实验四 离散时间系统的频域分析
- 格式:doc
- 大小:81.00 KB
- 文档页数:5
实验四 离散信号的频域分析一、 实验目的1. 掌握序列的傅里叶变换、离散傅里叶级数、离散傅里叶变换、快速傅里叶变换的Matlab 实现;2.学习用FFT 对连续信号和离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便在实际中正确应用FFT 。
二、 实验原理及方法1. 离散非周期信号的谱分析 (1) 序列的傅里叶变换对于满足绝对可和的序列,即∞<∑∞∞-|)(|n x ,其傅里叶变换和反变换的定义为∑∞-∞=-=n nj j en x e X ωω)()( (4.1)ωπωππωd eeX n x nj j ⎰-=)(21)( (4.2)序列)(n x 是离散的,但)(ωj e X 是以π2为周期的ω的连续函数,为了能够在计算机上处理,需要对)(n x 进行截断,对频域进行离散化,近似处理后21()()kk n j j nn n X ex n eωω-==∑(4.3)其中2k k Mπω=,M 是对ω在一个周期内的采样,k 的取值由读者确定,若想观察一个周期内的频谱,0~1k M =-,若观察两个周期,0~21k M =-,以此类推。
序列傅里叶变换的Matlab 实现: n=n1:n2;M=input(…put in the number M=‟); k=0:2*M-1; %观察两个周期X=x*(exp(-j*2*pi/M)).^(n ‟*k);%序列的傅里叶变换 对4()R n 进行序列的傅里叶变换得到图4-1。
图4-1 信号及信号的幅度谱和相位谱(2)离散傅里叶变换(DFT )如果序列)(n x 是有限长的,序列的谱分析可以采用离散傅里叶变换,其定义为:10,)()]([)(10-≤≤==∑-=N k W n x n x DFT k X N n knN(4.4)10,)(1)]([)(1-≤≤==∑-=-N n Wk X Nk X IDFT n x N k kn N(4.5)因为)(n x 与)(k X 都是离散的,所以可以利用计算机进行数值计算。
实验4 离散时间系统的频域分析一、实验目的(1)了解离散系统的零极点与系统因果性和稳定性的关系; (2)加深对离散系统的频率响应特性基本概念的理解; (3)熟悉MATLAB 中进行离散系统零极点分析的常用子函数; (4)掌握离散系统幅频响应和相频响应的求解方法。
二、知识点提示本章节的主要知识点是频率响应的概念、系统零极点对系统特性的影响;重点是频率响应的求解方法;难点是MATLAB 相关子函数的使用。
三、实验原理1.离散时间系统的零极点及零极点分布图设离散时间系统系统函数为NMzN a z a a z M b z b b z A z B z H ----++++++++==)1()2()1()1()2()1()()()(11 (4-1) MATLAB 提供了专门用于绘制离散时间系统零极点图的zplane 函数: ①zplane 函数 格式一:zplane(z, p)功能:绘制出列向量z 中的零点(以符号"○" 表示)和列向量p 中的极点(以符号"×"表示),同时画出参考单位圆,并在多阶零点和极点的右上角标出其阶数。
如果z 和p 为矩阵,则zplane 以不同的颜色分别绘出z 和p 各列中的零点和极点。
格式二:zplane(B, A)功能:绘制出系统函数H(z)的零极点图。
其中B 和A 为系统函数)(z H (4-1)式的分子和分母多项式系数向量。
zplane(B, A) 输入的是传递函数模型,函数首先调用root 函数以求出它们的零极点。
②roots 函数。
用于求多项式的根,调用格式:roots(C),其中C 为多项式的系数向量,降幂排列。
2.离散系统的频率特性MATLAB 提供了专门用于求离散系统频响特性的freqz 函数,调用格式如下: ①H = freqz(B,A,W)功能:计算由向量W (rad )指定的数字频率点上(通常指[0,π]范围的频率)离散系统)(z H 的频率响应)e (j ωH ,结果存于H 向量中。
实验报告课程名称:数字信号处理实验四:离散系统分析班级:通信1403学生姓名:强亚倩学号:1141210319指导教师:范杰清页脚内容1页脚内容2华北电力大学(北京)一、实验目的深刻理解离散时间系统的系统函数在分析离散系统的时域特性、频域特性以及稳定性中的重要作用及意义,熟练掌握利用MATLAB 分析离散系统的时域响应、频响特性和零极点的方法。
掌握利用DTFT 和DFT 确定系统特性的原理和方法。
二、实验原理MATLAB 提供了许多可用于分析线性时不变连续系统的函数,主要包含有系统函数、系统时域响应、系统频域响应等分析函数。
1. 离散系统的时域响应在调用MATLAB 函数时,需要利用描述该离散系统的系数函数。
对差分方程进行Z 变换即可得系统函数:在MATLAB 中可使用向量a 和向量b 分别保存分母多项式和分子多项式的系数:这些系数均从z 0按z 的降幂排列。
2.离散系统的系统函数零极点分析离散LTI 系统的系统函数H (z )可以表示为零极点形式:))...()(())...()((1)()()(2121)1(111)1(1110N M N N N N M M M M p z p z p z z z z z z z k z a z a z a z b z b z b b z X z Y z H ------=++++++++==---------- )()(1)()()()1(111)1(1110z a z b z a z a z a z b z b z b b z X z Y z H N N N N M M M M =++++++++==---------- ],,,,1[11N N a a a a -= ],,,,[110M M b b b b b -=页脚内容3使用MATLAB 提供的roots 函数计算离散系统的零极点;使用zplane 函数绘制离散系统的零极点分布图。
注意:在利用这些函数时,要求H (z )的分子多项式和分母多项式的系数的个数相等,若不等则需要补零。
数字信号处理第三版习题答案数字信号处理(Digital Signal Processing,简称DSP)是一门研究如何对数字信号进行处理和分析的学科。
它在现代通信、音频处理、图像处理等领域有着广泛的应用。
为了更好地理解和掌握数字信号处理的知识,许多人选择了《数字信号处理(第三版)》这本经典教材。
本文将为大家提供一些《数字信号处理(第三版)》习题的答案,以帮助读者更好地学习和巩固所学知识。
第一章:离散时间信号和系统1.1 习题答案:a) 离散时间信号是在离散时间点上取值的信号,而连续时间信号是在连续时间上取值的信号。
b) 离散时间系统是对离散时间信号进行处理的系统,而连续时间系统是对连续时间信号进行处理的系统。
c) 离散时间信号可以通过采样连续时间信号得到。
1.2 习题答案:a) 线性系统满足叠加性和齐次性。
b) 时不变系统的输出只与输入的时间延迟有关,与输入信号的具体形式无关。
c) 因果系统的输出只与当前和过去的输入有关,与未来的输入无关。
第二章:离散时间信号的时域分析2.1 习题答案:a) 离散时间信号的能量是信号幅值的平方和,而功率是信号幅值的平方的平均值。
b) 离散时间信号的能量和功率可以通过计算信号的幅值序列的平方和和平方的平均值得到。
2.2 习题答案:a) 离散时间信号的自相关函数是信号与其自身经过不同时间延迟的乘积的和。
b) 离散时间信号的自相关函数可以用于确定信号的周期性和频率成分。
第三章:离散时间信号的频域分析3.1 习题答案:a) 离散时间信号的频谱是信号在频率域上的表示,可以通过对信号进行傅里叶变换得到。
b) 离散时间信号的频谱可以用于分析信号的频率成分和频谱特性。
3.2 习题答案:a) 离散时间信号的频谱具有周期性,其周期等于采样频率。
b) 离散时间信号的频谱可以通过对信号进行离散傅里叶变换得到。
第四章:离散时间系统的频域分析4.1 习题答案:a) 离散时间系统的频率响应是系统在不同频率下的输出与输入之比。
实验四 离散时间系统的频域分析1.实验目的(1)理解和加深傅里叶变换的概念及其性质。
(2)离散时间傅里叶变换(DTFT)的计算和基本性质。
(3)离散傅里叶变换(DFT)的计算和基本性质。
2.实验原理对离散时间信号进行频域分析, 首先要对其进行傅里叶变换, 通过得到的频谱函数进行分析。
离散时间傅里叶变换(DTFT, Discrete-time Fourier Transform)是傅立叶变换的一种。
它将以离散时间nT (其中 , T 为采样间隔)作为变量的函数(离散时间信号)f(nT)变换到连续的频域, 即产生这个离散时间信号的连续频谱 , 其频谱是连续周期的。
211200)()|()()DTFT kw N knTN N i iwT iwnT N n n F e f nT e f nT e 长度为N 的有限长信号x(n), 其N 点离散傅里叶变换为:10()[()]()kn N N n X k DFT x n x n W 。
X(k)的离散傅里叶逆变换为: 。
DTFT 是对任意序列的傅里叶分析, 它的频谱是一个连续函数;而DFT 是把有限长序列作为周期序列的一个周期, 对有限长序列的傅里叶分析, DFT 的特点是无论在时域还是频域都是有限长序列。
3.实验内容及其步骤(1)复习傅里叶变换的定义及其性质, 加深理解。
(2)熟悉离散时间傅里叶变换的概念及其性质。
参考一: 计算离散时间傅里叶变换, 并绘制图形。
已知有限长序列x(n)={1,2,3,4,5}。
n=-1:3;x=1:5;k=0:500;w=(pi/500)*k;X=x*(exp(-j*2*pi/500)).^(n'*k);magX=abs(X);angX=angle(X);realX=real(X);imagX=imag(X);subplot(2,2,1);plot(w/pi,magX);grid;xlabel('');ylabel('模值 ');title('模值部分');subplot(2,2,2);plot(w/pi,angX);grid;xlabel('pi 为单位');ylabel('弧度');title('相角部分');subplot(2,2,3);plot(w/pi,realX);grid;xlabel('');ylabel('实部');title('实部部分');subplot(2,2,4);plot(w/pi,imagX);grid;xlabel('pi为单位');ylabel('虚部');title('虚部部分');参考二: 计算离散时间傅里叶变换。
南京邮电大学实验报告实验名称:离散时间信号与系统的时、频域表示离散傅立叶变换和z变换数字滤波器的频域分析和实现数字滤波器的设计课程名称数字信号处理A(双语) 班级学号B13011025姓名陈志豪开课时间2015/2016学年,第1学期实验名称:离散时间信号与系统的时、频域表示实验目的和任务:熟悉Matlab基本命令,理解和掌握离散时间信号与系统的时、频域表示及简单应用。
在Matlab环境中,按照要求产生序列,对序列进行基本运算;对简单离散时间系统进行仿真,计算线性时不变(LTI)系统的冲激响应和卷积输出;计算和观察序列的离散时间傅立叶变换(DTFT)幅度谱和相位谱。
实验内容:基本序列产生和运算:Q1.1~1.3,Q1.23,Q1.30~1.33离散时间系统仿真:Q2.1~2.3LTI系统:Q2.19,Q2.21,Q2.28DTFT:Q3.1,Q3.2,Q3.4实验过程与结果分析:Q1.1运行程序P1.1,以产生单位样本序列u[n]并显示它。
clf;n = -10:20;u = [zeros(1,10) 1 zeros(1,20)];stem(n,u);xlabel('Time index n');ylabel('Amplitude');title('Unit Sample Sequence');axis([-10 20 0 1.2]);Q1.2 命令clf,axis,title,xlabel和ylabel命令的作用是什么?答:clf命令的作用:清除图形窗口上的图形;axis命令的作用:设置坐标轴的范围和显示方式;title命令的作用:给当前图片命名;xlabel命令的作用:添加x坐标标注;ylabel c命令的作用:添加y坐标标注;Q1.3修改程序P1.1,以产生带有延时11个样本的延迟单位样本序列ud[n]。
运行修改的程序并显示产生的序列。
clf;n = -10:20;u = [zeros(1,21) 1 zeros(1,9)];stem(n,u);xlabel('Time index n');ylabel('Amplitude');title('Unit Sample Sequence');axis([-10 20 0 1.2]);Q1.23修改上述程序,以产生长度为50、频率为0.08、振幅为2.5、相移为90度的一个正弦序列并显示它。
信息科学与工程学院《信号与系统》实验报告四专业班级电信 09-班姓名学号实验时间 2011 年月日指导教师陈华丽成绩实验名称离散信号的频域分析实验目的1. 掌握离散信号谱分析的方法:序列的傅里叶变换、离散傅里叶级数、离散傅里叶变换、快速傅里叶变换,进一步理解这些变换之间的关系;2. 掌握序列的傅里叶变换、离散傅里叶级数、离散傅里叶变换、快速傅里叶变换的Matlab实现;3. 熟悉FFT算法原理和FFT子程序的应用。
4. 学习用FFT对连续信号和离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便在实际中正确应用FFT。
实验内容1.对连续信号)()sin()(0tutAetx taΩα-=(128.444=A,πα250=,πΩ250=)进行理想采样,可得采样序列50)()sin()()(0≤≤==-nnunTAenTxnx nTaΩα。
图1给出了)(txa的幅频特性曲线,由此图可以确定对)(txa采用的采样频率。
分别取采样频率为1KHz、300Hz和200Hz,画出所得采样序列)(nx的幅频特性)(ωj eX。
并观察是否存在频谱混叠。
图1 连续信号)()sin()(0tutAetx taΩα-=2. 设)52.0cos()48.0cos()(nnnxππ+=(1)取)(nx(100≤≤n)时,求)(nx的FFT变换)(kX,并绘出其幅度曲线。
(2)将(1)中的)(nx以补零方式加长到200≤≤n,求)(kX并绘出其幅度曲线。
(3)取)(nx(1000≤≤n),求)(kX并绘出其幅度曲线。
(4)观察上述三种情况下,)(nx的幅度曲线是否一致?为什么?3. (1)编制信号产生子程序,产生以下典型信号供谱分析用。
11,03()8,470,n nx n n nn+≤≤⎧⎪=-≤≤⎨⎪⎩其它2()cos4x n nπ=3()sin8x n nπ=4()cos8cos16cos20x t t t tπππ=++10.80.60.40.20100200300400500xa(jf)f /Hz(2)对信号1()x n ,2()x n ,3()x n 进行两次谱分析,FFT 的变换区间N 分别取8和16,观察两次的结果是否一致?为什么?(3)连续信号4()x n 的采样频率64s f Hz =,16,32,64N =。
离散时间系统频域分析离散时间系统的频域分析是研究离散时间信号在频域上的性质和行为的方法。
在离散时间系统频域分析中,使用离散时间傅里叶变换(Discrete Fourier Transform,DFT),来将离散时间信号从时域转换到频域。
通过分析信号在频域上的频谱分布和频谱特性,可以得到离散时间系统的频率响应和频域特性,对信号的频域分布和频率区间进行评估和分析。
离散时间傅里叶变换是时域信号分析的重要工具,它可以将离散时间信号从时域转换到频域。
离散时间傅里叶变换的定义可以表示为:X(k) = Σ[x(n) * exp(-j*2πkn/N)]其中,X(k)是离散时间信号在频域的频谱,x(n)是离散时间信号,N是信号的长度,k是频谱的索引。
离散时间傅里叶变换将时域信号分解成多个频率成分,通过频谱的幅度和相位信息,可以得到信号在频域上的分布情况。
通过离散时间傅里叶变换可以得到离散时间信号的频谱,进而分析信号在频域上的频率响应和频域特性。
频谱可以反映信号在不同频率上的能量分布情况,通过观察频谱的幅度和相位,可以得到信号的频率成分、频带宽度和频率特性等信息。
在离散时间系统频域分析中,常用的分析工具有频谱图、功率谱密度、频率响应等。
频谱图可以将信号的频谱以图形形式展示出来,通过观察频谱图的形状和分布,可以得到信号在频域上的特点。
功率谱密度是指信号在不同频率上的功率分布情况,可以评估信号在不同频率上的能量分布情况。
频率响应是指系统对不同频率信号的响应情况,可以评估系统对不同频率信号的滤波和增益特性。
离散时间系统频域分析的应用包括信号处理、通信系统、控制系统等领域。
在信号处理中,通过频域分析可以对信号进行滤波、去噪、频域变换等操作,提高信号的质量和分析能力。
在通信系统中,通过频域分析可以评估信号传输和接收的性能,并对系统进行优化和改进。
在控制系统中,通过频域分析可以评估系统的稳定性和控制特性,提高系统的响应速度和稳定性。
离散时间系统分析离散时间系统分析是指对离散时间信号和系统的特性进行研究和分析的过程。
离散时间信号是在时间上是离散的,而连续时间信号则是在时间上是连续的。
离散时间系统是指对离散时间信号进行输入输出变换的系统。
离散时间系统分析主要包括对离散时间信号和系统的表示、性质、分析和设计等方面的内容。
离散时间信号的表示离散时间信号可以通过数学方法进行表示和描述。
常用的表示方法包括序列表示法和函数表示法。
序列表示法是离散时间信号的一种常见表示方式,它将离散时间信号看作是一个序列,表示为一个有序的数值列表。
序列可以分为有限序列和无限序列两种。
有限序列表示了在有限时间内的信号取值,而无限序列表示了在无限时间内的信号取值。
函数表示法是另一种常用的离散时间信号的表示方式,它使用数学函数来描述信号的取值。
函数表示法更加灵活,可以表示各种复杂的离散时间信号,如周期序列、随机信号等。
离散时间系统的性质离散时间系统可以根据其性质进行分类和分析。
其中包括线性性、时不变性、因果性和稳定性等。
线性性是指系统的输出与输入之间存在线性关系。
如果系统满足输入信号的线性性质,那么对于任意输入信号x1(n)和x2(n),以及对应的输出信号y1(n)和y2(n),系统将满足以下性质:•线性叠加性:对于任意的实数a和b,有系统对于输入信号ax1(n)+bx2(n)的输出为ay1(n)+by2(n)。
时不变性是指系统的输出与输入之间的关系不随时间的变化而变化。
如果系统满足输入信号的时不变性质,那么对于任意输入信号x(n)和对应的输出信号y(n),如果将输入信号延时d个单位时间,那么对应的输出信号将也会延时d个单位时间。
因果性是指系统的输出只取决于当前和过去的输入值,不受未来输入值的影响。
如果系统满足输入信号的因果性质,那么对于任意n的值,系统的输出信号y(n)只取决于输入信号x(n)及其过去的值。
稳定性是指系统的输出有界,不会无限增长。
如果系统满足输入信号的稳定性质,那么对于任意有界输入序列,输出序列也将是有界的。
信号与系统实验报告目录1. 内容概要 (2)1.1 研究背景 (3)1.2 研究目的 (4)1.3 研究意义 (4)2. 实验原理 (5)2.1 信号与系统基本概念 (7)2.2 信号的分类与表示 (8)2.3 系统的分类与表示 (9)2.4 信号与系统的运算法则 (11)3. 实验内容及步骤 (12)3.1 实验一 (13)3.1.1 实验目的 (14)3.1.2 实验仪器和设备 (15)3.1.4 实验数据记录与分析 (16)3.2 实验二 (16)3.2.1 实验目的 (17)3.2.2 实验仪器和设备 (18)3.2.3 实验步骤 (19)3.2.4 实验数据记录与分析 (19)3.3 实验三 (20)3.3.1 实验目的 (21)3.3.2 实验仪器和设备 (22)3.3.3 实验步骤 (23)3.3.4 实验数据记录与分析 (24)3.4 实验四 (26)3.4.1 实验目的 (27)3.4.2 实验仪器和设备 (27)3.4.4 实验数据记录与分析 (29)4. 结果与讨论 (29)4.1 实验结果汇总 (31)4.2 结果分析与讨论 (32)4.3 结果与理论知识的对比与验证 (33)1. 内容概要本实验报告旨在总结和回顾在信号与系统课程中所进行的实验内容,通过实践操作加深对理论知识的理解和应用能力。
实验涵盖了信号分析、信号处理方法以及系统响应等多个方面。
实验一:信号的基本特性与运算。
学生掌握了信号的表示方法,包括连续时间信号和离散时间信号,以及信号的基本运算规则,如加法、减法、乘法和除法。
实验二:信号的时间域分析。
在本实验中,学生学习了信号的波形变换、信号的卷积以及信号的频谱分析等基本概念和方法,利用MATLAB工具进行了实际的信号处理。
实验三:系统的时域分析。
学生了解了线性时不变系统的动态响应特性,包括零状态响应、阶跃响应以及脉冲响应,并学会了利用MATLAB进行系统响应的计算和分析。
实验四 离散时间系统的频域分析1.实验目的(1)理解和加深傅里叶变换的概念及其性质。
(2)离散时间傅里叶变换(DTFT)的计算和基本性质。
(3)离散傅里叶变换(DFT)的计算和基本性质。
2.实验原理对离散时间信号进行频域分析,首先要对其进行傅里叶变换,通过得到的频谱函数进行分析。
离散时间傅里叶变换(DTFT ,Discrete-time Fourier Transform)是傅立叶变换的一种。
它将以离散时间nT (其中,T 为采样间隔)作为变量的函数(离散时间信号)f (nT )变换到连续的频域,即产生这个离散时间信号的连续频谱()iw F e ,其频谱是连续周期的。
设连续时间信号f (t )的采样信号为:()()()sp n f t t nT f nT d ¥=-=-å,并且其傅里叶变换为:()()(){}sp n iwt f t f nT t nT dt e d ¥¥-=---=åòF 。
这就是采样序列f(nT)的DTFT::()()iwTinwT DTFT n F ef nT e ¥-=-=å,为了方便,通常将采样间隔T 归一化,则有:()()iwinw DTFT n F ef n e ¥-=-=å,该式即为信号f(n)的离散时间傅里叶变换。
其逆变换为:()1()2iw DTFT inw F e dw f n e ppp-=ò。
长度为N 的有限长信号x(n),其N 点离散傅里叶变换为:1()[()]()knNN n X k DFT x n x n W -===å。
X(k)的离散傅里叶逆变换为:101()[()]()knN N k x n IDFT X k X k W N --===å。
DTFT 是对任意序列的傅里叶分析,它的频谱是一个连续函数;而DFT 是把有限长序列作为周期序列的一个周期,对有限长序列的傅里叶分析,DFT 的特点是无论在时域还是频域都是有限长序列。
3.实验内容及其步骤(1)复习傅里叶变换的定义及其性质,加深理解。
(2)熟悉离散时间傅里叶变换的概念及其性质。
参考一:计算离散时间傅里叶变换,并绘制图形。
已知有限长序列x(n)={1,2,3,4,5}。
n=-1:3;x=1:5;k=0:500;w=(pi/500)*k;X=x*(exp(-j*2*pi/500)).^(n'*k); magX=abs(X);angX=angle(X);realX=real(X);imagX=imag(X); subplot(2,2,1);plot(w/pi,magX);grid;xlabel('');ylabel('模值 ');title('模值部分'); subplot(2,2,2);plot(w/pi,angX);grid;xlabel('pi 为单位');ylabel('弧度');title('相角部分'); subplot(2,2,3);plot(w/pi,realX);grid;xlabel('');ylabel('实部');title('实部部分'); subplot(2,2,4);plot(w/pi,imagX);grid;xlabel('pi 为单位');ylabel('虚部');title('虚部部分'); 参考二:计算离散时间傅里叶变换。
% Evaluation of the DTFT2()10.6iwiwiwe H ee ---+=+clf;% Compute the frequency samples of the DTFTw = -4*pi:8*pi/511:4*pi; num = [2 1];den = [1 -0.6]; h = freqz(num, den, w); % Plot the DTFT subplot(2,1,1) plot(w/pi,real(h));grid title('Real part of H(e^{j\omega})')xlabel('\omega /\pi'); ylabel('Amplitude'); subplot(2,1,2) plot(w/pi,imag(h));grid title('Imaginary part of H(e^{j\omega})')xlabel('\omega /\pi'); ylabel('Amplitude'); pausesubplot(2,1,1) plot(w/pi,abs(h));grid title('Magnitude Spectrum |H(e^{j\omega})|')xlabel('\omega /\pi'); ylabel('Amplitude'); subplot(2,1,2) plot(w/pi,angle(h));grid title('Phase Spectrum arg[H(e^{j\omega})]')xlabel('\omega /\pi'); ylabel('Phase in radians'); (3)熟悉离散傅里叶变换的概念及其性质参考一:x(n)=sin(n*pi/8)+sin(n*pi/4)是一个N=16的序列,计算其傅里叶变换。
N=16;n=0:N-1;xn=sin(n*pi/8)+sin(n*pi/4);k=0:1:N-1;WN=exp(-j*2*pi/N);nk=n'*k;WNnk=WN.^nk;Xk=xn*WNnk; subplot(2,1,1);stem(n,xn);subplot(2,1,2);stem(k,abs(Xk));参考二:计算x(n)=8*(0.4).^n,n 属于[0,20)的圆周移位2020()[(10)]()m n x n R n x =+。
N=20;m=10;n=0:1:N-1;x=8*(0.4).^n;n1=mod((n+m),N);xm=x(n1+1);subplot(2,1,1);stem(n,x);title('original sequence');xlabel('n');ylabel('x(n)');subplot(2,1,2);stem(n,xm);title('circular shift equence');xlabel('n');ylabel('x((n+10))mod 20');4.实验用MATLAB函数介绍在实验过程中,MATLAB函数命令plot, figure, stem, subplot, axis, grid on, xlabel, ylabel, title, clc, mod, freqz等在不同的情况下具体表述也有所不同,应该在实验中仔细体会其不同的含义。
5.思考题(1)理解离散时间系统的频域分析,掌握和加深对傅立叶变换及其性质的理解。
(2)计算一个N=12的序列x(n)=cos(n*pi/6)的离散时间傅里叶变换。
(3)求x1(n)=(0.8).^n,其中n属于[0,10]与x2(n)=(0.6).^n,并且n属于[0,18]的圆周卷积(N=20)。
先构造一个计算圆周卷积的函数进行计算。
6.实验报告要求(1)明确实验目的以及实验的原理。
(2)通过实验内容分析离散时间信号的性质。
(3)完成思考题的内容,对实验结果及其波形图进行分析对比,总结主要结论。
思考题(1)理解离散时间系统的频域分析,掌握和加深对傅立叶变换及其性质的理解。
傅里叶变换能将满足一定条件的某个函数表示成三角函数或者它们的积分的线性组合。
其基本性质有线性性质,频移性质,微分关系,卷积特性。
(2)计算一个N=12的序列x(n)=cos(n*pi/6)的离散时间傅里叶变换。
>> N=12;n=0:N-1;xn=cos(n*pi/6);k=0:1:N-1;Xk=fft(xn,N);subplot(2,1,1);stem(n,xn);subplot(2,1,2);stem(k,abs(Xk));>> N=12;n=0:N-1;xn=cos(n*pi/6);k=0:1:N-1;WN=exp(-j*2*pi/N);nk=n'*k;WNnk=WN.^nk;Xk=xn*WNnk;subplot(2,1,1);stem(n,xn);subplot(2,1,2);stem(k,abs(Xk));3)求x1(n)=(0.8).^n,其中n属于[0,10]与x2(n)=(0.6).^n,并且n属于[0,18]的圆周卷积(N=20)。
先构造一个计算圆周卷积的函数进行计算。
function y=circonvt(x1,x2,N)if(length(x1)>N)error('N should bigger than or equal to the length of x1!')endif(length(x2)>N)error('N should bigger than or equal to the length of x2!')endx1={x1,zeros(1,N-length(x1))};x2={x2,zeros(1,N-length(x2))};m=[0:1:N-1];H=zeros(N,N);for n=1:1:NH(n,:)=cirshftt(x2,n-1,N);endy=x1*H';function y=cirshftt(x,m,N)if(length(x)>N)error('N should bigger than or equal to the length of x2')endx=[x,zeros(1,N-length(x))];n=[0:1:N-1];n=mod(n-m,N);y=x(n+1);>> n1=0:10;x1=0.8.^n1;n2=0:18;x2=0.6.^n2;N=20;>> circonvt(x1,x2,N);Warning: Concatenation involves an empty array with incorrect number of rows.> In cirshftt at 5In circonvt at 13??? Error using ==> horzcatIn [] concatenation the number of dimensions for each component must match.Error in ==> cirshftt at 5x=[x,zeros(1,N-length(x))];Error in ==> circonvt at 13H(n,:)=cirshftt(x2,n-1,N);实验总结:1.加深了对傅里叶变换的理解。