数字信号处理[第二章时域离散信号和系统的频域分析
- 格式:ppt
- 大小:2.45 MB
- 文档页数:87
时域离散信号和系统的频域分析信号与系统的分析方法有两种:时域分析方法和频域分析方法。
在连续时间信号与系统中,信号一般用连续变量时间t 的函数表示,系统用微分方程描述,其频域分析方法是拉普拉斯变换和傅立叶变换。
在时域离散信号与系统中,信号用序列表示,其自变量仅取整数,非整数时无定义,系统则用差分方程描述,频域分析方法是Z 变换和序列傅立叶变换法。
Z变换在离散时间系统中的作用就如同拉普拉斯变换在连续时间系统中的作用一样,它把描述离散系统的差分方程转化为简单的代数方程,使其求解大大简化。
因此,对求解离散时间系统而言,Z变换是一个极重要的数学工具。
2.2 序列的傅立叶变换(离散时间傅立叶变换)一、序列傅立叶变换:正变换:DTFT[x(n)]=(2.2.1)反变换:DTFT-1式(2.2.1)级数收敛条件为||= (2.2.2)上式称为x(n)绝对可和。
这也是DTFT存在的充分必要条件。
当遇到一些绝对不可和的序列,例如周期序列,其DTFT可用冲激函数的形式表示出来。
二、序列傅立叶变换的基本性质:1、 DTFT的周期性,是频率的周期函数,周期为2。
∵ = 。
问题1:设x(n)=R N(n),求x(n)的DTFT。
====设N为4,画出幅度与相位曲线。
2、线性设=DTFT[x1(n)],=DTFT[x2(n)],则:DTFT[a x1(n)+b x2(n)]= = a+b3、序列的移位和频移设 = DTFT[x(n)],则:DTFT[x(n-n0)] ==DTFT[x(n)] == =4、 DTFT的对称性共轭对称序列的定义:设序列满足下式则称为共轭对称序列。
共轭对称序列的性质:共轭对称序列的实部是偶函数,虚部是奇函数证明:=+j(实部加虚部)∵∴+j=-j∴=(偶函数)∴=-(奇函数)一般情况下,共轭对称序列用表示:共轭反对称序列的定义:设序列满足下式则称为共轭反对称序列。
共轭反对称序列的性质:共轭反对称序列的实部是奇函数,虚部是偶函数证明:=+j(实部加虚部)∵∴+j=+j∴=(奇函数)∴=(偶函数)一般情况下,用来表示一个序列可用共轭对称序列与共轭反对称序列之和表示。
成绩:《数字信号处理》作业与上机实验(第二章)班级:学号:姓名:任课老师:完成时间:信息与通信工程学院2014—2015学年第1 学期第2章 时域离散信号和系统的频率分析1、设计两个数学信号处理系统:系统初始状态为零。
分别用这两个系统对数字信号:1.020.5cos(2/8/4)0140()0n n n x n ππ++≤≤⎧=⎨⎩其它 进行处理。
该信号为缓慢变化的指数信号(1.02n )上叠加了一个正弦干扰噪声序列,我们希望通过该系统对()x n 进行处理来消除这个正弦干扰噪声。
1).应用dtft 子程序分析信号()x n 的频谱,并用MATLAB 工具画出0π频率范围的频谱图,并在图中标记噪声的频谱。
(1)matlab 代码如下: %dtft 函数function [ X,w ] = dtft( x,n,dw,k )X=x*(exp(-1j*dw)).^(n'*k); w=dw*k; end%应用dtft 子程序分析信号x(n)的频谱 n=0:140;x=1.02.^n+0.5*cos(2*pi*n/8+pi/4); dw=pi/500; k=-1500:1500;[ X,w ] = dtft( x,n,dw,k ); %调用dtft 函数 magX=abs(X); %信号x(n)的幅度谱 angX=angle(X); %信号x(n)的相位谱701()()8() 1.3576(1)0.9216(2)() 1.4142(-1)(2)i y n x n i y n y n y n x n x n x n ==---+-=-+-∑系统一:系统二:subplot(2,1,1); plot(w/pi,magX); axis([0,1,0,800]); title('信号x(n)幅频特性'); xlabel('w'); ylabel('幅度'); subplot(2,1,2); plot(w/pi,angX); axis([0,1,-4,4]);title('信号x(n)相频特性'); xlabel('w'); ylabel('相位');(2)信号()x n 的频谱图见图一:图一 信号()x n 的频谱图2). 应用Hmp 子程序分析系统一与系统二的频谱特性,画出频谱图(0ωπ=)。
数字信号处理时域信号与频域分析数字信号处理(Digital Signal Processing,简称DSP)是指对连续时间信号进行采样和量化后,利用数字技术进行处理和分析的过程。
在数字信号处理中,时域信号与频域分析是两个重要的概念和方法。
时域信号是指信号在时间上的变化情况,常用的表示方法是信号的波形图。
时域信号的分析可以得到信号的幅度、频率、相位等信息。
频域分析则是将时域信号转换为频域信号,常用的方法有傅里叶变换、快速傅里叶变换等。
傅里叶变换是将一个时域信号转换为频域信号的方法之一。
通过傅里叶变换,我们可以将信号的频域特性直观地表示出来,从而更好地理解信号的频谱分布。
傅里叶变换可以将时域信号分解为一系列的正弦和余弦函数,并得到每个频率分量的振幅和相位信息。
快速傅里叶变换是一种高效的傅里叶变换算法,它可以在较短的时间内计算出信号的频域特性,并广泛应用于数字信号处理领域。
快速傅里叶变换通过利用信号的周期性和对称性,通过递归的方式将计算量降低到了较小的程度,从而提高了计算效率。
频域分析可以帮助我们了解信号的频谱特性、频率成分以及不同频率成分之间的相互关系。
通过频域分析,我们可以对信号进行滤波、降噪、频率检测等处理操作。
同时,频域分析也可以用于信号的压缩和编码。
在实际应用中,时域信号与频域分析常常相辅相成。
通过时域分析,我们可以观察信号的波形、脉冲特性等,并确定信号的基本特征。
而频域分析则可以进一步研究信号的频率分量、频段分布等,对信号进行更深入的理解。
总结起来,数字信号处理的时域信号与频域分析是不可分割的两个方面。
时域分析能够提供信号的时间特性和波形信息,而频域分析则可以揭示信号的频谱特性和频率成分。
通过综合应用时域信号与频域分析的方法,可以对数字信号进行更全面、准确的处理和分析,为各类应用提供支持与依据。
这些方法和技术在音频处理、图像处理、语音识别等领域得到了广泛的应用和发展,为我们的生活和工作带来了诸多便利与创新。
1第2章时域离散信号和系统的频域分析z 2.1 引言z 2.2 序列的傅里叶变换的定义及性质z 2.4 时域离散信号的傅里叶变换与模拟信号傅里叶变换之间的关系z 2.5 序列的Z 变换z 2.6 利用Z变换分析信号和系统的频域特性22.1 引言信号和系统的分析方法:时域分析方法和变换域分析方法。
频域变换(傅里叶变换->复频域拉氏变换)连续时间信号(系统微分方程)频域变换(傅里叶变换->复频域Z 变换)时域离散信号(系统差分方程)本章学习内容是本书也是数字信号处理这一领域的基础。
3第2章时域离散信号和系统的频域分析z 2.1 引言z 2.2 序列的傅里叶变换的定义及性质z 2.4 时域离散信号的傅里叶变换与模拟信号傅里叶变换之间的关系z 2.5 序列的Z 变换z 2.6 利用Z变换分析信号和系统的频域特性2.2 序列的傅里叶变换的定义及性质5例2.2.1 设x(n)=R 4(n),求x(n)的DTFT 图2.2.1 R (n)的幅度与相位曲线sin /2ω常用序列的傅立叶变换7(2)()j M nn x n eωπ∞−+=−∞=∑二、序列离散时间傅里叶变换(DTFT)的性质1. DTFT 的周期性()()j j nn X e x n eωω∞−=−∞=∑(2)()j M X eωπ+=时域离散,频域周期函数。
周期是2π。
由于DTFT 的周期,一般只分析0-2π之间的DTFT 。
2. 线性1122:()[()],()[()]j j X e DTFT x n X e DTFT x n ωω==若1212:[()()]()()j j DTFT ax n bx n aX e bX e ωω+=+则3. 时移与频移00(0:[()](),[()]()j n j nj j DTFT x n n eX e DTFT ex n X eωωωωω−−−==则:()[()]j X e DTFT x n ω=若4. 反转7. 帕斯维尔(Parseval)定理8. 频域微分序列的Fourier变换的对称性质*()x n−)n也可分解成:e−*(e对称性质•序列Fourier 变换()()j x n X e ωRe[()]()j e x n X e ωIm[()]()j o j x n X e ω()Re[()]j e x n X e ω()Im[()]j o x n j X e ω实数序列的对称性质•序列Fourier 变换Re[()]()()j j e x n X e X e ωω=Im[()]0()0j o j x n X e ω==()Re[()]j e x n X e ω()Im[()]j o x n j X e ω)j eω−变换满足共轭对称性()]j X eω−Im[()]j X e ω−)arg[结论:z序列分成实部与虚部两部分,实部对应的DTFT具有共轭对称性,虚部和j一起对应的DTFT具有共轭反对称性。
·22· 第2章 时域离散信号和系统的频域分析2.1 引 言数字信号处理中有三个重要的数学变换工具,即傅里叶变换、Z 变换和离散傅里叶变换,利用它们可以将信号和系统在时域空间和频域空间相互转换,这大大方便了对信号和系统的分析和处理。
三种变换互有联系,但又不同。
表征一个信号和系统的频域特性用傅里叶变换;Z 变换是傅里叶变换的一种扩展,在Z 域对系统进行分析与设计更加既灵活方便。
单位圆上的Z 变换就是傅里叶变换,因此用Z 变换分析频域特性也很方便。
离散傅里叶变换是离散化的傅里叶变换,因此用计算机分析和处理信号时,全用离散傅里叶变换进行。
离散傅里叶变换具有快速算法FFT ,使离散傅里叶变换在应用中更加重要。
但是离散傅里叶变换不同于傅里叶变换和Z 变换,其优点是将信号的时域和频域都进行了离散化,便于计算机处理。
但实际使用中,一定要注意它的特点,例如对模拟信号进行频域分析,只能是近似的,如果使用不当,会引起较大的误差。
因此掌握好这三种变换是学习好数字信号处理的关键。
本章只学习前两种变换,离散傅里叶变换及其FFT 在下一章中讲述。
2.2 本章学习要点(1) 求序列的傅里叶变换—序列频率特性。
(2) 求周期序列的傅里叶级数和傅里叶变换—周期序列频率特性。
(3) 0(),(),(),1,cos()n N n a u n R n n δω,0sin()n ω和0j e n ω的傅里叶变换,02/ωπ为有理数。
(4) 傅里叶变换的性质和定理:傅里叶变换的周期性、移位与频移性质、时域卷积定理、巴塞伐尔定理、频域卷积定理、频域微分性质、实序列和一般序列的傅里叶变换的共轭对称性。
(5) 求序列的Z 变换及其收敛域。
(6) 序列Z 变换收敛域与序列特性之间的关系。
(7) 求逆Z 变换:部分分式法和围线积分法。
(8) Z 变换的定理和性质:移位、反转、Z 域微分、共轭序列的Z 变换、时域卷积定理、初值定理、终值定理、巴塞伐尔定理。