )c ,即a 2=b 2+c 2+bc . 由余弦定理,a 2=b 2+c 2-2bc cos A , ∴bc =-2bc cos A ,cos A =-12.又0<A <π,∴A =23π.(2)由(1)知sin 2A =sin 2B +sin 2C +sin B sin C , ∴sin 2A =(sin B +sin C )2-sin B sin C .又sin B +sin C =1,且sin A =32, ∴sin B sin C =14,因此sin B =sin C =12.又B 、C ∈⎝⎛⎭⎫0,π2,故B =C . 所以△ABC 是等腰的钝角三角形.判定三角形形状的两条途径(1)化边为角,通过三角变换找出角之间的关系.(2)化角为边,通过代数变形找出边之间的关系,正(余)弦定理是转化的桥梁.1.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足(2b -c )cos A -a cos C =0. (1)求角A 的大小;(2)若a =3,S △ABC =334,试判断△ABC 的形状,并说明理由.解:(1)法一:由(2b -c )cos A -a cos C =0及正弦定理,得(2sin B -sin C )cos A -sin A cos C =0, ∴2sin B cos A -sin(A +C )=0,sin B (2cos A -1)=0.∵0<B <π,∴sin B ≠0, ∴cos A =12.∵0<A <π,∴A =π3.法二:由(2b -c )cos A -a cos C =0,及余弦定理,得(2b -c )·b 2+c 2-a 22bc -a ·(a 2+b 2-c 2)2ab =0,整理,得b 2+c 2-a 2=bc ,∴cos A =b 2+c 2-a 22bc =12,∵0<A <π,∴A =π3.(2)△ABC 为等边三角形. ∵S △ABC =12bc sin A =334,即12bc sin π3=334,∴bc =3,① ∵a 2=b 2+c 2-2bc cos A ,a =3,A =π3,∴b 2+c 2=6,②由①②得b =c =3,∴△ABC 为等边三角形.考点三 三角形的面积问题|(2015·高考全国卷Ⅱ)△ABC 中,D 是BC 上的点,AD 平分∠BAC ,△ABD 面积是△ADC 面积的2倍.(1)求sin B sin C ;(2)若AD =1,DC =22,求BD 和AC 的长. [解] (1)S △ABD =12AB ·AD sin ∠BAD ,S △ADC =12AC ·AD sin ∠CAD .因为S △ABD =2S △ADC ,∠BAD =∠CAD ,所以AB =2AC . 由正弦定理可得sin B sin C =AC AB =12.(2)因为S △ABD ∶S △ADC =BD ∶DC ,所以BD = 2. 在△ABD 和△ADC 中,由余弦定理知 AB 2=AD 2+BD 2-2AD ·BD cos ∠ADB , AC 2=AD 2+DC 2-2AD ·DC cos ∠ADC . 故AB 2+2AC 2=3AD 2+BD 2+2DC 2=6. 由(1)知AB =2AC ,所以AC =1.三角形面积公式的应用原则(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.2.已知a ,b ,c 分别是△ABC 的内角A ,B ,C 所对的边,且c =2,C =π3.(1)若△ABC 的面积等于3,求a ,b ; (2)若sin C +sin(B -A )=2sin 2A ,求A 的值. 解:(1)∵c =2,C =π3,∴由余弦定理得4=a 2+b 2-2ab cos π3=a 2+b 2-ab ,∵△ABC 的面积等于3,∴12ab sin C =3,∴ab =4, 联立⎩⎪⎨⎪⎧a 2+b 2-ab =4ab =4,解得a =2,b =2.(2)∵sin C +sin(B -A )=2sin 2A , ∴sin(B +A )+sin(B -A )=4sin A cos A , ∴sin B cos A =2sin A cos A , ①当cos A =0时,A =π2;②当cos A ≠0时,sin B =2sin A ,由正弦定理得b =2a ,联立⎩⎪⎨⎪⎧a 2+b 2-ab =4b =2a,解得a =233,b =433,∴b 2=a 2+c 2,∵C =π3,∴A =π6.综上所述,A =π2或A =π6.7.三角变换不等价致误【典例】 在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)·sin(A +B ),试判断△ABC 的形状. [解] ∵(a 2+b 2)sin(A -B )=(a 2-b 2)sin(A +B ),∴b 2[sin(A +B )+sin(A -B )] =a 2[sin(A +B )-sin(A -B )], ∴2sin A cos B ·b 2=2cos A sin B ·a 2, 即a 2cos A sin B =b 2sin A cosB.法一:由正弦定理知a =2R sin A ,b =2R sin B , ∴sin 2A cos A sin B =sin 2B sin A cos B , 又sin A ·sin B ≠0,∴sin A cos A =sin B cos B ,∴sin 2A =sin 2B . 在△ABC 中,0<2A <2π,0<2B <2π,∴2A =2B 或2A =π-2B ,∴A =B 或A +B =π2.∴△ABC 为等腰三角形或直角三角形.法二:由正弦定理、余弦定理得: a 2b b 2+c 2-a 22bc =b 2a a 2+c 2-b 22ac,∴a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2),∴(a 2-b 2)(a 2+b 2-c 2)=0,∴a 2-b 2=0或a 2+b 2-c 2=0.即a =b 或a 2+b 2=c 2. ∴△ABC 为等腰三角形或直角三角形.[易误点评] (1)从两个角的正弦值相等直接得到两角相等,忽略两角互补情形. (2)代数运算中两边同除一个可能为0的式子,导致漏解. (3)结论表述不规范.[防范措施] (1)判断三角形形状要对所给的边角关系式进行转化,使之变为只含边或只含角的式子,然后进行判断.(2)在三角变换过程中,一般不要两边约去公因式,应移项提取公因式,以免漏解;在利用三角函数关系推证角的关系时,要注意利用诱导公式,不要漏掉角之间关系的某种情况.[跟踪练习] 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且tan A +tan B =2sin C cos A .(1)求角B 的大小;(2)已知a c +ca =3,求sin A sin C 的值.解:(1)tan A +tan B =sin A cos A +sin Bcos B=sin A cos B +cos A sin B cos A cos B=sin (A +B )cos A cos B =sin C cos A cos B, ∵tan A +tan B =2sin C cos A ,∴sin C cos A cos B =2sin Ccos A ,∴cos B =12,∵0<B <π,∴B =π3.(2)a c +c a =a 2+c 2ac =b 2+2ac cos B ac, ∵a c +ca =3,∴b 2+2ac cos B ac =3, 即b 2+2ac cosπ3ac =3,∴b 2ca=2,而b 2ca =sin 2B sin A sinC =sin 2π3sin A sin C =34sin A sin C, ∴sin A sin C =38.A 组 考点能力演练1.(2016·兰州一模)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若b =2a sin B ,则A =( )A .30°B .45°C .60°D .75°解析:因为在锐角△ABC 中,b =2a sin B ,由正弦定理得,sin B =2sin A sin B ,所以sin A =12,又0<A <π2,所以A =30°,故选A.答案:A2.在△ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,若S +a 2=(b +c )2,则cos A 等于( )A.45 B .-45C.1517D .-1517解析:S +a 2=(b +c )2⇒a 2=b 2+c 2-2bc ⎝⎛⎭⎫14sin A -1,由余弦定理得14sin A -1=cos A ,结合sin 2A +cos 2A =1,可得cos A =-1517.答案:D3.已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a 2=b 2+c 2-bc ,bc =4,则△ABC 的面积为( )A.12 B .1 C. 3D .2解析:∵a 2=b 2+c 2-bc ,∴cos A =12,∴A =π3,又bc =4,∴△ABC 的面积为12bc sin A =3,故选C.答案:C4.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若c =1,B =45°,cos A =35,则b 等于( )A.53B.107C.57D.5214 解析:因为cos A =35,所以sin A =1-cos 2A =1-⎝⎛⎭⎫352=45,所以sin C =sin [π-(A +B )]=sin(A +B )=sin A cos B +cos A ·sin B =45cos 45°+35sin 45°=7210.由正弦定理b sin B =c sin C ,得b =17210×sin 45°=57.答案:C5.(2015·唐山一模)在直角梯形ABCD 中,AB ∥CD ,∠ABC =90°,AB =2BC =2CD ,则cos ∠DAC =( )A.1010 B.31010C.55D.255解析:由已知条件可得图形,如图所示,设CD =a ,在△ACD 中,CD 2=AD 2+AC 2-2AD ×AC ×cos ∠DAC ,∴a 2=(2a )2+(5a )2-2×2a ×5a ×cos ∠DAC ,∴cos ∠DAC =31010. 答案:B6.(2015·高考重庆卷)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sin B ,则c =________.解析:由3sin A =2sin B 及正弦定理,得3a =2b ,所以b =32a =3.由余弦定理cos C =a 2+b 2-c 22ab,得-14=22+32-c 22×2×3,解得c =4.答案:47.(2015·高考北京卷)在△ABC 中,a =4,b =5,c =6,则sin 2Asin C=________.解析:由正弦定理得sin A ∶sin B ∶sin C =a ∶b ∶c =4∶5∶6,又由余弦定理知cos A =b 2+c 2-a 22bc =25+36-162×5×6=34,所以sin 2A sin C =2sin A cos A sin C =2×sin A sin C ×cos A =2×46×34=1. 答案:18.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知sin A sin B +sin B sin C +cos 2B =1.若C =2π3,则ab=________.解析:∵sin A sin B +sin B sin C +cos 2B =1,∴sin A sin B +sin B sin C =2sin 2B .由正弦定理可得ab +bc =2b 2,即a +c =2b ,∴c =2b -a ,∵C =2π3,由余弦定理可得(2b -a )2=a 2+b 2-2ab cos 2π3,可得5a =3b ,∴a b =35.答案:359.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且23a sin B =5c ,cos B =1114.(1)求角A 的大小;(2)设BC 边的中点为D ,|AD |=192,求△ABC 的面积. 解:(1)由cos B =1114得sin B =5314.又23a sin B =5c ,代入得3a =7c , 由a sin A =csin C得3sin A =7sin C , 3sin A =7sin(A +B ),3sin A =7sin A cos B +7cos A sin B , 得tan A =-3,A =2π3.(2)AB 2+BD 2-2AB ·BD cos B =194,c 2+⎝⎛⎭⎫76c 2-2c ·76c ·1114=194,c =3,则a =7. S =12ac sin B =12×3×7×5314=1534. 10.(2016·杭州模拟)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a cos C -12c =b .(1)求角A 的大小;(2)若a =1,求△ABC 周长的取值范围.解:(1)由a cos C -12c =b 得sin A cos C -12sin C =sinB.又sin B =sin(A +C )=sin A cos C +cos A sin C , 所以12sin C =-cos A sin C .因为sin C ≠0,所以cos A =-12. 又因为0<A <π,所以A =2π3. (2)由正弦定理得b =a sin B sin A =23sin B ,c =23sin C . l =a +b +c =1+23(sin B +sin C ) =1+23[sin B +sin(A +B )] =1+23⎝⎛⎭⎫12sin B +32cos B =1+23sin ⎝⎛⎭⎫B +π3. 因为A =2π3,所以B ∈⎝⎛⎭⎫0,π3, 所以B +π3∈⎝⎛⎭⎫π3,2π3. 所以sin ⎝⎛⎭⎫B +π3∈⎝⎛⎦⎤32,1. 所以△ABC 的周长的取值范围为⎝⎛⎦⎤2,233+1. B 组 高考题型专练1.(2015·高考广东卷)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b =________. 解析:由sin B =12得B =π6或5π6,因为C =π6,所以B ≠5π6,所以B =π6,于是A =2π3.由正弦定理,得3sin 2π3=b 12,所以b =1. 答案:12.(2015·高考天津卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知△ABC 的面积为315,b -c =2,cos A =-14,则a 的值为________. 解析:由cos A =-14得sin A =154,所以△ABC 的面积为12bc sin A =12bc ×154=315,解得bc =24,又b -c =2,所以a 2=b 2+c 2-2bc cos A =(b -c )2+2bc -2bc cos A =22+2×24-2×24×⎝⎛⎭⎫-14=64,故a =8.答案:83.(2015·高考课标卷Ⅰ)已知a ,b ,c 分别为△ABC 内角A ,B ,C 的对边,sin 2B =2sin A sin C .(1)若a =b ,求cos B ;(2)设B =90°,且a =2,求△ABC 的面积.解:(1)由题设及正弦定理可得b 2=2ac .又a =b ,可得b =2c ,a =2c .由余弦定理可得cos B =a 2+c 2-b 22ac =14. (2)由(1)知b 2=2ac .因为B =90°,由勾股定理得a 2+c 2=b 2.故a 2+c 2=2ac ,得c =a = 2.所以△ABC 的面积为1.4.(2015·高考湖南卷)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =b tan A .(1)证明:sin B =cos A ;(2)若sin C -sin A cos B =34,且B 为钝角,求A ,B ,C . 解:(1)证明:由a =b tan A 及正弦定理,得sin A cos A =a b =sin A sin B, 所以sin B =cos A .(2)因为sin C -sin A cos B =sin[180°-(A +B )]-sin A cos B =sin(A +B )-sin A cos B =sin A cos B +cos A sin B -sin A cos B =cos A sin B ,所以cos A sin B =34. 由(1)sin B =cos A ,因此sin 2B =34.又B 为钝角,所以sin B =32,故B =120°. 由cos A =sin B =32知A =30°,从而C =180°-(A +B )=30°. 综上所述,A =30°,B =120°,C =30°.5.(2015·高考浙江卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知tan ⎝⎛⎭⎫π4+A =2.(1)求sin 2A sin 2A +cos 2A的值; (2)若B =π4,a =3,求△ABC 的面积.解:(1)由tan ⎝⎛⎭⎫π4+A =2,得 tan A =13,所以sin 2A sin 2A +cos 2A =2tan A 2tan A +1=25. (2)由tan A =13,A ∈(0,π),得 sin A =1010,cos A =31010. 又由a =3,B =π4及正弦定理a sin A =b sin B,得b =3 5. 由sin C =sin(A +B )=sin ⎝⎛⎭⎫A +π4,得sin C =255.设△ABC 的面积为S ,则S =12ab sin C =9.。
(完整版)正弦定理、余弦定理练习题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)正弦定理、余弦定理练习题)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)正弦定理、余弦定理练习题的全部内容。
(完整版)正弦定理、余弦定理练习题编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望(完整版)正弦定理、余弦定理练习题这篇文档能够给您的工作和学习带来便利。
同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力.本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为 <(完整版)正弦定理、余弦定理练习题〉这篇文档的全部内容。
正弦定理、余弦定理练习题年级__________ 班级_________ 学号_________ 姓名__________ 分数____一、选择题(共20题,题分合计100分)1.已知在△ABC中,sin A:sin B:sin C=3:2:4,那么cos C的值为A.- B。
C.— D.2。
在△ABC中,a=λ,b=λ,A=45°,则满足此条件的三角形的个数是A.0B。
1 C。
2 D。
无数个3.在△ABC中,b cos A=a cos B,则三角形为A.直角三角形B.锐角三角形C.等腰三角形 D。
等边三角形4.已知三角形的三边长分别为x2+x+1,x2—1和2x+1(x>1),则最大角为A。
2021年高考数学 第三章 第7课时 正弦定理和余弦定理知能演练轻松闯关 新人教A 版1.在△ABC 中,内角A ,B ,C 所对的边长分别为a ,b ,C .a sin B·cos C+c sin Bcos A =12b ,则sin B =( )A .12B .-12C .32D .22解析:选A .由正弦定理得sin Asin Bcos C +sin Csin Bcos A =12sin B ,因为B 为△ABC 的内角,所以sin B≠0,约去sin B ,得sin(A +C)=12,所以sin B =12.2.(xx·安徽安庆模拟)在△ABC 中,A ∶B =1∶2,sin C =1,则a ∶b ∶c 等于( )A .1∶2∶3B .3∶2∶1C .1∶3∶2D .2∶3∶1解析:选C .由sin C =1,∴C =π2,由A ∶B =1∶2,故A +B =3A =π2,得A =π6,B =π3,由正弦定理得,a ∶b ∶c =sin A ∶sin B ∶sin C =12∶32∶22=1∶3∶2.3.(xx·河北石家庄质检)在△ABC中,角A、B、C所对的边长分别为a、b、c,sin A、sin B、sin C成等比数列,且c=2a,则cos B的值为( )A.14B.34C.24D.23解析:选B.因为sin A、sin B、sin C成等比数列,所以sin2B=sin AsinC,由正弦定理得b2=a C.又c=2a,故cos B=a2+c2-b22ac=a2+4a2-2a24a2=34.4.(xx·高考课标全国卷Ⅱ)△ABC的内角A,B,C的对边分别为a,b,c,已知b=2,B=π6,C=π4,则△ABC的面积为( )A.23+2 B.3+1 C.23-2 D.3-1解析:选B.∵B=π6,C=π4,∴A=π-B-C=π-π6-π4=7π12.由正弦定理bsin B=csin C,得2sinπ6=csinπ4,即212=c22,∴c=2 2.∴S△ABC=12bc sin A=12×2×22sin7π12=3+1.5.(xx·高考陕西卷)设△ABC的内角A,B,C所对的边分别为a,b,c,若b cos C+c cos B=a sin A,则△ABC的形状为( )A.锐角三角形B.直角三角形C.钝角三角形D.不确定解析:选B.法一:∵b cos C+c cos B=b·b2+a2-c22ab+c·c2+a2-b22ac=b2+a2-c2+c2+a2-b22a=2a22a=a=a sin A,∴sin A=1.∵A∈(0,π),∴A=π2,即△ABC是直角三角形.法二:由正弦定理得:sin Bcos C+sin Ccos B=sin2A,即sin(B+C)=sin A=sin2A,∴sin A=1.∵A∈(0,π),∴A=π2,∴△ABC是直角三角形.6.(xx·福建厦门质检)已知△ABC中,设三个内角A,B,C所对的边长分别解析:∵a =1,b =3,A =30°, 由余弦定理a 2=b 2+c 2-2bc cos A 得 1=3+c 2-3c ,即c 2-3c +2=0, 因式分解得(c -1)(c -2)=0,解得c =1或c =2,经检验都符合题意, 所以c =1或2. 答案:1或27.(xx·高考北京卷)在△ABC 中,若a =2,b +c =7,cos B =-14,则b =________.解析:在△ABC 中,由b 2=a 2+c 2-2ac cos B 及b +c =7知,b 2=4+(7-b )2-2×2×(7-b )×⎝ ⎛⎭⎪⎫-14,整理得15b -60=0,∴b =4.答案:48.△ABC 中,B =120°,AC =7,AB =5,则△ABC 的面积为________. 解析:设BC =x ,由余弦定理得49=25+x 2-10x cos 120°, 整理得x 2+5x -24=0,即x =3. 因此S △ABC =12AB×BC×sin B答案:153 49.(xx·高考浙江卷)在锐角△ABC中,内角A,B,C的对边分别为a,b,c, 且2a sin B=3B.(1)求角A的大小;(2)若a=6,b+c=8,求△ABC的面积.解:(1)由2a sin B=3b及正弦定理asin A=bsin B,得sin A=3 2 .因为A是锐角,所以A=π3 .(2)由余弦定理a2=b2+c2-2bc cos A,得b2+c2-bc=36.又b+c=8,所以bc=28 3 .由三角形面积公式S=12bc sin A,得△ABC的面积为12×283×32=733.10.(xx·高考四川卷)在△ABC中,角A,B,C的对边分别为a,b,c,且2cos 2A -B 2cos B -sin(A -B)sin B +cos(A +C)=-35. (1)求cos A 的值;(2)若a =42,b =5,求向量BA →在BC →方向上的投影.解:(1)由2cos 2A -B 2cos B -sin(A -B)sin B +cos(A +C)=-35,得 [cos(A -B)+1]cos B -sin (A -B)sin B -cos B =-35,即cos(A -B)cos B -sin(A -B)sin B =-35,则cos(A -B +B)=-35,即cos A =-35.(2)由cos A =-35,0<A<π,得sin A =45.由正弦定理,有a sin A=b sin B,所以sin B =b sin A a =22. 由题意知a >b ,则A>B ,故B =π4.根据余弦定理,有(42)2=52+c 2-2×5×c ×⎝ ⎛⎭⎪⎫-35,解得c =1或c =-7(舍去).故向量BA → 在BC →方向上的投影为|BA→|cos B =22.[能力提升]1.(xx·山东威海调研)在△ABC中,内角A,B,C对应的边分别是a,b,C.已知c=2,C=π3,S△ABC=3,则△ABC的周长为( )A.6 B.5C.4 D.4+23解析:选A.由S△ABC=12ab sinπ3=34ab=3,得ab=4.根据余弦定理知4=a2+b2-2ab cos π3=(a+b)2-3ab,所以a+b=4.故△ABC的周长为a+b+c=6.2.钝角三角形的三边为a,a+1,a+2,其最大角不超过120°,则a的取值范围是( )A.0<a<3 B.32≤a<3C.2<a≤3 D.1≤a<5 2解析:选B.a+2为最大边,最大角设为α,则cos α=a2+(a+1)2-(a+2)22a(a+1),∵90°<α≤120°,∴-12≤cos α<0,∴-12≤a 2-2a -32a (a +1)<0,解得32≤a <3.3.在△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,已知a ,b ,c 成等比数列,且a 2-c 2=ac -bc ,则∠A =________.解析:∵a ,b ,c 成等比数列,∴b 2=a C . 又a 2-c 2=ac -bc ,∴b 2+c 2-a 2=b C . 在△ABC 中,由余弦定理得cos A =b 2+c 2-a 22bc =bc 2bc =12,∴∠A =60°. 答案:60°4.(xx·浙江金华调研)在R t △ABC 中,∠C =90°,且∠A 、∠B 、∠C 所对的边a 、b 、c 满足a +b =cx ,则实数x 的取值范围是________.解析:x =a +bc =sin A +sin Bsin C=sin A +cos A =2sin ⎝ ⎛⎭⎪⎫A +π4.又A ∈⎝⎛⎭⎪⎫0,π2,∴sin π4<sin ⎝⎛⎭⎪⎫A +π4≤sin π2,即x ∈(1,2].答案:(1,2]5.(xx·河南郑州模拟)在△ABC中,角A,B,C的对边为a,b,c,点(a,b)在直线x(sin A-sin B)+y sin B=c sin C上.(1)求角C的值;(2)若a2+b2=6(a+b)-18,求△ABC的面积.解:(1)由题意得a(sin A-sin B)+b sin B=c sin C,由正弦定理asin A=bsin B=csin C得a(a-b)+b2=c2,即a2+b2-c2=a B.由余弦定理得cos C=a2+b2-c22ab=12,结合0<C<π,得C=π3 .(2)由a2+b2=6(a+b)-18得(a-3)2+(b-3)2=0,从而a=b=3.所以△ABC的面积S=12×32×sinπ3=934.6.(选做题)在△ABC中,角A、B、C的对边分别为a、b、c,且a2-(b-c)2=(2-3)bc,sin Asin B=cos2C2,BC边上的中线A M的长为7.(1)求角A和角B的大小;(2)求△ABC的面积.得a2-b2-c2=-3bc,∴cos A=b2+c2-a22bc=32,又0<A<π,∴A=π6.由sin Asin B=cos2C2,得12sin B=1+cos C2,即sin B=1+cos C,则cos C<0,即C为钝角,∴B为锐角,且B+C=5π6,则sin(5π6-C)=1+cos C,化简得cos(C+π3)=-1,解得C=2π3,∴B=π6.(2)由(1)知,a=b,由余弦定理得A M2=b2+(a2)2-2b·a2·cos C=b2+b24+b22=(7)2,解得b=2,故S△ABC=12ab sin C=12×2×2×32= 3.20984 51F8 凸]37951 943F 鐿340630 9EB6 麶22324 5734 圴k32147 7D93 經3937599CF 駏27682 6C22 氢!~\Oo。
第7讲 正弦定理和余弦定理基础巩固题组一、选择题1.在△ABC 中,若a 2-c 2+b 2=3ab ,则C =( ). A .30° B .45° C .60°D .120°解析 由a 2-c 2+b 2=3ab ,得cos C =a 2+b 2-c 22ab =3ab 2ab =32,所以C =30°.答案 A2.(2014·合肥模拟)在△ABC 中,A =60°,AB =2,且△ABC 的面积为32,则BC 的长为( ). A.32 B. 3 C .2 3D .2解析 S =12×AB ·AC sin 60°=12×2×32AC =32,所以AC =1,所以BC 2=AB 2+AC 2-2AB ·AC cos60°=3,所以BC = 3. 答案 B3.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =2,B =π6,C =π4,则△ABC 的面积为( ). A .23+2 B.3+1 C .23-2D.3-1解析 由正弦定理b sin B =csin C 及已知条件得c =22,又sin A =sin(B +C )=12×22+32×22=2+64.从而S △ABC =12bc sin A =12×2×22×2+64=3+1.答案 B4.△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若B =2A ,a =1,b =3,则c =( ).A .2 3B .2 C. 2D .1解析 由a sin A =b sin B ,得a sin A =b sin 2A ,所以1sin A =32sin A cos A ,故cos A =32,又A ∈(0,π),所以A =π6,B =π3,C =π2,c =a 2+b 2=12+(3)2=2.答案 B5.(2013·陕西卷)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为 ( ). A .直角三角形 B .锐角三角形 C .钝角三角形D .不确定解析 由正弦定理及已知条件可知sin B cos C +cos B sin C =sin 2 A ,即sin(B +C )=sin 2 A ,而B +C =π-A ,所以sin(B +C )=sin A ,所以sin 2 A =sin A ,又0<A <π,sin A >0,∴sin A =1,即A =π2. 答案 A 二、填空题6.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =2,b =2,sin B +cos B =2,则角A 的大小为________.解析 由题意知,sin B +cos B =2,所以2sin ⎝⎛⎭⎫B +π4=2,所以B =π4,根据正弦定理可知a sin A =b sin B ,可得2sin A =2sin π4,所以sin A =12,又a <b ,故A =π6. 答案 π67.(2014·惠州模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为________.解析 由余弦定理,得a 2+c 2-b 22ac =cos B ,结合已知等式得cos B ·tan B =32,∴sin B =32,∴B=π3或2π3. 答案 π3或2π38.(2013·烟台一模)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =1,b =2,cos C =14,则sin B 等于________.解析 由余弦定理,得c 2=a 2+b 2-2ab cos C =4,即c =2.由cos C =14得sin C =154.由正弦定理b sin B =c sin C ,得sin B =b sin C c =22×154=154(或者因为c =2,所以b =c =2,即三角形为等腰三角形,所以sin B =sin C =154). 答案 154三、解答题9.(2014·宜山质检)在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,且a =12c +b cos C .(1)求角B 的大小;(2)若S △ABC =3,b =13,求a +c 的值. 解 (1)由正弦定理,得sin A =12sin C +sin B cos C ,又因为A =π-(B +C ),所以sin A =sin(B +C ), 可得sin B cos C +cos B sin C =12sin C +sin B cos C ,即cos B =12,又B ∈(0,π),所以B =π3.(2)因为S △ABC =3,所以12ac sin π3=3,所以ac =4,由余弦定理可知b 2=a 2+c 2-ac ,所以(a +c )2=b 2+3ac =13+12=25,即a +c =5.10.(2013·北京卷)在△ABC 中,a =3,b =26,∠B =2∠A . (1)求cos A 的值; (2)求c 的值.解 (1)因为a =3, b =26,∠B =2∠A ,所以在△ABC 中,由正弦定理,得3sin A =26sin 2A ,所以2sin A cos A sin A =263,故cos A =63.(2)由(1)知cos A =63,所以sin A =1-cos 2A =33.又因为∠B =2∠A ,所以cos B =2cos 2A -1=13,所以sin B =1-cos 2B =223.在△ABC 中,sin C =sin(A +B ) =sin A cos B +cos A sin B =539.所以c =a sin Csin A=5.能力提升题组 (建议用时:25分钟)一、选择题1.(2014·温岭中学模拟)在锐角△ABC 中,若BC =2,sin A =223,则AB →·AC →的最大值为( ). A.13 B.45 C .1D .3解析 由余弦定理,得a 2=b 2+c 2-2bc ×13=4,由基本不等式可得4≥43bc ,即bc ≤3,所以AB →·AC→=bc cos A =13bc ≤1.答案 C2.(2013·青岛一中调研)在△ABC 中,三边长a ,b ,c 满足a 3+b 3=c 3,那么△ABC 的形状为( ). A .锐角三角形 B .钝角三角形 C .直角三角形D .以上均有可能解析 由题意可知c >a ,c >b ,即角C 最大, 所以a 3+b 3=a ·a 2+b ·b 2<ca 2+cb 2,即c 3<ca 2+cb 2,所以c 2<a 2+b 2.根据余弦定理,得cos C =a 2+b 2-c 22ab >0,所以0<C <π2,即三角形为锐角三角形. 答案 A 二、填空题3.(2013·浙江卷)在△ABC 中,∠C =90°,M 是BC 的中点.若sin ∠BAM =13,则sin ∠BAC =________.解析 如图,令∠BAM =β,∠BAC =α,故|CM |=|AM |sin(α-β),∵M 为BC 的中点,∴|BM |=|AM |sin(α-β).在△AMB 中,由正弦定理知,|AM |sin B =|BM |sin β, 即|AM |sin ⎝⎛⎭⎫π2-α=|AM |·sin (α-β)sin β,∵sin β=13,∴cos β=223,∴13=cos α·⎝⎛⎭⎫223sin α-13cos α =223sin αcos α-13cos 2α,整理得1=22sin αcos α-cos 2α, 所以22tan α-1tan 2 α+1=1,解得tan α=2,故sin α=63. 答案63三、解答题4.(2013·长沙模拟)在△ABC 中,边a ,b ,c 分别是角A ,B ,C 的对边,且满足b cos C =(3a -c )cos B .(1)求cos B ;(2)若BC →·BA →=4,b =42,求边a ,c 的值. 解 (1)由正弦定理和b cos C =(3a -c )cos B , 得sin B cos C =(3sin A -sin C )cos B ,化简,得sin B cos C +sin C cos B =3sin A cos B ,即sin(B +C )=3sin A cos B ,故sin A =3sin A cos B ,所以cos B =13.(2)因为BC →·BA →=4,所以BC →·BA →=|BC →|·|BA →|· cos B =4,所以|BC →|·|BA →|=12,即ac =12.①又因为cos B =a 2+c 2-b 22ac =13,整理得,a 2+c 2=40.②联立①②⎩⎪⎨⎪⎧ a 2+c 2=40,ac =12,解得⎩⎪⎨⎪⎧ a =2,c =6或⎩⎪⎨⎪⎧a =6,c =2.。