利用导数求单调区间测试题及答案
- 格式:doc
- 大小:18.25 KB
- 文档页数:3
高一数学利用导数研究函数的单调性试题答案及解析1.若函数在区间内是增函数,则实数的取值范围是()A.B.C.D.【答案】B【解析】∵f(x)=x3+ax-2,∴f′(x)=3x2+a,∵函数f(x)=x3+ax-2在区间[1,+∞)内是增函数,∴f′(1)=3+a≥0,∴a≥-3.故选B..【考点】利用导数研究函数的单调性..2.已知函数(1)若,试确定函数的单调区间;(2)若,且对于任意,恒成立,试确定实数的取值范围;【答案】(1)详见解析(2).【解析】(1)求出函数的导数,只要解导数的不等式即可,根据导数与0的关系判断函数的单调性;(2)函数f(|x|)是偶函数,只要f(x)>0对任意x≥0恒成立即可,等价于f(x)在[0,+∞)的最小值大于零.试题解析:解:(1)由得,所以.由得,故的单调递增区间是,由得,故的单调递减区间是. 4(2)由可知是偶函数.于是对任意成立等价于对任意成立.由得.①当时,.此时在上单调递增.故,符合题意.②当时,.当变化时的变化情况如下表:单调递减极小值单调递增由此可得,在依题意,,又.综合①,②得,实数的取值范围是.【考点】1.利用导数求闭区间上函数的最值;2.利用导数研究函数的单调性..3.已知函数f(x)=2x--aln(x+1),a∈R.(1)若a=-4,求函数f(x)的单调区间;(2)求y=f(x)的极值点(即函数取到极值时点的横坐标).【答案】(1)f(x)的单调增区间为(-1,3),单调减区间为(3,+∞)。
(2)ⅰ. 7分ⅱ.当时,若,由函数的单调性可知f(x)有极小值点;有极大值点。
若时, f(x)有极大值点,无极小值点。
【解析】(1)因为,f(x)=2x--aln(x+1),a∈R,定义域为(-1,+∞)。
所以,,故,f(x)的单调增区间为(-1,3),单调减区间为(3,+∞)。
(2)因为,f(x)=2x--aln(x+1),a∈R,定义域为(-1,+∞)。
利用导数求函数的单调性、极值 、最值一.求单调区间的步骤①求定义域;①求导函数f ′(x );①解方程f ′(x )=0;④分区间;⑤列表定导数正负得单调区间. 二.求极值的步骤(同上) 极值的定义:①如果在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极大值; ①如果在x 0附近的左侧f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是极小值. 三.求函数最值的步骤①求极值;①求[a ,b ]端点的函数值f (a )、f (b );①比较极值与端点函数值的大小,得最值.考向一 求单调区间【例题】求下列函数的单调区间:(1)3()23f x x x =-; (2)2()ln f x x x =-. (3))f (x )=2x -x 2. 【练习】1.函数 f (x )=(x -3)e x 的单调递增区间是( ) A .(-∞,2) B .(0,3) C .(1,4) D .(2,+∞)2.函数f (x )=x -ln x 的单调递减区间为( )A.(0,1)B.(0,+∞)C.(1,+∞)D.(-∞,0)①(1,+∞) 3.函数f (x )=x +eln x 的单调递增区间为( )A .(0,+∞)B .(-∞,0)C .(-∞,0)和(0,+∞)D .R4.函数y =4x 2+1x 的单调增区间为________.【答案】()12,+∞ 5.函数f (x )=x ·e x -e x+1的单调增区间是________.【答案】 (e -1,+∞)6.已知函数f (x )=x ln x ,则f (x )的单调减区间是________.【答案】()0,1e7.已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的单调增区间是_______.()-π,-π2和()0,π28. 函数f (x )=(x-3)e x 的单调递增区间是 。
2024届新高考数学导数大题精选30题1(2024·安徽·二模)已知函数f (x )=x 2-10x +3f (1)ln x .(1)求函数f (x )在点(1,f (1))处的切线方程;(2)求f (x )的单调区间和极值.【答案】(1)y =4x -13;(2)递增区间为(0,2),(3,+∞),递减区间为2,3 ,极大值-16+12ln2,极小值-21+12ln3.【分析】(1)求出函数f (x )的导数,赋值求得f (1),再利用导数的几何意义求出切线方程.(2)由(1)的信息,求出函数f (x )的导数,利用导数求出单调区间及极值.【详解】(1)函数f (x )=x 2-10x +3f (1)ln x ,求导得f(x )=2x -10+3f (1)x,则f (1)=-8+3f (1),解得f (1)=4,于是f (x )=x 2-10x +12ln x ,f (1)=-9,所以所求切线方程为:y +9=4(x -1),即y =4x -13.(2)由(1)知,函数f (x )=x 2-10x +12ln x ,定义域为(0,+∞),求导得f (x )=2x -10+12x =2(x -2)(x -3)x,当0<x <2或x >3时,f (x )>0,当2<x <3时,f (x )<0,因此函数f (x )在(0,2),(3,+∞)上单调递增,在(2,3)上单调递减,当x =2时,f (x )取得极大值f (2)=-16+12ln2,当x =3时,f (x )取得极小值f (3)=-21+12ln3,所以函数f (x )的递增区间为(0,2),(3,+∞),递减区间为(2,3),极大值-16+12ln2,极小值-21+12ln3.2(2024·江苏南京·二模)已知函数f (x )=x 2-ax +ae x,其中a ∈R .(1)当a =0时,求曲线y =f (x )在(1,f (1))处的切线方程;(2)当a >0时,若f (x )在区间[0,a ]上的最小值为1e,求a 的值.【答案】(1)x -ey =0(2)a =1【分析】(1)由a =0,分别求出f (1)及f (1),即可写出切线方程;(2)计算出f (x ),令f (x )=0,解得x =2或x =a ,分类讨论a 的范围,得出f (x )的单调性,由f (x )在区间[0,a ]上的最小值为1e,列出方程求解即可.【详解】(1)当a =0时,f (x )=x 2e x ,则f (1)=1e ,f (x )=2x -x 2ex,所以f (1)=1e ,所以曲线y =f (x )在(1,f (1))处的切线方程为:y -1e =1e(x -1),即x -ey =0.(2)f(x )=-x 2+(a +2)x -2a e x =-(x -2)(x -a )ex,令f (x )=0,解得x =2或x =a ,当0<a <2时,x ∈[0,a ]时,f (x )≤0,则f (x )在[0,a ]上单调递减,所以f (x )min =f (a )=a ea =1e ,则a =1,符合题意;当a >2时,x ∈[0,2]时,f (x )≤0,则f (x )在[0,2]上单调递减,x ∈(2,a ]时,f (x )>0,则f (x )在(2,a ]上单调递增,所以f (x )min =f (2)=4-a e2=1e ,则a =4-e <2,不合题意;当a =2时,x ∈[0,2]时,f (x )≤0,则f (x )在[0,2]上单调递减,所以f (x )min =f (2)==2e 2≠1e ,不合题意;综上,a =1.3(2024·浙江绍兴·模拟预测)已知f x =ae x -x ,g x =cos x . (1)讨论f x 的单调性.(2)若∃x 0使得f x 0 =g x 0 ,求参数a 的取值范围.【答案】(1)当a ≤0时,f x 在-∞,+∞ 上单调递减;当a >0时,f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增.(2)-∞,1【分析】(1)对f x =ae x -x 求导数,然后分类讨论即可;(2)直接对a >1和a ≤1分类讨论,即可得到结果.【详解】(1)由f x =ae x -x ,知f x =ae x -1.当a ≤0时,有f x =ae x -1≤0-1=-1<0,所以f x 在-∞,+∞ 上单调递减;当a >0时,对x <-ln a 有f x =ae x -1<ae -ln a -1=1-1=0,对x >-ln a 有f x =ae x -1>ae -ln a -1=1-1=0,所以f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增.综上,当a ≤0时,f x 在-∞,+∞ 上单调递减;当a >0时,f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增.(2)当a >1时,由(1)的结论,知f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增,所以对任意的x 都有f x ≥f -ln a =ae -ln a +ln a =1+ln a >1+ln1=1≥cos x =g x ,故f x >g x 恒成立,这表明此时条件不满足;当a ≤1时,设h x =ae x -x -cos x ,由于h -a -1 =ae -a -1+a +1-cos -a -1 ≥ae-a -1+a ≥-a e-a -1+a =a 1-e-a -1≥a 1-e 0=0,h 0 =ae 0-0-cos0=a -1≤0,故由零点存在定理,知一定存在x 0∈-a -1,0 ,使得h x 0 =0,故f x 0 -g x 0 =ae x 0-x 0-cos x 0=h x 0 =0,从而f x 0 =g x 0 ,这表明此时条件满足.综上,a 的取值范围是-∞,1 .4(2024·福建漳州·一模)已知函数f x =a ln x -x +a ,a ∈R 且a ≠0.(1)证明:曲线y =f x 在点1,f 1 处的切线方程过坐标原点.(2)讨论函数f x 的单调性.【答案】(1)证明见解析(2)答案见解析【分析】(1)先利用导数的几何意义求得f x 在1,f 1 处的切线方程,从而得证;(2)分类讨论a <0与a >0,利用导数与函数的单调性即可得解.【详解】(1)因为f x =a ln x -x +a x >0 ,所以f (x )=a x -1=a -xx,则f (1)=a ln1-1+a =a -1,f (1)=a -1,所以f x 在1,f 1 处的切线方程为:y -(a -1)=(a -1)(x -1),当x =0时,y -(a -1)=(a -1)(0-1)=-(a -1),故y =0,所以曲线y =f (x )在点1,f 1 处切线的方程过坐标原点.(2)由(1)得f (x )=ax -1=a -xx,当a<0时,a-x<0,则f x <0,故f(x)单调递减;当a>0时,令f (x)=0则x=a,当0<x<a时,f (x)>0,f(x)单调递增;当x>a时,f (x)<0,f(x)单调递减;综上:当a<0时,f(x)在(0,+∞)上单调递减;当a>0时,f(x)在(0,a)上单调递增,在(a,+∞)上单调递减.5(2024·山东·二模)已知函数f x =a2xe x-x-ln x.(1)当a=1e时,求f x 的单调区间;(2)当a>0时,f x ≥2-a,求a的取值范围.【答案】(1)f x 的减区间为0,1,增区间为1,+∞(2)a≥1【分析】(1)当a=1e时,f x =xe x-1-x-ln x,x>0,求导得f x =x+1xxe x-1-1,令g x =xe x-1-1,求g x 确定g x 的单调性与取值,从而确定f x 的零点,得函数的单调区间;(2)求f x ,确定函数的单调性,从而确定函数f x 的最值,即可得a的取值范围.【详解】(1)当a=1e时,f x =xe x-1-x-ln x,x>0,则f x =x+1e x-1-1-1x=x+1xxe x-1-1,设g x =xe x-1-1,则g x =x+1e x-1>0恒成立,又g1 =e0-1=0,所以当x∈0,1时,f x <0,f x 单调递减,当x∈1,+∞时,f x >0,f x 单调递增,所以f x 的减区间为0,1,增区间为1,+∞;(2)f x =a2x+1e x-1-1x=x+1xa2xe x-1,设h x =a2xe x-1,则h x =a2x+1e x>0,所以h x 在0,+∞上单调递增,又h0 =-1<0,h1a2=e1a2-1>0,所以存在x0∈0,1 a2,使得h x0 =0,即a2x0e x0-1=0,当x∈0,x0时,f x <0,f x 单调递减,当x∈x0,+∞时,f x >0,f x 单调递增,当x=x0时,f x 取得极小值,也是最小值,所以f x ≥f x0=a2x0e x0-x0-ln x0=1-ln x0e x0=1+2ln a,所以1+2ln a≥2-a,即a+2ln a-1≥0,设F a =a+2ln a-1,易知F a 单调递增,且F1 =0,所以F a ≥F1 ,解得a≥1,综上,a≥1.6(2024·山东·一模)已知函数f(x)=ln x+12a(x-1)2.(1)当a=-12时,求函数f(x)的单调区间;(2)若函数g(x)=f(x)-2x+1有两个极值点x1,x2,且g(x1)+g(x2)≥-1-32a,求a的取值范围.【答案】(1)增区间(0,2),减区间(2,+∞)(2)[1,+∞)【分析】(1)将a=-12代入求导,然后确定单调性即可;(2)求导,根据导函数有两个根写出韦达定理,代入g(x1)+g(x2)≥-1-32a,构造函数,求导,研究函数性质进而求出a的取值范围.【详解】(1)当a=-12时,f(x)=ln x-14(x-1)2,x>0,则f (x)=1x-12(x-1)=-(x-2)(x+1)2x,当x∈(0,2),f (x)>0,f(x)单调递增,当x∈(2,+∞),f (x)<0,f(x)单调递减,所以f(x)的单调递增区间是(0,2),单调递减区间是(2,+∞);(2)g(x)=f(x)-2x+1=ln x+12a(x-1)2-2x+1,所以g (x)=1x+a(x-1)-2=ax2-(a+2)x+1x,设φ(x)=ax2-(a+2)x+1,令φ(x)=0,由于g(x)有两个极值点x1,x2,所以Δ=(a+2)2-4a=a2+4>0x1+x2=a+2a>0x1x2=1a>0,解得a>0.由x1+x2=a+2a,x1x2=1a,得g x1+g x2=ln x1+12a x1-12-2x1+1+ln x2+12a x2-12-2x2+1=ln x1x2+12a x1+x22-2x1x2-2x1+x2+2-2x1+x2+2=ln1a +12a a+2a2-2a-2⋅a+2a+2-2⋅a+2a+2=ln1a +a2-2a-1≥-1-32a,即ln a-12a-1a≤0,令m(a)=ln a-12a-1a,则m (a)=1a-12-12a2=-(a-1)22a2≤0,所以m(a)在(0,+∞)上单调递减,且m(1)=0,所以a≥1,故a的取值范围是[1,+∞).7(2024·湖北·二模)求解下列问题,(1)若kx-1≥ln x恒成立,求实数k的最小值;(2)已知a,b为正实数,x∈0,1,求函数g x =ax+1-xb-a x⋅b1-x的极值.【答案】(1)1(2)答案见解析【分析】(1)求导,然后分k≤0和k>0讨论,确定单调性,进而得最值;(2)先发现g0 =g1 =0,当a=b时,g x =0,当0<x<1,a≠b时,取ab=t,L x =tx+1-x-t x,求导,研究单调性,进而求出最值得答案.【详解】(1)记f x =kx-1-ln x x>0,则需使f x ≥0恒成立,∴f x =k-1xx>0,当k≤0时,f x <0恒成立,则f x 在(0,+∞)上单调递减,且在x>1时,f x <0,不符合题意,舍去;当k >0时.令f x =0,解得x =1k,则f x 在0,1k 上单调递减,在1k ,+∞ 上单调递增,所以f x min =f 1k =-ln 1k=ln k ,要使kx -1≥ln x 恒成立,只要ln k ≥0即可,解得k ≥1,所以k 的最小值为1;(2)g (x )=ax +(1-x )b -a x ⋅b 1-x ,x ∈[0,1],a >0,b >0,易知g 0 =g 1 =0,当a =b 时,g x =ax +a -ax -a =0,此时函数无极值;当0<x <1,a ≠b 时,g (x )=ax +(1-x )b -b ⋅a b x =b a b x +1-x -a b x,取ab=t ,t >0,t ≠1,L x =tx +1-x -t x ,t >0,t ≠1,x ∈0,1 ,则L x =t -1-t x ln t ,当t >1时,由L x ≥0得x ≤ln t -1ln tln t,由(1)知t -1≥ln t ,当t >1时,t -1ln t>1,因为x -1≥ln x ,所以1x -1≥ln 1x ,所以ln x ≥1-1x ,即x >0,当t >1时,ln t >1-1t,所以t >t -1ln t ,则ln t >ln t -1ln t >0,所以ln t -1ln tln t<1,即L x 在0,ln t -1ln t ln t 上单调递增,在ln t -1ln tln t,1单调递减.所以函数g x 极大=gln t -1lntln t,t =ab,a ≠b ,当0<t <1时,同理有ln t -1lntln t∈0,1 ,由Lx ≥0得x ≤ln t -1lntln t,即(x )在0,ln t -1lntln t上单调递增,在ln t -1lntln t,1上单调递减.所以函数g x 极大=gln t -1lntln t,t =a b,a ≠b ,综上可知,当a =b 时,函数g x 没有极值;当a ≠b 时,函数g x 有唯一的极大值g ln t -1lntln t,其中t =ab,没有极小值.【点睛】关键点点睛:取ab=t ,将两个参数的问题转化为一个参数的问题,进而求导解答问题.8(2024·湖北武汉·模拟预测)函数f (x )=tan x +sin x -92x ,-π2<x <π2,g (x )=sin n x -x n cos x ,x ∈0,π2,n ∈N +.(1)求函数f (x )的极值;(2)若g (x )>0恒成立,求n 的最大值.【答案】(1)极小值为f π3 =3(3-π)2,极大值为f -π3 =3(π-3)2;(2)3.【分析】(1)判断函数f (x )为奇函数,利用导数求出f (x )在区间0,π2上的极值,利用奇偶性即可求得定义域上的极值.(2)利用导数证明当n =1时,g (x )>0恒成立,当n >1时,等价变形不等式并构造函数F (x )=x -sin x cos 1nx,0<x <π2,利用导数并按导数为负为正确定n 的取值范围,进而确定不等式恒成立与否得解.【详解】(1)函数f (x )=tan x +sin x -92x ,-π2<x <π2,f (-x )=tan (-x )+sin (-x )-92(-x )=-f (x ),即函数f (x )为奇函数,其图象关于原点对称,当0<x <π2时,f (x )=sin x cos x +sin x -92x ,求导得:f(x )=1cos 2x +cos x -92=2cos 3x -9cos 2x +22cos 2x =(2cos x -1)(cos x -2-6)(cos x -2+6)2cos 2x,由于cos x ∈(0,1),由f (x )>0,得0<cos x <12,解得π3<x <π2,由f (x )<0,得12<cos x <1,解得0<x <π3,即f (x )在0,π3 上单调递减,在π3,π2上单调递增,因此函数f (x )在0,π2 上有极小值f π3 =3(3-π)2,从而f (x )在-π2,π2 上的极小值为f π3 =3(3-π)2,极大值为f -π3 =3(π-3)2.(2)当n =1时,g (x )>0恒成立,即sin x -x cos x >0恒成立,亦即tan x >x 恒成立,令h (x )=tan x -x ,x ∈0,π2 ,求导得h (x )=1cos 2x -1=1-cos 2x cos 2x=tan 2x >0,则函数h (x )在0,π2上为增函数,有h (x )>h (0)=0,因此tan x -x >0恒成立;当n >1时,g (x )>0恒成立,即不等式sin xn cos x>x 恒成立,令F (x )=x -sin x cos 1n x ,0<x <π2,求导得:F (x )=1-cos x ⋅cos 1nx -1n⋅cos1n-1x ⋅(-sin x )⋅sin xcos 2nx=1-cos1+n nx +1n⋅sin 2x ⋅cos1-n nxcos 2nx=1-cos 2x +1n ⋅sin 2xcos n +1nx =cosn +1nx -cos 2x -1n (1-cos 2x )cos n +1nx =cosn +1nx -1n -n -1ncos 2x cosn +1nx令G (x )=cos n +1nx -1n -n -1n cos 2x ,求导得则G (x )=n +1n cos 1nx ⋅(-sin x )-n -1n⋅2cos x ⋅(-sin x )=sin x n (2n -2)cos x -(n +1)cos 1n x =2n -2n ⋅sin x cos x -n +12n -2cos 1n x=2n -2n ⋅sin x ⋅cos 1n x cos n -1n x -n +12n -2,由n >1,x ∈0,π2 ,得2n -2n⋅sin x ⋅cos 1nx >0,当n +12n -2≥1时,即n ≤3时,G (x )<0,则函数G (x )在0,π2上单调递减,则有G (x )<G (0)=0,即F (x )<0,因此函数F (x )在0,π2 上单调递减,有F (x )<F (0)=0,即g (x )>0,当n +12n -2<1时,即n >3时,存在一个x 0∈0,π2 ,使得cos n -1n x 0=n +12n -2,且当x ∈(0,x 0)时,G (x )>0,即G (x )在(0,x 0)上单调递增,且G (x )>G (0)=0,则F (x )>0,于是F (x )在(0,x 0)上单调递增,因此F (x )>F (0)=0,即sin xn cos x<x ,与g (x )>0矛盾,所以n 的最大值为3.【点睛】方法点睛:对于利用导数研究不等式的恒成立与有解问题的求解策略:①通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;②利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.③根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.9(2024·湖北·模拟预测)已知函数f x =ax 2-x +ln x +1 ,a ∈R ,(1)若对定义域内任意非零实数x 1,x 2,均有f x 1 f x 2x 1x 2>0,求a ;(2)记t n =1+12+⋅⋅⋅+1n ,证明:t n -56<ln n +1 <t n .【答案】(1)a =12(2)证明见解析【分析】(1)求导可得f 0 =0,再分a ≤0与a >0两种情况分析原函数的单调性,当a >0时分析极值点的正负与原函数的正负区间,从而确定a 的值;(2)由(1)问的结论可知,1n -12n2<ln 1n +1 <1n ,再累加结合放缩方法证明即可.【详解】(1)f x 的定义域为-1,+∞ ,且f 0 =0;f x =2ax -1+1x +1=2ax -x x +1=x 2a -1x +1,因此f 0 =0;i.a ≤0时,2a -1x +1<0,则此时令f x >0有x ∈-1,0 ,令f x <0有x ∈0,+∞ ,则f x 在-1,0 上单调递增,0,+∞ 上单调递减,又f 0 =0,于是f x ≤0,此时令x 1x 2<0,有f x 1 f x 2x 1x 2<0,不符合题意;ii .a >0时,f x 有零点0和x 0=12a-1,若x 0<0,即a >12,此时令f x <0有x ∈x 0,0 ,f x 在x 0,0 上单调递减,又f 0 =0,则f x 0 >0,令x 1>0,x 2=x 0,有f x 1 f x 2x 1x 2<0,不符合题意;若x 0>0,即0<a <12,此时令f x <0有x ∈0,x 0 ,f x 在0,x 0 上单调递减,又f 0 =0,则f x 0 <0,令-1<x 1<0,x 2=x 0,有f x 1 f x 2x 1x 2<0,不符合题意;若x 0=0,即a =12,此时fx =x 2x +1>0,f x 在-1,+∞ 上单调递增,又f 0 =0,则x >0时f x >0,x <0时f x <0;则x ≠0时f x x >0,也即对x 1x 2≠0,f x 1 f x 2x 1x 2>0,综上,a =12(2)证:由(1)问的结论可知,a =0时,f x =-x +ln x +1 ≤0;且a =12时x >0,f x =12x 2-x +ln x +1 >0;则x>0时,x-12x2<ln x+1<x,令x=1n,有1n-12n2<ln1n+1<1n,即1n-12n2<ln n+1-ln n<1n,于是1n-1-12n-12<ln n-ln n-1<1n-11-12<ln2<1将上述n个式子相加,t n-121+122+⋅⋅⋅+1n2<ln n+1<t n;欲证t n-56<ln n+1<t n,只需证t n-56<t n-121+122+⋅⋅⋅+1n2,只需证1+122+⋅⋅⋅+1n2<53;因为1n2=44n2<44n2-1=212n-1-12n+1,所以1+122+⋅⋅⋅+1n2<1+213-15+15-17+⋅⋅⋅+12n-1-12n+1=53-22n+1<53,得证:于是得证t n-56<ln n+1<t n.【点睛】方法点睛:(1)此题考导数与函数的综合应用,找到合适的分类标准,设极值点,并确定函数正负区间是解此题的关键;(2)对累加结构的不等式证明,一般需要应用前问的结论,取特定参数值,得出不等式累加证明,遇到不能累加的数列结构,需要进行放缩证明.10(2024·湖南·一模)已知函数f x =sin x-ax⋅cos x,a∈R.(1)当a=1时,求函数f x 在x=π2处的切线方程;(2)x∈0,π2时;(ⅰ)若f x +sin2x>0,求a的取值范围;(ⅱ)证明:sin2x⋅tan x>x3.【答案】(1)πx-2y+2-π22=0.(2)(ⅰ)a≤3(ⅱ)证明见解析【分析】(1)令a=1时,利用导数的几何意义求出斜率,进行计算求出切线方程即可.(2)(ⅰ)设g(x)=2sin x+tan x-ax,x∈0,π2,由g x >0得a≤3,再证明此时满足g x >0.(ⅱ)根据(ⅰ)结论判断出F x =sin2x⋅tan x-x3在0,π2上单调递增,∴F(x)>F(0)=0,即sin2x tan x >x3.【详解】(1)当a=1时,f(x)=sin x-x⋅cos x,f (x)=cos x-(cos x-x⋅sin x)=x⋅sin x,fπ2=π2,fπ2=1.所以切线方程为:y-1=π2x-π2,即πx-2y+2-π22=0.(2)(ⅰ)f(x)+sin2x=sin x-ax⋅cos x+sin2x>0,即tan x-ax+2sin x>0,x∈0,π2,设g(x)=2sin x+tan x-ax,x∈0,π2,g (x )=2cos x +1cos 2x -a =1cos 2x(2cos 3x -a cos 2x +1).又∵g (0)=0,g (0)=3-a ,∴g (0)=3-a ≥0是g (x )>0的一个必要条件,即a ≤3.下证a ≤3时,满足g (x )=2sin x +tan x -ax >0,x ∈0,π2,又g (x )≥1cos 2x(2cos 3x -3cos 2x +1),设(t )=2t 3-3t 2+1,t ∈(0,1),h (t )=6t 2-6t =6t (t -1)<0,h (t )在(0,1)上单调递减,所以h (t )>h (1)=0,又x ∈0,π2 ,cos x ∈(0,1),∴g (x )>0,即g (x )在0,π2 单调递增.∴x ∈0,π2时,g (x )>g (0)=0;下面证明a >3时不满足g (x )=2sin x +tan x -ax >0,x ∈0,π2,,g (x )=2cos x +1cos 2x-a ,令h (x )=g (x )=2cos x +1cos 2x -a ,则h (x )=-2sin x +2sin x cos 3x =2sin x 1cos 3x-1,∵x ∈0,π2 ,∴sin x >0,1cos 3x-1>0,∴h (x )>0,∴h (x )=g (x )在0,π2为增函数,令x 0满足x 0∈0,π2,cos x 0=1a ,则g x 0 =2cos x 0+1cos 2x 0-a =2cos x 0+a -a >0,又g (0)=3-a <0,∴∃x 1∈0,x 0 ,使得g x 1 =0,当x ∈0,x 1 时,g (x )<g x 1 =0,∴此时g (x )在0,x 1 为减函数,∴当x ∈0,x 1 时,g (x )<g (0)=0,∴a >3时,不满足g (x )≥0恒成立.综上a ≤3.(ⅱ)设F (x )=sin 2x ⋅tan x -x 3,x ∈0,π2 ,F (x )=2sin x ⋅cos x ⋅tan x +sin 2x ⋅1cos 2x-3x 2=2sin 2x +tan 2x -3x 2=2(sin x -x )2+(tan x -x )2+2(2sin x +tan x )x -2x 2-x 2-3x 2.由(ⅰ)知2sin x +tan x >3x ,∴F (x )>0+0+2x ⋅3x -6x 2=0,,F x 在0,π2上单调递增,∴F (x )>F (0)=0,即sin 2x tan x >x 3.【点睛】关键点点睛:本题考查导数,解题关键是进行必要性探路,然后证明充分性,得到所要求的参数范围即可.11(2024·全国·模拟预测)已知函数f (x )=ln (1+x )-11+x.(1)求曲线y =f (x )在(0,f (0))处的切线方程;(2)若x ∈(-1,π),讨论曲线y =f (x )与曲线y =-2cos x 的交点个数.【答案】(1)y =32x -1;(2)2.【分析】(1)求导,即可根据点斜式求解方程,(2)求导,分类讨论求解函数的单调性,结合零点存在性定理,即可根据函数的单调性,结合最值求解.【详解】(1)依题意,f x =11+x +121+x 32,故f 0 =32,而f 0 =-1,故所求切线方程为y +1=32x ,即y =32x -1.(2)令ln 1+x -11+x =-2cos x ,故ln 1+x +2cos x -11+x=0,令g x =ln 1+x +2cos x -11+x ,g x =11+x -2sin x +121+x -32,令h x =g x =11+x -2sin x +121+x -32,hx =-11+x2-2cos x -341+x -52.①当x ∈-1,π2时,cos x ≥0,1+x 2>0,1+x-52>0,∴h x <0,∴h x 在-1,π2上为减函数,即gx 在-1,π2 上为减函数,又g 0 =1+12>0,g1 =12-2sin1+12⋅2-32<12-2⋅sin1+12<1-2×12=0,∴g x 在0,1 上有唯一的零点,设为x 0,即g x 0 =00<x 0<1 .∴g x 在-1,x 0 上为增函数,在x 0,π2上为减函数.又g 0 =2-1>0,g -π4 =ln 1-π4 +2cos -π4 -11-π4=ln 1-π4+2-11-π4<0,g π2=ln 1+π2 -11+π2>0,∴g x 在-1,x 0 上有且只有一个零点,在x 0,π2上无零点;②当x ∈π2,5π6 时,g x <11+x -1+121+x-32<0,g x 单调递减,又g π2 >0,g 5π6 =ln 1+5π6 -3-1+5π6-12<ln4-3<0,∴g x 在π2,5π6内恰有一零点;③当x ∈5π6,π 时,hx =-11+x2-2cos x -341+x -52为增函数,∴hx =h 5π6 =-11+5π62+1-34⋅1+5π6-52>0,∴g x 单调递增,又g π >0,g 5π6 <0,所以存在唯一x 0∈5π6,π ,g x 0 =0,当x ∈5π6,x 0 时,g x <0,g x 递减;当x ∈x 0,π 时,g x >0,g x 递增,g x ≤max g 5π6 ,g π <0,∴g x 在5π6,π内无零点.综上所述,曲线y =f x 与曲线y =-2cos x 的交点个数为2.【点睛】方法点睛:本题考查了导数的综合运用,求某点处的切线方程较为简单,利用导数求单调性时,如果求导后的正负不容易辨别,往往可以将导函数的一部分抽离出来,构造新的函数,利用导数研究其单调性,进而可判断原函数的单调性.在证明不等式时,常采用两种思路:求直接求最值和等价转化.无论是那种方式,都要敢于构造函数,构造有效的函数往往是解题的关键.12(2024·广东佛山·二模)已知f x =-12e 2x +4e x -ax -5.(1)当a =3时,求f x 的单调区间;(2)若f x 有两个极值点x 1,x 2,证明:f x 1 +f x 2 +x 1+x 2<0.【答案】(1)答案见解析(2)证明见解析【分析】(1)求导后,借助导数的正负即可得原函数的单调性;(2)借助换元法,令t =e x ,t 1=e x 1,t 2=e x 2,可得t 1、t 2是方程t 2-4t +a =0的两个正根,借助韦达定理可得t 1+t 2=4,t 1t 2=a ,即可用t 1、t 2表示f x 1 +f x 2 +x 1+x 2,进而用a 表示f x 1 +f x 2 +x 1+x 2,构造相关函数后借助导数研究其最大值即可得.【详解】(1)当a =3时,f x =-12e 2x +4e x -3x -5,f x =-e 2x +4e x -3=-e x -1 e x -3 ,则当e x ∈0,1 ∪3,+∞ ,即x ∈-∞,0 ∪ln3,+∞ 时,f x <0,当e x ∈1,3 ,即x ∈0,ln3 时,f x >0,故f x 的单调递减区间为-∞,0 、ln3,+∞ ,单调递增区间为0,ln3 ;(2)f x =-e 2x +4e x -a ,令t =e x ,即f x =-t 2+4t -a ,令t 1=e x 1,t 2=e x 2,则t 1、t 2是方程t 2-4t +a =0的两个正根,则Δ=-4 2-4a =16-4a >0,即a <4,有t 1+t 2=4,t 1t 2=a >0,即0<a <4,则f x 1 +f x 2 +x 1+x 2=-12e 2x 1+4e x 1-ax 1-5-12e 2x2+4e x 2-ax 2-5+x 1+x 2=-12t 21+t 22 +4t 1+t 2 -a -1 ln t 1+ln t 2 -10=-12t 1+t 2 2-2t 1t 2 +4t 1+t 2 -a -1 ln t 1t 2-10=-1216-2a +16-a -1 ln a -10=a -a -1 ln a -2,要证f x 1 +f x 2 +x 1+x 2<0,即证a -a -1 ln a -2<00<a <4 ,令g x =x -x -1 ln x -20<x <4 ,则g x =1-ln x +x -1x =1x-ln x ,令h x =1x -ln x 0<x <4 ,则h x =-1x 2-1x <0,则g x 在0,4 上单调递减,又g 1 =11-ln1=1,g 2 =12-ln2<0,故存在x 0∈1,2 ,使g x 0 =1x 0-ln x 0=0,即1x 0=ln x 0,则当x ∈0,x 0 时,g x >0,当x ∈x 0,4 时,g x <0,故g x 在0,x 0 上单调递增,g x 在x 0,4 上单调递减,则g x ≤g x 0 =x 0-x 0-1 ln x 0-2=x 0-x 0-1 ×1x 0-2=x 0+1x 0-3,又x 0∈1,2 ,则x 0+1x 0∈2,52 ,故g x 0 =x 0+1x 0-3<0,即g x <0,即f x 1 +f x 2 +x 1+x 2<0.【点睛】关键点点睛:本题关键点在于借助换元法,令t =e x ,t 1=e x 1,t 2=e x 2,从而可结合韦达定理得t 1、t 2的关系,即可用a 表示f x 1 +f x 2 +x 1+x 2,构造相关函数后借助导数研究其最大值即可得.13(2024·广东广州·模拟预测)已知函数f x =x e x -kx ,k ∈R .(1)当k =0时,求函数f x 的极值;(2)若函数f x 在0,+∞ 上仅有两个零点,求实数k 的取值范围.【答案】(1)极小值为-1e,无极大值(2)e ,+∞【分析】(1)求出导函数,然后列表求出函数的单调区间,根据极值定义即可求解;(2)把原函数有两个零点转化为g x =e x -kx 在0,+∞ 上仅有两个零点,分类讨论,利用导数研究函数的单调性,列不等式求解即可.【详解】(1)当k =0时,f x =xe x (x ∈R ),所以f x =1+x e x ,令f x =0,则x =-1,x -∞,-1-1-1,+∞f x -0+f x单调递减极小值单调递增所以f (x )min =f -1 =-e -1=-1e,所以f x 的极小值为-1e,无极大值.(2)函数f x =x e x -kx 在0,+∞ 上仅有两个零点,令g x =e x -kx ,则问题等价于g x 在0,+∞ 上仅有两个零点,易知g x =e x -k ,因为x ∈0,+∞ ,所以e x >1.①当k ∈-∞,1 时,g x >0在0,+∞ 上恒成立,所以g x 在0,+∞ 上单调递增,所以g x >g 0 =1,所以g x 在0,+∞ 上没有零点,不符合题意;②当k ∈1,+∞ 时,令g x =0,得x =ln k ,所以在0,ln k 上,g x <0,在ln k ,+∞ 上,g x >0,所以g x 在0,ln k 上单调递减,在(ln k ,+∞)上单调递增,所以g x 的最小值为g ln k =k -k ⋅ln k .因为g x 在0,+∞ 上有两个零点,所以g ln k =k -k ⋅ln k <0,所以k >e.因为g 0 =1>0,g ln k 2 =k 2-k ⋅ln k 2=k k -2ln k ,令h x =x -2ln x ,则h x =1-2x =x -2x,所以在0,2 上,h x <0,在2,+∞ 上,h x >0,所以h x 在0,2 上单调递减,在2,+∞ 上单调递增,所以h x ≥2-2ln2=ln e 2-ln4>0,所以g ln k 2 =k k -2ln k >0,所以当k >e 时,g x 在0,ln k 和(ln k ,+∞)内各有一个零点,即当k >e 时,g x 在0,+∞ 上仅有两个零点.综上,实数k 的取值范围是e ,+∞ .【点睛】方法点睛:求解函数单调区间的步骤:(1)确定f x 的定义域.(2)计算导数f x .(3)求出f x =0的根.(4)用f x =0的根将f x 的定义域分成若干个区间,判断这若干个区间内f x 的符号,进而确定f x 的单调区间.f x >0,则f x 在对应区间上单调递增,对应区间为增区间;f x <0,则f x 在对应区间上单调递减,对应区间为减区间.如果导函数含有参数,那么需要对参数进行分类讨论,分类讨论要做到不重不漏.14(2024·江苏南通·二模)已知函数f x =ln x -ax ,g x =2ax,a ≠0.(1)求函数f x 的单调区间;(2)若a >0且f x ≤g x 恒成立,求a 的最小值.【答案】(1)答案见解析(2)2e 3.【分析】(1)求导后,利用导数与函数单调性的关系,对a >0与a <0分类讨论即可得;(2)结合函数的单调性求出函数的最值,即可得解.【详解】(1)f x =1x -a =1-axx(a ≠0),当a <0时,由于x >0,所以f x >0恒成立,从而f x 在0,+∞ 上递增;当a >0时,0<x <1a ,f x >0;x >1a ,fx <0,从而f x 在0,1a 上递增,在1a,+∞ 递减;综上,当a <0时,f x 的单调递增区间为0,+∞ ,没有单调递减区间;当a >0时,f x 的单调递增区间为0,1a ,单调递减区间为1a ,+∞ .(2)令h x =f x -g x =ln x -ax -2ax,要使f x ≤g x 恒成立,只要使h x ≤0恒成立,也只要使h x max ≤0.h x =1x -a +2ax 2=-ax +1 ax -2 ax 2,由于a >0,x >0,所以ax +1>0恒成立,当0<x <2a 时,h x >0,当2a<x <+∞时,h x <0,所以h x max =h 2a =ln 2a -3≤0,解得:a ≥2e 3,所以a 的最小值为2e3.15(2024·山东济南·二模)已知函数f x =ax 2-ln x -1,g x =xe x -ax 2a ∈R .(1)讨论f x 的单调性;(2)证明:f x +g x ≥x .【答案】(1)答案见详解(2)证明见详解【分析】(1)求导可得fx =2ax 2-1x,分a ≤0和a >0两种情况,结合导函数的符号判断原函数单调性;(2)构建F x =f x +g x -x ,x >0,h x =e x -1x,x >0,根据单调性以及零点存在性定理分析h x 的零点和符号,进而可得F x 的单调性和最值,结合零点代换分析证明.【详解】(1)由题意可得:f x 的定义域为0,+∞ ,fx =2ax -1x =2ax 2-1x,当a ≤0时,则2ax 2-1<0在0,+∞ 上恒成立,可知f x 在0,+∞ 上单调递减;当a >0时,令f x >0,解得x >12a;令f x <0,解得0<x <12a;可知f x 在0,12a 上单调递减,在12a,+∞ 上单调递增;综上所述:当a ≤0时,f x 在0,+∞ 上单调递减;当a >0时,f x 在0,12a 上单调递减,在12a,+∞ 上单调递增.(2)构建F x =f x +g x -x =xe x -ln x -x -1,x >0,则F x =x +1 e x -1x -1=x +1 e x -1x,由x >0可知x +1>0,构建h x =e x -1x ,x >0,因为y =e x ,y =-1x在0,+∞ 上单调递增,则h x 在0,+∞ 上单调递增,且h 12=e -20,h 1 =e -1 0,可知h x 在0,+∞ 上存在唯一零点x 0∈12,1 ,当0<x <x 0,则h x <0,即Fx <0;当x >x 0,则h x >0,即F x >0;可知F x 在0,x 0 上单调递减,在x 0,+∞ 上单调递增,则F x ≥F x 0 =x 0e x 0-ln x 0-x 0-1,又因为e x 0-1x 0=0,则e x 0=1x 0,x 0=e -x 0,x 0∈12,1 ,可得F x 0 =x 0×1x 0-ln e -x-x 0-1=0,即F x ≥0,所以f x +g x ≥x .16(2024·福建·模拟预测)已知函数f (x )=a ln x -bx 在1,f 1 处的切线在y 轴上的截距为-2.(1)求a 的值;(2)若f x 有且仅有两个零点,求b 的取值范围.【答案】(1)2(2)b ∈0,2e 【分析】(1)借助导数的几何意义计算即可得;(2)借助函数与方程的关系,可将f x 有且仅有两个零点转化为方程b =2ln xx有两个根,构造对应函数并借助导数研究单调性及值域即可得.【详解】(1)f (x )=ax-b ,f 1 =a -b ,f (1)=a ×0-b =-b ,则函数f (x )=a ln x -bx 在1,f 1 处的切线为:y +b =a -b x -1 ,即y =a -b x -a ,令x =0,则有y =-a =-2,即a =2;(2)由a =2,即f (x )=2ln x -bx ,若f x 有且仅有两个零点,则方程2ln x-bx=0有两个根,即方程b=2ln xx有两个根,令g x =2ln xx,则gx =21-ln xx2,则当x∈0,e时,g x >0,则当x∈e,+∞时,g x <0,故g x 在0,e上单调递增,在e,+∞上单调递减,故g x ≤g e =2ln ee=2e,又x→0时,g x →-∞,x→+∞时,g x →0,故当b∈0,2 e时,方程b=2ln x x有两个根,即f x 有且仅有两个零点.17(2024·浙江杭州·二模)已知函数f x =a ln x+2-12x2a∈R.(1)讨论函数f x 的单调性;(2)若函数f x 有两个极值点,(ⅰ)求实数a的取值范围;(ⅱ)证明:函数f x 有且只有一个零点.【答案】(1)答案见解析;(2)(ⅰ)-1<a<0;(ⅱ)证明见解析【分析】(1)求出函数的导函数,再分a≤-1、-1<a<0、a≥0三种情况,分别求出函数的单调区间;(2)(ⅰ)由(1)直接解得;(ⅱ)结合函数的最值与零点存在性定理证明即可.【详解】(1)函数f x =a ln x+2-12x2a∈R的定义域为-2,+∞,且f x =ax+2-x=-x+12+a+1x+2,当a≤-1时,f x ≤0恒成立,所以f x 在-2,+∞单调递减;当-1<a<0时,令f x =0,即-x+12+a+1=0,解得x1=-a+1-1,x2=a+1-1,因为-1<a<0,所以0<a+1<1,则-2<-a+1-1<-1,所以当x∈-2,-a+1-1时f x <0,当x∈-a+1-1,a+1-1时f x >0,当x∈a+1-1,+∞时f x <0,所以f x 在-2,-a+1-1上单调递减,在-a+1-1,a+1-1上单调递增,在a+1-1,+∞上单调递减;当a≥0时,此时-a+1-1≤-2,所以x∈-2,a+1-1时f x >0,当x∈a+1-1,+∞时f x <0,所以f x 在-2,a+1-1上单调递增,在a+1-1,+∞上单调递减.综上可得:当a≤-1时f x 在-2,+∞单调递减;当-1<a<0时f x 在-2,-a+1-1上单调递减,在-a+1-1,a+1-1上单调递增,在a+1-1,+∞上单调递减;当a≥0时f x 在-2,a+1-1上单调递增,在a+1-1,+∞上单调递减.(2)(ⅰ)由(1)可知-1<a<0.(ⅱ)由(1)f x 在-2,-a+1-1上单调递减,在-a+1-1,a+1-1上单调递增,在a+1-1,+∞上单调递减,所以f x 在x=a+1-1处取得极大值,在x=-a+1-1处取得极小值,又-1<a<0,所以0<a+1<1,则1<a+1+1<2,又f x极大值=f a+1-1=a ln a+1+1-12a+1-12<0,又f-a+1-1<f a+1-1<0,所以f x 在-a+1-1,+∞上没有零点,又-1<a<0,则4a<-4,则0<e4a<e-4,-2<e4a-2<e-4-2,则0<e 4a-22<4,所以f e 4a-2=4-12e4a-22>0,所以f x 在-2,-a+1-1上存在一个零点,综上可得函数f x 有且只有一个零点.18(2024·河北沧州·模拟预测)已知函数f(x)=ln x-ax+1,a∈R.(1)讨论f x 的单调性;(2)若∀x>0,f x ≤xe2x-2ax恒成立,求实数a的取值范围.【答案】(1)答案见解析(2)-∞,2.【分析】(1)利用导数分类讨论判断函数f x 的单调性,即可求解;(2)先利用导数证明不等式e x≥x+1,分离变量可得a≤e2x-ln x+1x恒成立,进而e 2x-ln x+1x≥2x+ln x+1-(ln x+1)x=2,即可求解.【详解】(1)函数f x =ln x-ax+1,a∈R的定义域为0,+∞,且f (x)=1x-a.当a≤0时,∀x∈0,+∞,f (x)=1x-a≥0恒成立,此时f x 在区间0,+∞上单调递增;当a>0时,令f (x)=1x-a=1-axx=0,解得x=1a,当x∈0,1 a时,f x >0,f x 在区间0,1a上单调递增,当x∈1a,+∞时,f x <0,f x 在区间1a,+∞上单调递减.综上所述,当a≤0时,f x 在区间0,+∞上单调递增;当a>0时,f x 在区间0,1 a上单调递增,在区间1a,+∞上单调递减.(2)设g x =e x-x-1,则g x =e x-1,在区间(-∞,0)上,g x <0,g x 单调递减,在区间0,+∞上,g x >0,g x 单调递增,所以g x ≥g0 =e0-0-1=0,所以e x≥x+1(当且仅当x=0时等号成立).依题意,∀x>0,f x ≤xe2x-2ax恒成立,即a≤e2x-ln x+1x恒成立,而e2x-ln x+1x=xe2x-(ln x+1)x=e2x+ln x-(ln x+1)x≥2x+ln x+1-(ln x+1)x=2,当且仅当2x+ln x=0时等号成立.因为函数h x =2x+ln x在0,+∞上单调递增,h1e=2e-1<0,h(1)=2>0,所以存在x0∈1e,1,使得2x0+ln x0=0成立.所以a ≤e 2x -ln x +1xmin =2,即a 的取值范围是-∞,2 .【点睛】方法点睛:利用导数证明不等式的恒成立问题的求解策略:形如f x ≥g x 的恒成立的求解策略:1、构造函数法:令F x =f x -g x ,利用导数求得函数F x 的单调性与最小值,只需F x min ≥0恒成立即可;2、参数分离法:转化为a ≥φx 或a ≤φx 恒成立,即a ≥φx max 或a ≤φx min 恒成立,只需利用导数求得函数φx 的单调性与最值即可;3,数形结合法:结合函数y =f x 的图象在y =g x 的图象的上方(或下方),进而得到不等式恒成立.19(2024·广东·二模)已知f x =12ax 2+1-2a x -2ln x ,a >0.(1)求f x 的单调区间;(2)函数f x 的图象上是否存在两点A x 1,y 1 ,B x 2,y 2 (其中x 1≠x 2),使得直线AB 与函数f x 的图象在x 0=x 1+x22处的切线平行?若存在,请求出直线AB ;若不存在,请说明理由.【答案】(1)f (x )在(0,2)上单调递减,在(2,+∞)上单调递增.(2)不存在,理由见解析【分析】(1)求出导函数,根据导函数的正负来确定函数的单调区间;(2)求出直线AB 的斜率,再求出f (x 0),从而得到x 1,x 2的等式,再进行换元和求导,即可解出答案.【详解】(1)由题可得f(x )=ax +1-2a -2x =ax 2+(1-2a )x -2x =(ax +1)(x -2)x(x >0)因为a >0,所以ax +1>0,所以当x ∈(0,2)时,f (x )<0,f (x )在(0,2)上单调递减,当x ∈(2,+∞)时,f (x )>0,f (x )在(2,+∞)上单调递增.综上,f (x )在(0,2)上单调递减,在(2,+∞)上单调递增.(2)由题意得,斜率k =y 2-y 1x 2-x 1=12ax 22+(1-2a )x 2-2ln x 2 -12ax 21+(1-2a )x 1-2ln x 1 x 2-x 1=12a (x 22-x 21)+(1-2a )(x 2-x 1)-2ln x 2x 1x 2-x 1=a 2(x 1+x 2)+1-2a -2ln x2x 1x 2-x 1,f x 1+x 22 =a (x 1+x 2)2+1-2a -4x 1+x 2,由k =f x 1+x22 得,ln x2x 1x 2-x 1=2x 1+x 2,即ln x 2x 1=2(x 2-x 1)x 1+x 2,即ln x 2x 1-2x2x 1-1 x 2x1+1=0令t =x 2x 1,不妨设x 2>x 1,则t >1,记g (t )=ln t -2(t -1)t +1=ln t +4t +1-2(t >1)所以g(t )=1t -4t +1 2=t -1 2t t +1 2>0,所以g (t )在(1,+∞)上是增函数,所以g (t )>g (1)=0,所以方程g (t )=0无解,则满足条件的两点A ,B 不存在.20(2024·广东深圳·二模)已知函数f x =ax +1 e x ,f x 是f x 的导函数,且f x -f x =2e x .(1)若曲线y =f x 在x =0处的切线为y =kx +b ,求k ,b 的值;(2)在(1)的条件下,证明:f x ≥kx +b .【答案】(1)k =3,b =1;(2)证明见解析.【分析】(1)根据题意,求导可得a 的值,再由导数意义可求切线,得到答案;(2)设函数g x =2x +1 e x -3x -1,利用导数研究函数g (x )的单调性从而求出最小值大于0,可得证.【详解】(1)因为f x =ax +1 e x ,所以f x =ax +a +1 e x ,因为f x -f x =2e x ,所以a =2.则曲线y =f (x )在点x =0处的切线斜率为f 0 =3.又因为f 0 =1,所以曲线y =f (x )在点x =0处的切线方程为y =3x +1,即得k =3,b =1.(2)设函数g x =2x +1 e x -3x -1,x ∈R ,则g x =2x +3 e x -3,设h x =g x ,则h x =e x 2x +5 ,所以,当x >-52时,h x >0,g x 单调递增.又因为g0 =0,所以,x >0时,g x >0,g x 单调递增;-52<x <0时,g x <0,g x 单调递减.又当x ≤-52时,g x =2x +3 e x -3<0,综上g x 在-∞,0 上单调递减,在0,+∞ 上单调递增,所以当x =0时,g x 取得最小值g 0 =0,即2x +1 e x -3x -1≥0,所以,当x ∈R 时,f x ≥3x +1.21(2024·辽宁·二模)已知函数f x =ax 2-ax -ln x .(1)若曲线y =f x 在x =1处的切线方程为y =mx +2,求实数a ,m 的值;(2)若对于任意x ≥1,f x +ax ≥a 恒成立,求实数a 的取值范围.【答案】(1)a =-1,m =-2(2)12,+∞ 【分析】(1)根据导数几何意义和切线方程,可直接构造方程组求得结果;(2)构造函数g x =ax 2-ln x -a x ≥1 ,将问题转化为g x ≥0恒成立;求导后,分别在a ≤0、a ≥12和0<a <12的情况下,结合单调性和最值求得符合题意的范围.【详解】(1)∵f x =2ax -a -1x,∴f 1 =2a -a -1=a -1,∵y =f x 在x =1处的切线为y =mx +2,∴f 1 =a -1=mf 1 =0=m +2 ,解得:a =-1,m =-2.(2)由f x +ax ≥a 得:ax 2-ln x -a ≥0,令g x =ax 2-ln x -a x ≥1 ,则当x ≥1时,g x ≥0恒成立;。
高二数学利用导数研究函数的单调性试题答案及解析1.已知函数f(x)=x2+2alnx.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若函数在上是减函数,求实数a的取值范围.【答案】(Ⅰ)当a≥0时,递增区间为(0,+∞);当a<0时,递减区间是(0,);递增区间是(,+∞);(Ⅱ).【解析】解题思路:(Ⅰ)求定义域与导函数,因含有参数,分类讨论求出函数的单调区间;(Ⅱ)利用“函数g(x)为[1,2]上的单调减函数,则g′(x)≤0在[1,2]上恒成立”,得到不等式恒成立;再分离参数,求函数的最值即可.规律总结:若函数在某区间上单调递增,则在该区间恒成立;“若函数在某区间上单调递减,则在该区间恒成立.试题解析:(Ⅰ)f′(x)=2x+=,函数f(x)的定义域为(0,+∞).①当a≥0时,f′(x)>0,f(x)的单调递增区间为(0,+∞);②当a<0时,f′(x)=.当x变化时,f′(x),f(x)的变化情况如下:x(0,)(,+∞)-0+由上表可知,函数f(x)的单调递减区间是(0,);单调递增区间是(,+∞).(Ⅱ)由g(x)=+x2+2aln x,得g′(x)=-+2x+,由已知函数g(x)为[1,2]上的单调减函数,则g′(x)≤0在[1,2]上恒成立,即-+2x+≤0在[1,2]上恒成立.即a≤-x2在[1,2]上恒成立.令h(x)=-x2,在[1,2]上h′(x)=--2x=-(+2x)<0,=h(2)=-,所以a≤-.所以h(x)在[1,2]上为减函数,h(x)min故实数a的取值范围为{a|a≤-}.【考点】1.利用导数求函数的单调区间;2.根据函数的单调性求参数.2.函数的部分图象大致为( ).【答案】D【解析】,为奇函数,图像关于原点对称,排除选项B;,所以排除选项A;当时,,所以排除选项C;故选选项D.【考点】函数的图像.3.已知函数f(x)=ax2+bln x在x=1处有极值.(1)求a,b的值;(2)判断函数y=f(x)的单调性并求出单调区间.【答案】(1);(2)减区间(0,1),增区间(1,+∞)【解析】(1)由函数f(x)=ax2+bln x在x=1处有极值可知,解得;(2)由(1)可知,其定义域是(0,+∞),由,得由,得所以函数的单调减区间(0,1),增区间(1,+∞).试题解析:(1)又函数f(x)=ax2+bln x在x=1处有极值,所以解得.(2)由(1)可知,其定义域是(0,+∞)由,得由,得所以函数的单调减区间(0,1),增区间(1,+∞).【考点】1.导数与极值;2.导数与单调性4.函数f(x)=ax3-x在R上为减函数,则()A.a≤0B.a<1C.a<0D.a≤1【答案】【解析】当时,在上为减函数,成立;当时, 的导函数为,根据题意可知, 在上恒成立,所以且,可得.综上可知.【考点】导数法判断函数的单调性;二次函数恒成立.5.已知在R上开导,且,若,则不等式的解集为()A.B.C.D.【答案】B【解析】令,则,由,则,在上为增函数,,所以的解集为,故选B.【考点】函数的单调性与导数的关系.6.设,分别是定义在上的奇函数和偶函数,当时,,且,则不等式的解集是 ( )A.B.C.D.【答案】D.【解析】先根据可确定,进而可得到在时单调递增,结合函数,分别是定义在上的奇函数和偶函数可确定在时也是增函数.于是构造函数知在上为奇函数且为单调递增的,又因为,所以,所以的解集为,故选D.【考点】利用导数研究函数的单调性.7.在上可导的函数的图形如图所示,则关于的不等式的解集为().A.B.C.D.【答案】A【解析】由图象可知f′(x)=0的解为x=-1和x=1函数f(x)在(-∞,-1)上增,在(-1,1)上减,在(1,+∞)上增∴f′(x)在(-∞,-1)上大于0,在(-1,1)小于0,在(1,+∞)大于0当x<0时,f′(x)>0解得x∈(-∞,-1)当x>0时,f′(x)<0解得x∈(0,1)综上所述,x∈(-∞,-1)∪(0,1),故选A.【考点】函数的图象;导数的运算;其他不等式的解法.8.函数,若对于区间[-3,2]上的任意x1,x2,都有 | f(x1)-f (x2)|≤ t,则实数t的最小值是()A.20B.18C.3D.0【答案】A【解析】所以在区间,单调递增,在区间单调递减.,,,,可知的最大值为20 .故的最小值为20.【考点】利用导数求函数的单调性与最值.9.设函数.(1)若在时有极值,求实数的值和的极大值;(2)若在定义域上是增函数,求实数的取值范围.【答案】(1)极大值为(2)【解析】(1)先求导,根据在时有极值,则,可求得的值。
例1.已知函数321()3f x x ax b =-+在2x =-处有极值. (1) 求函数()f x 的单调区间;(2) 求函数()f x 在[]3,3-上有且仅有一个零点,求b 的取值范围。
例2.已知函数232)1(31)(x k x x f +-=,kx x g -=31)(,且)(x f 在区间),2(+∞上为增函数.(1)、求实数k 的取值范围;(2)、若函数)(x f 与)(x g 的图象有三个不同的交点,求实数k 的取值范围.解:(1) 由321()3f x x ax b =-+,得22'()32f x x ax a =-- 令222a'()320,=-,(0)3f x x ax a x a a =--==>1得x由上述表格可知,3223()=()()()()11333327f x f a a a -=-----+=+极大值 3333()()11f x f a a a a a ==--+=-极大值(2)由(1)可知()(,)(,)3a f x a -∞-+∞在和上单调递增,在-a(,a )3上单调递减, 当33501,()=()10,()=f(a)=1-a 0327a a f x f a f x <≤-=+>≥极大值极小值 a()-y f x ∴=∞在(,+)3上最多只有一个实数根,且此零点仅在1a =时取得 又()y f x =在(,)3a -∞-上单调递增,且2(1)(1)0f a a a a -=-=-≤()--y f x ∴=∞a在(,)3上最多有一个实数根 于是,当01a <≤时,函数()y f x =有1个或2个零点,即函数()y f x =至多有两个实数根。
解:(1)由题意x k x x f )1()(2+-='∵)(x f 在区间),2(+∞上为增函数,∴0)1()(2>+-='x k x x f 在区间),2(+∞上恒成立即x k <+1恒成立,又2>x ,∴21≤+k ,故1≤k ∴k 的取值范围为1≤k(2)设312)1(3)()()(23-++-=-=kx x k x x g x f x h , )1)(()1()(2--=++-='x k x k x k x x h令0)(='x h 得k x =或1=x 由(1)知1≤k ,① 当1=k 时,0)1()(2≥-='x x h ,)(x h 在R 上递增,显然不合题意② 当时,,'随x 的变化情况如下表:由于02<k ,欲使)(x f 与)(x g 的图象有三个不同的交点,即方程0)(=x h 有三个不同的实根,故需0312623>-+-k k ,即0)22)(1(2<---k k k ∴⎩⎨⎧>--<02212k k k ,解得31-<k综上,所求k 的取值范围为31-<k例3(2007年高考天津理科卷)已知函数()()22211ax a f x x R x -+=∈+,其中a R ∈。
高二数学利用导数研究函数的单调性试题答案及解析1.设f(x)=ax3+bx+c为奇函数,其图象在点(1,f(1))处的切线与直线x-6y-7=0垂直,导函数f′(x)的最小值为-12.(1)求a,b,c的值;(2)求函数f(x)的单调递增区间,极大值和极小值,并求函数f(x)在[-1,3]上的最大值与最小值.【答案】(1)a=2,b=-12,c=0.;(2)函数的单调递增区间为(-∞,-),(,+∞).的极大值为,极小值为又,所以当时,取得最小值为,当x=3时取得最大值1.【解析】利用导数的几何意义求曲线在点(1,f(1))处的切线方程,注意这个点的切点.(2)解决类似的问题时,注意区分函数的最值和极值.求函数的最值时,要先求函数在区间内使的点,再计算函数在区间内所有使的点和区间端点处的函数值,最后比较即得.(3)分类讨论是学生在学习过程中的难点,要找好临界条件进行讨论.试题解析:(1)∵为奇函数,∴.即∴.∵的最小值为-12,∴.又直线x-6y-7=0的斜率为,因此,故,,.(2)f(x)=2x3-12x,f′(x)=6x2-12=6(x+)(x-),列表如下(-∞,--(-,)(,+∞))+0-+所以函数f(x)的单调递增区间为(-∞,-),(,+∞).f(x)的极大值为f(-)=8,极小值为f()=-8又f(-1)=10,f(3)=18,所以当x=时,f(x)取得最小值为-8,当x=3时f(x)取得最大值1【考点】(1)由函数的性质求参量;(2)函数性质的应用.2.已知是实数,函数。
(Ⅰ)若=3,求的值及曲线在点处的切线方程;(Ⅱ)求在区间上的最大值。
【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)先求出,然后直接利用得到的值,最后将的值代入中求出得到切点,而切线的斜率等于,写出切线方程即可;(Ⅱ)令即可求出的值,利用的值分三个区间讨论的正负得到函数的单调区间,根据函数的增减性得到函数的最大值即可.试题解析:(Ⅰ),因为,所以.又当时,,,所以曲线在处的切线方程为.(Ⅱ)令,解得,.当,即时,在上单调递增,从而.当,即时,在上单调递减,从而.当,即时,在上单调递减,在上单调递增,从而.综上所述,【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.3.已知函数为自然对数的底数)(Ⅰ)当时,求函数的极值;(Ⅱ)若函数在上单调递减,求的取值范围.【答案】(I)当时,函数的极小值为,极大值为;(II)的取值范围是.【解析】(I)先确定函数的定义域,然后求出函数的导函数,在函数的定义域内解不等式和,即可求出函数的单调区间,然后根据极值的定义进行判定极值即可.(II)令导函数在时恒成立即可求出的取值范围.试题解析:(I)当时,,当变化时,,的变化情况如下表:-+-所以,当时,函数的极小值为,极大值为(II)令①若,则,在内,,即,函数在区间上单调递减;②若,则,其图象是开口向上的抛物线,对称轴为,当且仅当,即时,在内,,函数在区间上单调递减;③若,则,其图象是开口向下的抛物线,当且仅当,即时,在内,,函数在区间上单调递减.综上所述,函数在区间上单调递减时,的取值范围是.【考点】利用导数研究函数的极值;函数的单调性与导数的关系.4.已知是定义在上的非负可导函数,且满足,对任意正数,若,则必有()A.B.C.D.【答案】A【解析】设,则,因此函数在区间上是减函数,,已知是定义在上的非负可导函数,且满足因此所以是减函数,,当等号成立.【考点】函数的单调性与导数5.已知函数在上单调递增,则实数的取值范围是.【答案】(,+)【解析】求导得==,由题在上单调递增知 =≥0,即对恒成立,设=(),=,当时,,当时,,所以在(1,)是增函数,在()上是减函数,故当=时,取最大值=,所以.【考点】常见函数的导数;导数的运算法则;导数与函数单调性的关系6.已知函数在区间上为减函数,则的取值范围是__ ___.【答案】【解析】因为,由,所以函数的单调减区间为,要使函数在区间上为减函数,则,所以.【考点】函数的单调性与导数.7.函数f(x)=ax3-x在R上为减函数,则()A.a≤0B.a<1C.a<0D.a≤1【答案】【解析】当时,在上为减函数,成立;当时, 的导函数为,根据题意可知, 在上恒成立,所以且,可得.综上可知.【考点】导数法判断函数的单调性;二次函数恒成立.8.设,(1)若在处有极值,求a;(2)若在上为增函数,求a的取值范围.【答案】(1)(2)【解析】(1)先求原函数的导数,知-1是极值点,然后解方程即可.(2)转化为>0对恒成立,即在上恒成立,在上最小值为,所以.(1)由已知可得f(x)的定义域为,又,-2分由已知. 3分经验证得符合题意 4分(2)解:>0对恒成立,, 7分 因为,所以的最大值为的最小值为, 11分又符合题意, 所以; 12分【考点】导数的几何意义;不等式恒成立问题.9. 设函数在R 上可导,其导函数为且函数的图像如图所示,则下列结论一定成立的是( )A .函数的极大值是,极小值是B .函数的极大值是,极小值是C .函数的极大值是,极小值是D .函数的极大值是,极小值是【答案】D 【解析】当时,且,所以;当时,且,所以;当时,且,所以;当时,且,所以。
高三数学利用导数研究函数的单调性试题答案及解析1.我们把形如y=f(x)φ(x)的函数称为幂指函数,幂指函数在求导时,可以利用对数法:在函数解析式两边求对数得ln y=φ(x)lnf(x),两边求导得=φ′(x)·ln f(x)+φ(x)·,于是y′=f(x)φ(x)[φ′(x)·ln f(x)+φ(x)·].运用此方法可以探求得y=x的单调递增区间是________.【答案】(0,e)【解析】由题意知y′=x (-ln x+·)=x·(1-ln x),x>0,>0,x>0,令y′>0,则1-ln x>0,所以0<x<e.2.已知函数f(x)=(ax+1)e x.(1)求函数f(x)的单调区间;(2)当a>0时,求函数f(x)在区间[-2,0]上的最小值.【答案】(1)见解析(2)当a>1时,f(x)在区间[-2,0]上的最小值为-a·;当0<a≤1时,f(x)在区间[-2,0]上的最小值为.【解析】解:依题意,函数的定义域为R,f′(x)=(ax+1)′e x+(ax+1)(e x)′=e x(ax+a+1).(1)①当a=0时,f′(x)=e x>0,则f(x)的单调递增区间为(-∞,+∞);②当a>0时,由f′(x)>0,解得x>-,由f′(x)<0,解得x<-,则f(x)的单调递增区间为(-,+∞),f(x)的单调递减区间为(-∞,-);③当a<0时,由f′(x)>0,解得x<-,由f′(x)<0解得,x>-,则f(x)的单调递增区间为(-∞,-),f(x)的单调递减区间为(-,+∞).(2)①当时,)上是减函数,在(-,0)上是增函数,则函数f(x)在区间[-2,0]上的最小值为f(-)=-a·;②当时,即当0<a≤1时,f(x)在[-2,0]上是增函数,则函数f(x)在区间[-2,0]上的最小值为f(-2)=.综上,当a>1时,f(x)在区间[-2,0]上的最小值为-a·;当0<a≤1时,f(x)在区间[-2,0]上的最小值为.3.函数f(x)=x(x-m)2在x=1处取得极小值,则m=________.【答案】1【解析】f′(1)=0可得m=1或m=3.当m=3时,f′(x)=3(x-1)(x-3),1<x<3,f′(x)<0;x<1或x>3,f′(x)>0,此时x=1处取得极大值,不合题意,所以m=1.4.设,曲线在点处的切线与直线垂直.(1)求的值;(2)若对于任意的,恒成立,求的范围;(3)求证:【解析】(1)求得函数f(x)的导函数,利用曲线y=f(x)在点(1,f(1))处的切线与直线2x+y+1=0垂直,即可求a的值;(2)先将原来的恒成立问题转化为lnx≤m(x−),设g(x)=lnx−m(x−),即∀x∈(1,+∞),g(x)≤0.利用导数研究g(x)在(0,+∞)上单调性,求出函数的最大值,即可求得实数m的取值范围.(3)由(2)知,当x>1时,m=时,lnx<(x−)成立.不妨令x=,k∈N*,得出[ln(2k+1)−ln(2k−1)]<,k∈N*,再分别令k=1,2,,n.得到n个不等式,最后累加可得.(1) 2分由题设,∴,. 4分(2),,,即设,即.6分①若,,这与题设矛盾. 7分②若方程的判别式当,即时,.在上单调递减,,即不等式成立. 8分当时,方程,设两根为,当,单调递增,,与题设矛盾.综上所述, . 10分(3) 由(2)知,当时, 时,成立.不妨令所以,11分12分累加可得∴∴ ---------------14分【考点】1.利用导数研究曲线上某点切线方程;2.导数在最大值、最小值问题中的应用.5.已知函数.(1)当时,证明:当时,;(2)当时,证明:.【答案】(1)证明过程详见解析;(2)证明过程详见解析.【解析】本题主要考查导数的运算、利用导数判断函数的单调性、利用导数求函数的最值等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,将当时,转化为,对函数求导,利用单调递增,单调递减,来判断函数的单调性来决定函数最值,并求出最值为0,即得证;第二问,先将转化为且,利用导数分别判断函数的单调性求出函数最值,分别证明即可.(1)时,,令,,∴在上为增函数 3分,∴当时,,得证. 6分(2)令,,时,,时,即在上为减函数,在上为增函数 9分∴①令,,∴时,,时,即在上为减函数,在上为增函数∴②∴由①②得. 12分【考点】导数的运算、利用导数判断函数的单调性、利用导数求函数的最值.6.已知函数.(1)当a=l时,求的单调区间;(2)若函数在上是减函数,求实数a的取值范围;(3)令,是否存在实数a,当(e是自然对数的底数)时,函数g(x)最小值是3,若存在,求出a的值;若不存在,说明理由.【答案】(1)单调递减区间为,单调递增区间为;(2);(3)存在实数.【解析】(1)把代入函数解析式得,且定义域为,利用导数法可求出函数的单调区间,由,分别解不等式,,注意函数定义域,从而可求出函数的单调区间;(2)此问题利用导数法来解决,若函数在上是减函数,则其导函数在上恒成立,又因为,所以函数,必有,从而解得实数的取值范围;(3)利用导数求极值的方法来解决此问题,由题意得,则,令,解得,通过对是否在区间上进行分类讨论,可求得当时,有,满足条件,从而可求出实数的值.(1)当时,. 2分因为函数的定义域为,所以当时,,当时,.所以函数的单调递减区间为,单调递增区间为. 4分(2)在上恒成立.令,有, 6分得,. 8分(3)假设存在实数,使有最小值3,. 9分当时,在上单调递减,,(舍去); 10分②当时,在上单调递减,在上单调递增.,解得,满足条件; 12分③当时,在上单调递减,,(舍去). 13分综上,存在实数,使得当时,有最小值3. 14分【考点】1.导数性质;2.不等式求解;3.分类讨论.7.设函数f(x)=x-2msin x+(2m-1)sin xcos x(m为实数)在(0,π)上为增函数,则m的取值范围为()A.[0,]B.(0,)C.(0,]D.[0,)【答案】A【解析】∵f(x)在区间(0,π)上是增函数,∴f′(x)=1-2mcos x+2(m-)cos 2x=2[(2m-1)cos2x-mcos x+1-m]=2(cos x-1)[(2m-1)cos x+(m-1)]>0在(0,π)上恒成立,令cos x=t,则-1<t<1,即不等式(t-1)[(2m-1)t+(m-1)]>0在(-1,1)上恒成立,①若m>,则t<在(-1,1)上恒成立,则只需≥1,即<m≤,②当m=时,则0·t+-1<0,在(-1,1)上显然成立;③若m<,则t>在(-1,1)上恒成立,则只需≤-1,即0≤m<.综上所述,所求实数m的取值范围是[0,].8.已知e为自然对数的底数,设函数f(x)=xe x,则()A.1是f(x)的极小值点B.﹣1是f(x)的极小值点C.1是f(x)的极大值点D.﹣1是f(x)的极大值点【答案】B【解析】f(x)=xe x⇒f′(x)=e x(x+1),令f′(x)>0⇒x>﹣1,∴函数f(x)的单调递增区间是[﹣1,+∞);令f′(x)<0⇒x<﹣1,∴函数f(x)的单调递减区间是(﹣∞,﹣1),故﹣1是f(x)的极小值点.故选:B.9.若函数f(x)=x3-ax2+(a-1)x+1在区间(1,4)上是减函数,在区间(6,+∞)上是增函数,则实数a的取值范围是________.【答案】[5,7]【解析】f′(x)=x2-ax+(a-1),由题意,f′(x)≤0在(1,4)恒成立且f′(x)≥0在(6,+∞)恒成立,即a≥x+1在(1,4)上恒成立且a≤x+1在(6,+∞)上恒成立,所以5≤a≤7.10.已知函数f(x)=x2-mlnx+(m-1)x,当m≤0时,试讨论函数f(x)的单调性;【答案】当-1<m≤0时单调递增区间是和(1,+∞),单调递减区间是;当m≤-1时,单调递增区间是和,单调递减区间是【解析】函数的定义域为,f′(x)=x-+(m-1)=.①当-1<m≤0时,令f′(x)>0,得0<x<-m或x>1,令f′(x)<0,得-m<x<1,∴函数f(x)的单调递增区间是和(1,+∞),单调递减区间是;②当m≤-1时,同理可得,函数f(x)的单调递增区间是和,单调递减区间是.11.若函数f(x)=x2+ax+在上是增函数,则a的取值范围是________.【答案】a≥3【解析】f′(x)=2x+a-≥0在上恒成立,即a≥-2x在上恒成立.令g(x)=-2x,求导可得g(x)在上的最大值为3,所以a≥3.12.函数y=(3-x2)e x的单调递增区间是()A.(-∞,0)B.(0,+∞)C.(-∞,-3)和(1,+∞)D.(-3,1)【答案】D【解析】y'=-2xe x+(3-x2)e x=e x(-x2-2x+3)>0x2+2x-3<0-3<x<1,∴函数y=(3-x2)e x的单调递增区间是(-3,1).13.若函数f(x)=x3-x2+ax+4恰在[-1,4]上单调递减,则实数a的值为________.【答案】-4【解析】∵f(x)=x3-x2+ax+4,∴f′(x)=x2-3x+a.又函数f(x)恰在[-1,4]上单调递减,∴-1,4是f′(x)=0的两根,∴a=-1×4=-4.14.函数f(x)=x2-ln x的单调递减区间为 ().A.(-1,1]B.(0,1]C.[1,+∞)D.(0,+∞)【答案】B【解析】由题意知,函数的定义域为(0,+∞),又由f′(x)=x-≤0,解得0<x≤1,所以函数的单调递减区间为(0,1].15.已知函数,(1)求函数的单调区间;(2)若方程有且只有一个解,求实数m的取值范围;(3)当且,时,若有,求证:.【答案】(1)的递增区间为,递减区间为和;(2);(3)详见解析.【解析】(1)对求导可得,令,或,由导数与单调性的关系可知,所以递增区间为,递减区间为;(2)若方程有解有解,则原问题转化为求f(x)的值域,而m只要在f(x)的值域内即可,由(1)知,,方程有且只有一个根,又的值域为,;(3)由(1)和(2)及当,时,有,不妨设,则有,,又,即,同理,又,,且在上单调递减,,即.试题解析:(1),令,即,解得,令,即,解得,或,的递增区间为,递减区间为和. 4分(2)由(1)知,, 6分方程有且只有一个根,又的值域为,由图象知8分(3)由(1)和(2)及当,时,有,不妨设,则有,,又,即, 11分,又,,且在上单调递减,,即. 13分【考点】1.导数在函数单调性上的应用;2. 导数与函数最值.16.某地区注重生态环境建设,每年用于改造生态环境总费用为亿元,其中用于风景区改造为亿元。
高二数学利用导数研究函数的单调性试题答案及解析1.已知函数f(x)=ax2+bln x在x=1处有极值.(1)求a,b的值;(2)判断函数y=f(x)的单调性并求出单调区间.【答案】(1);(2)减区间(0,1),增区间(1,+∞)【解析】(1)由函数f(x)=ax2+bln x在x=1处有极值可知,解得;(2)由(1)可知,其定义域是(0,+∞),由,得由,得所以函数的单调减区间(0,1),增区间(1,+∞).试题解析:(1)又函数f(x)=ax2+bln x在x=1处有极值,所以解得.(2)由(1)可知,其定义域是(0,+∞)由,得由,得所以函数的单调减区间(0,1),增区间(1,+∞).【考点】1.导数与极值;2.导数与单调性2.已知函数f(x)= -ax(a∈R,e为自然对数的底数).(1)讨论函数f(x)的单调性;(2)若a=1,函数g(x)=(x-m)f(x)-+x2+x在区间(0,+)上为增函数,求整数m 的最大值.【答案】(1)所以在为减函数,在为增函数;(2)最大值为1【解析】(1)利用函数的单调性与导数的关系;(2)解决类似的问题时,注意区分函数的最值和极值.求函数的最值时,要先求函数在区间内使的点,再计算函数在区间内所有使的点和区间端点处的函数值,最后比较即得.(3)第二问关键是分离参数,把所求问题转化为求函数的最小值问题.(4)若可导函数在指定的区间上单调递增(减),求参数问题,可转化为恒成立,从而构建不等式,要注意“=”是否可以取到.试题解析:解:(Ⅰ)定义域为,,当时,,所以在上为增函数; 2分当时,由得,且当时,,当时,所以在为减函数,在为增函数. 6分(Ⅱ)当时,,若在区间上为增函数,则在恒成立,即在恒成立 8分令,;,;令,可知,,又当时,所以函数在只有一个零点,设为,即,且; 9分由上可知当时,即;当时,即,所以,,有最小值, 10分把代入上式可得,又因为,所以,又恒成立,所以,又因为为整数,所以,所以整数的最大值为1. 12分【考点】(1)利用导数求函数的单调性;(2)利用导数求函数的最值问题.3.函数的单调递减区间是 .【答案】【解析】,;令,得;所以函数的单调递减区间为.【考点】利用导数研究函数的单调性.4.已知函数f(x)=ln(x+1)+ax2-x,a∈R.(1)当时,求函数y=f(x)的极值;(2)是否存在实数b∈(0,1),使得当x∈(-1,b]时,函数f(x)的最大值为f(b)?若存在,求实数a的取值范围,若不存在,请说明理由.【答案】(1)在x=1处取到极小值为,在x=0处取到极大值为0;(2).【解析】(1)将代入函数f(x)解析式,求出函数f(x)的导函数,令导函数等于零,求出其根;然后列出x的取值范围与的符号及f(x)的单调性情况表,从表就可得到函数f(x)的极值;(2)由题意首先求得:,故应按分类讨论:当a≤0时,易知函数f(x)在(-1,0)上单调递增,在(0,+∞)上单调递减,从而当b∈(0,1)时f(b)<f(0),所以不存在实数b∈(0,1),符合题意;当a>0时,令有x=0或,又要按根大于零,小于零和等于零分类讨论;对各种情况求函数f(x)x∈(-1,b]的最大值,使其最大值恰为f(b),分别求得a的取值范围,然而将所得范围求并即得所求的范围;若求得的a的取值范围为空则不存在,否则存在.试题解析:(1)当时,,则,化简得(x>-1) 2分列表如下:(1,+)+∴函数f(x)在(-1,0),(1,+∞)上单调递增,在(0,1)上单调递减,且f(0)=0,, 4分∴函数y=f(x)在x=1处取到极小值为,在x=0处取到极大值为0; 5分(2)由题意(1)当a≤0时,函数f(x)在(-1,0)上单调递增,在(0,+∞)上单调递减,此时,不存在实数b∈(0,1),使得当x∈(-1,b]时,函数f(x)的最大值为f(b); 7分(2)当a>0时,令有x=0或,(ⅰ)当即时,函数f(x)在和(0,+∞)上单调递增,在上单调递减,要存在实数b∈(0,1),使得当x∈(-1,b]时,函数f(x)的最大值为f(b),则,代入化简得(1)令,因恒成立,故恒有,∴时,(1)式恒成立; 10分(ⅱ)当即时,函数f(x)在和上单调递增,在上单调递减,此时由题,只需,解得,又,∴此时实数a的取值范围是; 12分(ⅲ)当时,函数f(x)在上单调递增,显然符合题意; 13分综上,实数a的取值范围是. 14分【考点】1.函数的极值;2.函数的最值;3.分类讨论.5.若关于的不等式的解集中的正整数解有且只有3个,则实数的取值范围是.【答案】.【解析】原不等式可化为(其中,否则原不等式无解),令,则,令,得且令有,且当,所以的简图如图所示,当时,,当时,,当时,,又且,要使不等式的解集中正整数有且只有3个,由图可知即包含,,,所以只需,故.【考点】导数的应用,数形结合思想.6.已知,,(1)当时,求的单调区间(2)若在上是递减的,求实数的取值范围;(3)是否存在实数,使的极大值为3?若存在,求的值;若不存在,请说明理由.【答案】(1)单调递增区间为,单调递减区间为,;(2);(3)不存在实数,使的极大值为3.【解析】(1)先由得到h(x)的具体解析表达式,求出其导函数,通过解不等式得到其增区间,解不等式得到其减区间;(2)在上是递减的等价于在上恒成立,从而通过分离参数转化为恒成立,从而获得实数的取值范围;(3)先利用导数方法将的极大值用a的代数式表达出来,得到的极大值在处取到,即,令其等于3显然不好判断是否有解,我们可以再利用导数的方法判断出在上单调递增,从而可知所求实数a不存在.试题解析:(1) 当时,,则令,解得;令,解得或所以的单调递增区间为,单调递减区间为,(2)由在上是递减的,得在上恒成立,即在上恒成立,解得,又因为,所以实数的取值范围为(3),令,解得或由表可知,的极大值在处取到,即,设,则,所以在上单调递增,所以不存在实数,使的极大值为3【考点】1.利用导数求函数的单调区间;2.已知函数的单调性求参数的取值范围;3.函数的极值.7.设函数.(1)若在时有极值,求实数的值和的极大值;(2)若在定义域上是增函数,求实数的取值范围.【答案】(1);的极大值为;(2).【解析】(1)在时有极值,意味着,可求解的值,再利用大于零或小于零求出函数的单调区间,进而确定函数的极大值;(2)转化成在定义域内恒成立问题,进而采用分离参数法,再利用基本不等式法即可求出参数的取值范围.试题解析:(1)∵在时有极值,∴有又∴,∴∴有由得,又∴由得或由得∴在区间和上递增,在区间上递减∴的极大值为(2)若在定义域上是增函数,则在时恒成立,需时恒成立,化为恒成立,,为所求.【考点】1.函数的极值与导数;2.函数的单调性与导数;3.分离参数法;4.基本不等式.8.已知定义域为R的函数,且对任意实数x,总有/(x)<3则不等式<3x-15的解集为()A.(﹣∞,4)B.(﹣∞,﹣4)C.(﹣∞,﹣4)∪(4,﹢∞)D.(4,﹢∞)【答案】【解析】设,则所求的不等式解集可理解为使的解集.的导函数为,根据题意可知对任意实数恒成立,所以在上单调递减.则,令,则根据单调递减可知:.【考点】导数法判断单调性;根据单调性解不等式.9.已知函数若对任意x1∈[0,1],存在x2∈[1,2],使,求实数a的取值范围?【答案】【解析】根据题意可知,函数在上的最小值得大于等于在上的值,所以得求得函数在上的最小值,通过导数法,判断单调性得最小值;然后令,建立关于的不等式,设出新的函数,探讨与的关系,从而得出满足条件的实数.试题解析:根据 ,求导可得,显然,所以函数在上单调递增.所以根据题意可知存在,使得,即即能成立,令,则要使,在能成立,只需使,又函数中,,求导可得.当时,显然,所以函数在上单调递减.所以,故只需.【考点】导数法求最值,单调性.10.已知定义在R上的函数f(x)=-2x3+bx2+cx(b,c∈R),函数F(x)=f(x)-3x2是奇函数,函数f(x)满足.(1)求f(x)的解析式;(2)讨论f(x)在区间(-3,3)上的单调性.【答案】(1);(2)单调递增区间为,单调递减区间为,.【解析】(1)先对求导可得,由得,又F(x)=f(x)-3x2是奇函数,得的值,代加上式可得,可得函数解析式;(2)由(1)知函数的导函数,令得增区间,令得减区间.试题解析:解:(1) 1分F(x)=f(x)-3x2是奇函数,得 3分,得 5分6分(2)令得 10分-0 +0-所以单调递增区间为单调递减区间为, 12分【考点】求导,函数的单调性与导数的关系.11.在区间内不是增函数的是()A.B.C.D.【答案】D【解析】选项中,时都有,所以在上为单调递增函数,所以在是增函数;选项在,而在上为增函数,所以在是增函数;选项,令得或,所以在为增函数,而,所以在上增函数;选项,令,得。
专题4.2 应用导数研究函数的单调性(真题测试)一、单选题1.(2022·上海松江·二模)下列函数中,与函数3y x =的奇偶性和单调性都一致的函数是( ) A .2yxB .sin y x x =+C .||2x y =D .tan y x =【答案】B 【解析】 【分析】根据初等函数的奇偶性与单调性,再结合导数即可判断答案. 【详解】容易判断()3R y x x =∈是奇函数,且在R 上是增函数,而2||,2x y x y ==是偶函数,tan y x =在R 上不是增函数,所以排除A,C,D.对B ,函数()sin R y x x x =+∈是奇函数,且1cos 0y x '=+≥,则函数在R 上是增函数. 故选:B.2.(2015·陕西·高考真题(文))设()sin f x x x =-,则()f x =( ) A .既是奇函数又是减函数 B .既是奇函数又是增函数 C .是有零点的减函数 D .是没有零点的奇函数【答案】B 【解析】 【详解】 试题分析:函数的定义域为,关于原点对称,,因此函数是奇函数,不恒等于0,函数是增函数,故答案为B .3.(2016·全国·高考真题(文))函数2||2x y x e =-在[]–2,2的图象大致为( )A .B .C .D .【答案】D 【解析】 【详解】试题分析:函数2||()2x f x x e =-|在[–2,2]上是偶函数,其图象关于y 轴对称, 因为22(2)8e ,08e 1f =-<-<, 所以排除,A B 选项;当[]0,2x ∈时,4x y x e '=-有一零点,设为0x ,当0(0,)x x ∈时,()f x 为减函数, 当0(,2)x x ∈时,()f x 为增函数. 故选:D.4.(2009·湖南·高考真题(文))若函数()y f x =的导函数在区间[,]a b 上是增函数,则函数()y f x =在区间[,]a b 上的图象可能是( )A .B .C .D .【答案】A 【解析】 【详解】试题分析:∵函数y=f (x )的导函数在区间[a ,b]上是增函数,∴对任意的a <x 1<x 2<b ,有也即在a,x 1,x 2,b 处它们的斜率是依次增大的.∴A 满足上述条件,对于B 存在使,对于C 对任意的a <x 1<x 2<b ,都有,对于D 对任意的x ∈[a ,b],不满足逐渐递增的条件,故选A .5.(2013·全国·高考真题(理))若函数21()f x x ax x =++在1(,)2+∞是增函数,则a 的取值范围是( ) A .[1,0]- B .[1,)-+∞ C .[0,3] D .[3,)+∞【答案】D 【解析】 【详解】试题分析:由条件知()2120f x x a x -'=+≥在1,+2⎛⎫∞ ⎪⎝⎭上恒成立,即212a x x ≥-在1,+2⎛⎫∞ ⎪⎝⎭上恒成立. ∵函数212y x x =-在1,+2⎛⎫∞ ⎪⎝⎭上为减函数,∴max21123212y <-⨯=⎛⎫⎪⎝⎭, ∴.故选D .6.(2015·福建·高考真题(理))若定义在R 上的函数()f x 满足()01f =-,其导函数()f x '满足()1f x k '>>,则下列结论中一定错误的是( ) A .11f k k⎛⎫< ⎪⎝⎭B .111f k k ⎛⎫> ⎪-⎝⎭C .1111f k k ⎛⎫< ⎪--⎝⎭ D .111k f k k ⎛⎫> ⎪--⎝⎭ 【答案】C【解析】 【详解】试题分析:令()g()x f x kx =-,则()'()0g x f x k '=->,因此1111g()(0)(0)1111111k k g f f f k k k k k k ⎛⎫⎛⎫>⇒->⇒>-= ⎪ ⎪------⎝⎭⎝⎭,所以选C. 7.(2011·辽宁·高考真题(文))函数()f x 的定义域为R ,()12f -=,对任意x ∈R ,()2f x '>,则()24f x x >+的解集为( ) A .()1,1- B .()1,-+∞C .(),1-∞-D .(),-∞+∞【答案】B 【解析】 【分析】构造函数()()24g x f x x =--,利用导数判断出函数()y g x =在R 上的单调性,将不等式()24f x x >+转化为()()1g x g >-,利用函数()y g x =的单调性即可求解. 【详解】依题意可设()()24g x f x x =--,所以()()20g x f x ''=->. 所以函数()y g x =在R 上单调递增,又因为()()11240g f -=-+-=. 所以要使()()240g x f x x =-->,即()()1g x g >-,只需要1x >-,故选B. 8.(2022·青海·模拟预测(理))若01a b <<<,则( ) A .e e ln ln b a b a -<- B .e e ln ln b a b a -≥- C .e e a b b a ≤ D .e e a b b a >【答案】D 【解析】 【分析】对于A,B ,构造函数()e ln x f x x =-,利用导数判断其单调性,根据01a b <<<,比较()e ln ,()e ln abf a a f b b =-=-,可判断A,B ;对于C,D, 设e g()=x x x,利用导数判断其单调性,根据01a b <<<,比较(),()g a g b ,可判断C,D. 【详解】对于A,B,令()e ln x f x x =- ,则1()e xf x x '=-,当01x <<时,1()e xf x x'=-单调递增,且2132123()e 20,()e 0232f f ''=-<=-=>>故存在012(,)23x ∈ ,使得0()0f x '=,则当0(0,)x x ∈时,()e ln x f x x =-递减,当0(,1)x x ∈时,()e ln x f x x =-递增, 由于01a b <<<,此时()e ln ,()e ln a b f a a f b b =-=-大小关系不确定, 故A,B 均不正确;对于C,D,设e g()=x x x ,则e (1)g ()=x x x x -',当01x <<时,()0g x '<,故eg()=xx x单调递减,所以当01a b <<<时,()()g a g b > ,即e ea b a b> ,即e e a b b a >,故C 错误,D 正确, 故选:D 二、多选题9.(2022·全国·模拟预测)已知定义在R 上的函数()f x 满足()()0f x f x +'>,则下列式子成立的是( ) A .()()20212022f ef < B .()()20212022f ef >C .()f x 是R 上的增函数D .0t ∀>,则()()tf x e f x t <+【答案】AD 【解析】 【分析】构造函数()xy e f x =,由已知可得函数单调递增,即可判断选项ABD ,举特例可判断选项C.【详解】由()()0f x f x +'>,得()()0x x e f x e f x '+>,即()0x e f x '⎡⎤>⎣⎦,所以函数()x y e f x =为R 上的增函数,故()()2021202220212022e f e f <,所以()()20212022f ef <,故A 正确,B 不正确;函数()xe f x 为增函数时,()f x 不一定为增函数,如()12x f x =,显然()x e f x 是增函数,但()f x 是减函数,所以C 不正确;因为函数()x e f x 为增函数,所以0t >时,有()()x x t e f x e f x t +<+,故有()()tf x e f x t <+成立,所以D 正确.故选:AD.10.(2022·湖北·模拟预测)已知正实数a ,b ,c 满足1log b ac c b a <<<,则一定有( )A .1a <B .a b <C .b c <D .c a <【答案】AB 【解析】 【分析】根据1b c <,1a b <可得(),0,1c b ∈,进而判断出1a c <<,A 正确; 构造()ln xf x x=,0x >得到单调性,从而求出a b <,B 正确;CD 选项可以举出反例. 【详解】由正实数a ,b ,c ,以及1b c <,1a b <可得(),0,1c b ∈, 又log 1log c c a c >=,所以1a c <<. 所以b b a c <,又b a c b <,所以b a a b <, 即ln ln b a a b <,等价于ln ln a ba b<, 构造函数()ln xf x x=,0x > ()21ln xf x x -'=, 当()0,1x ∈时,()21ln 0xf x x -'=> 故()ln xf x x=在()0,1上递增,从而a b <. 又取b c =时,原式为1log b ab b b a <<<同样成立,故CD 不正确,故选:AB 11.(2022·辽宁沈阳·二模)已知奇函数()f x 在R 上可导,其导函数为()f x ',且()()1120f x f x x --++=恒成立,若()f x 在[]0,1单调递增,则( )A .()f x 在[]1,2上单调递减B .()00f =C .()20222022f =D .()20231f '=【答案】BCD 【解析】 【分析】根据函数的的对称性和周期性,以及函数的导数的相关性质,逐个选项进行验证即可. 【详解】 方法一:对于A ,若()f x x =,符合题意,故错误,对于B ,因已知奇函数()f x 在R 上可导,所以()00f =,故正确, 对于C 和D ,设()()g x f x x =-,则()g x 为R 上可导的奇函数,()00g =,由题意()()1111f x x f x x -+-=+--,得()()11g x g x -=+,()g x 关于直线1x =对称, 易得奇函数()g x 的一个周期为4,()()()2022200g g g ===,故C 正确,由对称性可知,()g x 关于直线1x =-对称,进而可得()10g '-=,(其证明过程见备注) 且()g x '的一个周期为4,所以()()202310g g '='-=,故D 正确.备注:()()11g x g x -=+,即()()11g x g x --=-+,所以()()11g x g x -+=--, 等式两边对x 求导得,()()11g x g x '-+=-'--, 令0x =,得()()11g g '-=-'-,所以()10g '-=. 方法二:对于A ,若()f x x =,符合题意,故错误,对于B ,因已知奇函数()f x 在R 上可导,所以()00f =,故正确,对于C ,将()()1120f x f x x --++=中的x 代换为1x +,得()()2220f x f x x --+++=,所以()()222f x f x x ++=+,可得()()4226f x f x x +++=+,两式相减得,()()44f x f x +-=,则()()624f f -=,()()1064f f -=,…,()()202220184f f -=, 叠加得()()202222020f f -=,又由()()222f x f x x ++=+,得()()2022f f =-+=, 所以()()2022220202022f f =+=,故正确,对于D ,将()()1120f x f x x --++=的两边对x 求导,得()()1120f x f x ''---++=, 令0x =得,()11f '=,将()()f x f x --=的两边对x 求导,得()()f x f x '-=',所以()11f '-=, 将()()44f x f x +-=的两边对x 求导,得()()4f x f x ''+=, 所以()()()2023201911f f f '''==⋅⋅⋅=-=,故正确. 故选:BCD12.(2021·福建·福州三中高三阶段练习)已知函数()xf x xe ax =+.则下列说法正确的是( )A .当0a =时,min ()0f x =B .当1a =时,直线2y x =与函数()f x 的图像相切C .若函数()f x 在区间[)0,∞+上单调递增,则0a ≥D .若在区间[]0,1上,()2f x x ≤恒成立,则1a e -≤【答案】BD 【解析】 【分析】对于A :当0a =时,()e xf x x =,求导函数,分析导函数的符号,得出函数()f x 的单调性,从而求得函数()f x 的最小值;对于B :当1a =时,()e +xf x x x '=,求导函数,设切点为()00,x y ,则过切点的切线方程为:()()()0000000e +e +e +1x x x y x x x x x -=-,由切线过原点,求得00x =,继而求得过原点的切线方程;对于C :问题等价于()+e 0xf x x x a '=+≥在区间[)0,∞+上恒成立,分离参数得e x a x x ≥--在区间[)0,∞+上恒成立,令()e xg x x x =--,求导函数,分析导函数的符号,得函数()g x 的单调性和最值,由此可判断;对于D :问题等价于2e x x x ax +≤在区间[]0,1上恒成立,0x =时,不等式恒成立;当01x <≤时,分离参数e x a x ≤-,令()e xh x x =-,求导函数,分析()h x '的符号,得函数()h x 的单调性和最值,由此可判断.【详解】对于A ,当0a =时,()()()e ,1e x xf x x f x x ==+',易知函数()f x 在(),1-∞-上单调递减,在()1,-+∞上单调递增,()min 1()1ef x f ∴=-=-,故选项A 不正确;对于B ,当1a =时,()()()()e ,1e 1,02x xf x x x f x x f +''=+=+=,∴函数()f x 在()0,0处的切线方程为2y x =,故选项B 正确;对于C ,()()1e xf x x a =++',若函数()f x 在区间[)0,∞+上单调递增,则()0f x '在[)0,∞+上恒成立,()1e x a x ∴-+,令()()1e ,0x g x x x =-+,则()()2e 0x g x x =-+<', ∴函数()g x 在[)0,∞+上单调递减,()max ()01a g x g ∴==-,故选项C 错误;对于D ,当0x =时,a ∈R 恒成立;当(]0,1x ∈时,()2f x x 恒成立等价于2e x x ax x +恒成立,即e x a x +,即e x a x -恒成立,设()e ,01x h x x x =-<,则()10e xh x '=-<在(]0,1上恒成立,()h x ∴在(]0,1上单调递减,()min ()11e a h x h ∴==-,故选项D 正确.故选:BD. 三、填空题13.(2009·江苏·高考真题)函数32()15336f x x x x =--+的单调减区间为_____. 【答案】(1,11)- 【解析】 【详解】f ′(x )=3x 2-30x -33=3(x -11)(x +1),令f ′(x )<0,得-1<x <11,所以单调减区间为(-1,11).14.(2022·河北衡水·高三阶段练习)已知函数()f x 的导函数为'()f x ,定义域为(0,)+∞,且满足'()()0xf x f x -<,则不等式2(2022)(2022)(2)f m m f ->-恒成立时m 的取值范围为__________. 【答案】()2022,2024【解析】 【分析】 设()()f x F x x=,根据题意得到()0F x '<,得出函数()F x 在(0,)+∞上单调递减,结合不等式2(2022)(2022)(2)f m m f ->-,得到020222m <-<,即可求解.【详解】由题意,函数()f x 的定义域为(0,)+∞,因为()()0xf x f x '-<,可得2()'()()'0f x xf x f x x x -⎡⎤=<⎢⎥⎣⎦, 设()()f x F x x=,可得()0F x '<,所以函数()F x 在(0,)+∞上单调递减,又由2(2022)(2022)(2)f m m f ->-,所以20220m ->,且(2022)(2)20222f m f m ->-,则020222m <-<,解得20222024m <<,即m 的取值范围为()2022,2024. 故答案为:()2022,2024.15.(2022·江苏盐城·三模)已知()f x '为()f x 的导函数,且满足()01f =,对任意的x 总有()()22f x f x '->,则不等式()223xf x e +≥的解集为__________. 【答案】[)0,+∞##{|0}x x ≥ 【解析】 【分析】 构造新函数()()22exf xg x +=,利用已知条件()()22f x f x '->,可以判断()g x 单调递增,利用()g x 的单调性即可求出不等式的解集 【详解】设函数()()22e x f x g x +=,则()()()()222221()22222e x x x x f x e e f x f x f x g x e '⋅-⋅⋅+⎡⎤⎣⎦'--'==⎛⎫ ⎪⎝⎭又()()22f x f x '-> ()0g x '∴>所以()g x 在R 上单调递增,又()()0023g f =+=故不等式2()23xf x e +≥ 可化为()(0)g x g ≥ 由()g x 的单调性可得该不等式的解集为[)0,+∞. 故答案为:[)0,+∞16.(2022·浙江·海亮高级中学模拟预测)已知函数()33x f x ax b =-+,则对任意的x ∈R ,存在a 、b (其中a 、b ∈R 且1a ≥),能使以下式子恒成立的是___________.①()()221f x f x ≤+;②()()2021f x f x +-=;③()()21f x f a -≤+;④()()221a f x f ->-.【答案】①②③ 【解析】 【分析】取1a =-,0b =,利用导数研究函数()f x 的单调性,可判断①;取20212=b 可判断②;取1a =-,利用导数研究函数()f x 的单调性,可判断③;分1a ≤-、1a ≥两种情况讨论,利用导数分析函数()f x 的单调性,可判断④. 【详解】对于①,取1a =-,0b =,则()33x f x x =+,()210f x x '=+>,所以,函数()f x 在R 上为增函数,因为()221210x x x +-=-≥,即221x x ≤+,故()()221f x f x ≤+恒成立,①对;对于②,取1a =-,20212=b ,则()3202132x f x x =++,所以,()()33202120213232x x f x x x --=-+=--+,则()()2021f x f x +-=,②对; 对于③,当1a =-时,()33x f x x b =++,则()210f x x '=+>,所以,函数()f x 在R 上为增函数,20x -≤,故()()21f x f a -≤+,③对;对于④,当1a ≥时,()2f x x a '=-.由()0f x '>可得x <x ()0f x '<可得x <此时,函数()f x 的增区间为(,-∞、)+∞,减区间为(,所以,函数()f x 的极大值为(f b b =+>,极小值为fb b =<,20x ≥,所以,()2f x fb ≥=,1210a a --≤-<-<,所以,(()()210af f f b f->->=>,则()()221af x f ->-不恒成立;当1a ≤-时,()20f x x a '=->,则()f x 在R 上为增函数,因为20x ≥,211--≥a ,所以,()2f x 、()21af --的大小关系无法确定,④错.故答案为:①②③. 四、解答题17.(2014·全国·高考真题(文))函数f(x)=ax 3+3x 2+3x(a≠0). (1)讨论函数f(x)的单调性;(2)若函数f(x)在区间(1,2)是增函数,求a 的取值范围. 【答案】(1)见解析;(2)5[,0)(0,)4-⋃+∞【解析】 【分析】 【详解】试题分析:(1)首先求出函数的导数,然后求出使()0f x '>或()0f x '<的解集即可. (2)分类讨论在区间(1,2)上使()0f x '>成立的条件,并求出参数a 的取值范围即可 试题解析:(1)2()363f x ax x '=++,2()3630f x ax x ++'==的判别式△=36(1-a ). (i )若a≥1,则()0f x '≥,且()0f x '=当且仅当a=1,x=-1,故此时f (x )在R 上是增函数.(ii )由于a≠0,故当a<1时,()0f x '=有两个根:12x x ==, 若0<a<1,则当x ∈(-∞,x 2)或x ∈(x 1,+∞)时,()0f x '>,故f (x )在(-∞,x 2),(x 1,+∞)上是增函数;当x ∈(x 2,x 1)时,()0f x '<,故f (x )在(x 2,x 1)上是减函数;若a<0,则当x ∈(-∞,x 2)或x ∈(x 1,+∞)时,()0f x '<,故f (x )在(-∞,x 2),(x 1,+∞)上是减函数;当x ∈(x 2,x 1)时,()0f x '>,故f (x )在(x 2,x 1)上是增函数;(2)当a>0,x>0时,()0f x '>,所以当a>0时,f (x )在区间(1,2)是增函数. 若a<0时,f (x )在区间(1,2)是增函数当且仅当(1)0f '≥且(2)0f '≥,解得504a -≤<.综上,a 的取值范围是5[,0)(0,)4-⋃+∞.18.(2008·四川·高考真题(文))设1x =和2x =是函数()531f x x ax bx =+++的两个极值点.(1)求a 和b 的值;(2)求()f x 的单调区间 【答案】(1)25,203a b =-= (2)单调增区间是()()(),2,1,1,2,-∞--+∞,单调减区间是()()2,1,1,2-- 【解析】 【分析】(1)根据极值点为导函数的零点,且在零点两边导函数符号相反,列出方程组,求出a 和b 的值,代入检验是否符合要求;(2)在第一问的基础上求出导函数,解不等式,求出单调区间. 【详解】(1)因为()4253f x x ax b =++',由题设知:()1530f a b '=++=()42225230f a b =⨯⨯+'+=,解得:25,203a b =-=,此时()53252013f x x x x +-=+,()()()422252520514f x x x x x =+=-'--,令()0f x '>得:2x <-或11x -<<或2x >,令()0f x '<得:21x -<<-或12x <<,故1x =是函数的极大值点,2x =是函数的极小值点,满足要求,综上:25,203a b =-=; (2)由(1)知()()()()()()()42245351451212f x x ax b x x x x x x =++=--=++--'当()()(),21,12,x ∈-∞-⋃-⋃+∞时,()0f x '>;当()()2,11,2x ∈--⋃时,()0f x '<. 因此()f x 的单调增区间是()()(),2,1,1,2,-∞--+∞,()f x 的单调减区间是()()2,1,1,2-- 19.(2017·全国·高考真题(文))已知函数f (x )=e x (e x -a )-a 2x ,其中参数a ≤0. (1)讨论f (x )的单调性; (2)若f (x )≥0,求a 的取值范围.【答案】(1) f (x )在,ln 2⎛⎫⎛⎫-∞- ⎪ ⎪⎝⎭⎝⎭a 上单调递减,在区间ln ,2⎛⎫⎛⎫-+∞ ⎪ ⎪⎝⎭⎝⎭a 上单调递增.(2)3420e ⎡⎤-⎢⎥⎣⎦,【解析】 【分析】(1)求f (x )的导函数为f ′(x )=(2e x +a )(e x -a ),通过讨论a ,求函数的单调区间即可. (2)因为f (x )≥0,所以即求f (x )的最小值大于等于0,由第(1)的结果求的f (x )的最小值,解关于a 的不等式即可求出a 的范围. 【详解】(1)函数f (x )的定义域为(-∞,+∞),且a ≤0. f ′(x )=2e 2x -a e x -a 2=(2e x +a )(e x -a ).①若a =0,则f (x )=e 2x ,在(-∞,+∞)上单调递增.②若a <0,则由f ′(x )=0,得x =ln 2a ⎛⎫- ⎪⎝⎭.当x ∈,ln 2⎛⎫⎛⎫-∞- ⎪ ⎪⎝⎭⎝⎭a 时,f ′(x )<0;当x ∈ln ,2⎛⎫⎛⎫-+∞ ⎪ ⎪⎝⎭⎝⎭a 时,f ′(x )>0.故f (x )在,ln 2⎛⎫⎛⎫-∞- ⎪ ⎪⎝⎭⎝⎭a 上单调递减,在区间ln ,2⎛⎫⎛⎫-+∞ ⎪ ⎪⎝⎭⎝⎭a 上单调递增.(2)①当a =0时,f (x )=e 2x ≥0恒成立.②若a <0,则由(1)得,当x =ln 2a ⎛⎫- ⎪⎝⎭时,f (x )取得最小值,最小值为f ln 2a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭=a 23ln 42a ⎡⎤⎛⎫-- ⎪⎢⎥⎝⎭⎣⎦,故当且仅当a 23ln 42a ⎡⎤⎛⎫-- ⎪⎢⎥⎝⎭⎣⎦≥0,即0>a ≥342e -时,f (x )≥0. 综上a 的取值范围是[342e -,0]. 20.(2014·山东·高考真题(文))设函数若,求曲线处的切线方程;讨论函数的单调性.【答案】(1)210x y --=.(2)当0a ≥时,函数()f x 在(0,)+∞上单调递增;当12a ≤-时,函数()f x 在(0,)+∞上单调递减;当102a -<<时,()f x 在,)+∞上单调递减,在上单调递增.【解析】 【详解】试题分析:(1)由题意知0a =时,1(),(0,)1x f x x x -=∈+∞+,求切线的斜率,即1(1)2f '=,又(1)0f =,由直线方程的点斜式进一步整理,得到切线方程为210x y --=.(2)函数()f x 的定义域为(0,)+∞,2222(22)()(1)(1)a ax a x af x x x x x +++'=+=++,根据a 的不同情况,讨论导函数值的正负,以确定函数的单调性.其中0a ≥时,情况较为单一,()0f x '>,函数()f x 在(0,)+∞上单调递增, 当0a <时,令2()(22)g x ax a x a =+++,由于22(22)44(21)a a a ∆=+-=+,再分12a =-,12a <-,102a -<<等情况加以讨论.试题解析:(1)由题意知0a =时,1(),(0,)1x f x x x -=∈+∞+, 此时22()(1)f x x ='+,可得1(1)2f '=,又(1)0f =, 所以曲线()y f x =在(1,(1))f 处的切线方程为210x y --=. (2)函数()f x 的定义域为(0,)+∞, 2222(22)()(1)(1)a ax a x af x x x x x +++'=+=++,当0a ≥时,()0f x '>,函数()f x 在(0,)+∞上单调递增, 当0a <时,令2()(22)g x ax a x a =+++, 由于22(22)44(21)a a a ∆=+-=+, 当12a =-时,0∆=,221(1)2()0(1)x f x x x --=≤+',函数()f x 在(0,)+∞上单调递减,当12a <-时,0,()0g x ∆<<,()0f x '<,函数()f x 在(0,)+∞上单调递减,当102a -<<时,0∆>,设1212,()x x x x <是函数()g x 的两个零点,则1x =2x =由1x =0=>,所以1(0,)x x ∈时,()0,()0g x f x '<<,函数()f x 单调递减, 12(,)x x x ∈时,()0,()0g x f x '>>,函数()f x 单调递增,2(,)x x ∈+∞时,()0,()0g x f x '<<,函数()f x 单调递减,综上可知,当0a ≥时,函数()f x 在(0,)+∞上单调递增; 当12a ≤-时,函数()f x 在(0,)+∞上单调递减;当102a -<<时,()f x 在,)+∞上单调递减,在上单调递增.21.(2021·全国·高考真题(理))已知0a >且1a ≠,函数()(0)ax x f x x a =>.(1)当2a =时,求()f x 的单调区间;(2)若曲线()y f x =与直线1y =有且仅有两个交点,求a 的取值范围. 【答案】(1)20,ln2⎛⎤⎥⎝⎦上单调递增;2,ln2⎡⎫+∞⎪⎢⎣⎭上单调递减;(2)()()1,,+∞e e .【解析】 【分析】(1)求得函数的导函数,利用导函数的正负与函数的单调性的关系即可得到函数的单调性;(2)方法一:利用指数对数的运算法则,可以将曲线()y f x =与直线1y =有且仅有两个交点等价转化为方程ln ln x ax a =有两个不同的实数根,即曲线()y g x =与直线ln a y a=有两个交点,利用导函数研究()g x 的单调性,并结合()g x 的正负,零点和极限值分析()g x 的图象,进而得到ln 10a a e<<,发现这正好是()()0g a g e <<,然后根据()g x 的图象和单调性得到a 的取值范围.【详解】(1)当2a =时,()()()()22222ln 2222ln 2,242xx x x x x x x x x x f x f x ⋅-⋅-⋅===', 令()'0f x =得2ln 2x =,当20ln 2x <<时,()0f x '>,当2ln 2x >时,()0f x '<, ∴函数()f x 在20,ln2⎛⎤⎥⎝⎦上单调递增;2,ln2⎡⎫+∞⎪⎢⎣⎭上单调递减; (2)[方法一]【最优解】:分离参数()ln ln 1ln ln a x a x x x af x a x x a a x a x a==⇔=⇔=⇔=,设函数()ln x g x x =, 则()21ln xg x x -'=,令()0g x '=,得x e =, 在()0,e 内()0g x '>,()g x 单调递增;在(),e +∞上()0g x '<,()g x 单调递减;()()1max g x g e e∴==,又()10g =,当x 趋近于+∞时,()g x 趋近于0,所以曲线()y f x =与直线1y =有且仅有两个交点,即曲线()y g x =与直线ln ay a=有两个交点的充分必要条件是ln 10a a e<<,这即是()()0g a g e <<, 所以a 的取值范围是()()1,,+∞e e .[方法二]:构造差函数由()y f x =与直线1y =有且仅有两个交点知()1f x =,即a x x a =在区间(0,)+∞内有两个解,取对数得方程ln ln a x x a =在区间(0,)+∞内有两个解.构造函数()ln ln ,(0,)g x a x x a x =-∈+∞,求导数得ln ()ln a a x a g x a x x'-=-=. 当01a <<时,ln 0,(0,),ln 0,()0,()a x a x a g x g x '<∈+∞->>在区间(0,)+∞内单调递增,所以,()g x 在(0,)+∞内最多只有一个零点,不符合题意; 当1a >时,ln 0a >,令()0g x '=得ln a x a =,当0,ln a x a ⎛⎫∈ ⎪⎝⎭时,()0g x '>;当,ln a x a ⎛⎫∈+∞ ⎪⎝⎭时,()0g x '<;所以,函数()g x 的递增区间为0,ln a a ⎛⎫ ⎪⎝⎭,递减区间为,ln a a ⎛⎫+∞⎪⎝⎭. 由于1110e1,e 1e ln 0ln aaa a g a a ---⎛⎫<<<=--< ⎪⎝⎭,当x →+∞时,有ln ln a x x a <,即()0g x <,由函数()ln ln g x a x x a =-在(0,)+∞内有两个零点知ln 10ln ln a a g a a a ⎛⎫⎛⎫=->⎪ ⎪⎝⎭⎝⎭,所以e ln aa >,即eln 0a a ->.构造函数()eln h a a a =-,则e e()1a h a a a'-=-=,所以()h a 的递减区间为(1,e),递增区间为(e,)+∞,所以()(e)0h a h ≥=,当且仅当e a =时取等号,故()0>h a 的解为1a >且e a ≠.所以,实数a 的取值范围为(1,e)(e,)⋃+∞. [方法三]分离法:一曲一直曲线()y f x =与1y =有且仅有两个交点等价为1ax xa=在区间(0,)+∞内有两个不相同的解.因为a x x a =,所以两边取对数得ln ln a x x a =,即ln ln x a x a=,问题等价为()ln g x x =与ln ()x ap x a =有且仅有两个交点.①当01a <<时,ln 0,()ap x a<与()g x 只有一个交点,不符合题意. ②当1a >时,取()ln g x x =上一点()()000011,ln ,(),,()x x g x g x g x xx ''==在点()00,ln x x 的切线方程为()0001ln y x x x x -=-,即0011ln y x x x =-+. 当0011ln y x x x =-+与ln ()x a p x a =为同一直线时有00ln 1,ln 10,a ax x ⎧=⎪⎨⎪-=⎩得0ln 1,e e.a a x ⎧=⎪⎨⎪=⎩ 直线ln ()x a p x a =的斜率满足:ln 1e0a a <<时,()ln g x x =与ln ()x ap x a =有且仅有两个交点.记2ln 1ln (),()a a h a h a a a'-==,令()0h a '=,有e a =.(1,e),()0,()a h a h a '∈>在区间(1,e)内单调递增;(e,),()0,()a h a h a '∈+∞<在区间(,)e +∞内单调递减;e a =时,()h a 最大值为1(e)eg =,所当1a >且e a ≠时有ln 1e0a a <<. 综上所述,实数a 的取值范围为(1,e)(e,)⋃+∞. [方法四]:直接法()112ln (ln )()(0),()a a x x a a x xx x ax a a a x x a x a f x x f x a a a --'⋅-⋅-=>==. 因为0x >,由()0f x '=得ln a x a=. 当01a <<时,()f x 在区间(0,)+∞内单调递减,不满足题意;当1a >时,0ln aa >,由()0f x '>得0,()ln a x f x a<<在区间0,ln a a ⎛⎫ ⎪⎝⎭内单调递增,由()0f x '<得,()ln ax f x a >在区间,ln a a ⎛⎫+∞ ⎪⎝⎭内单调递减. 因为lim ()0x f x →+∞=,且0lim ()0x f x +→=,所以1ln a f a ⎛⎫> ⎪⎝⎭,即ln ln ln 1(ln )aaa a a a aa a a a a -⎛⎫ ⎪⎝⎭=>,即11ln ln (ln ),ln a a a a a a a a a -->>,两边取对数,得11ln ln(ln )ln a a a ⎛⎫-> ⎪⎝⎭,即ln 1ln(ln )a a ->.令ln a t =,则1ln t t ->,令()ln 1h x x x =-+,则1()1h x x'=-,所以()h x 在区间(0,1)内单调递增,在区间(1,)+∞内单调递减,所以()(1)0h x h ≤=,所以1ln t t -≥,则1ln t t ->的解为1t ≠,所以ln 1a ≠,即e a ≠. 故实数a 的范围为(1,e)(e,)⋃+∞.] 【整体点评】本题考查利用导数研究函数的单调性,根据曲线和直线的交点个数求参数的取值范围问题,属较难试题, 方法一:将问题进行等价转化,分离参数,构造函数,利用导数研究函数的单调性和最值,图象,利用数形结合思想求解.方法二:将问题取对,构造差函数,利用导数研究函数的单调性和最值. 方法三:将问题取对,分成()ln g x x =与ln ()x ap x a=两个函数,研究对数函数过原点的切线问题,将切线斜率与一次函数的斜率比较得到结论.方法四:直接求导研究极值,单调性,最值,得到结论.22.(2022·江苏江苏·三模)设函数()()2e sin 1xf x a x ax a x =+--+.(1)当0a ≤时,讨论()f x 的单调性; (2)若()f x 在R 上单调递增,求a .【答案】(1)在(),0∞-上单调递减,在()0,∞+上单调递增 (2)12 【解析】 【分析】(1)求得()()e cos 21xf x a x ax a =+--+',设()()g x f x '=,得到()()e 2sin x g x a x +'=-,得到()y g x =在R 上单调递增,得到()y f x '=在R 上单调递增,结合()00f '=,即可求解;(2)令()e 1xh x x =--,利用导数求得()()00h x h ≥=,得到e 10x x --≥和e 1x x -≥-,令()sin x x x ϕ=-,得出0x ≥时,sin x x ≥;0x ≤,得到sin x x ≤,分0a ≤,102a <<,12a >和12a =,四种情况讨论,结合导数求得函数的单调性与最值,即可求解. (1)解:因为()()2e sin 1xf x a x ax a x =+--+,可得()()e cos 21x f x a x ax a =+--+',设()()g x f x '=,则()()e 2sin xg x a x +'=-所以当0a ≤时,()0g x '>,函数()y g x =在R 上单调递增, 即函数()y f x '=在R 上单调递增,又由()00f '=,所以当0x <时,()0f x '<;当0x >时,()0f x '>,所以当0a ≤时,()f x 在(),0∞-上单调递减,在()0,∞+上单调递增. (2)解:令()e 1x h x x =--,可得()e 1xh x '=-,当0x >时,()0h x '>,()h x 单调递增; 当0x <时,()0h x '<,()h x 单调递减,又由()00h =,所以()()00h x h ≥=,即e 10x x --≥, 所以e 1x x ≥+,所以e 1x x -≥-;令()sin x x x ϕ=-,可得()1cos 0x x ϕ'=-≥,所以函数()x ϕ单调递增, 因为()00ϕ=,当0x ≥,可得()()00x ϕϕ≥=,即sin 0x x -≥,即sin x x ≥; 当0x ≤,可得()()00x ϕϕ≤=,即sin 0x x -≤,即sin x x ≤, (2.1)当0a ≤时,由(1)知不合题意;(2.2)当102a <<时,若(),0x ∈-∞,()()e cos 21xf x a x ax a =+--+'()1cos 211a x ax a x≤+--+- 121212111ax x a a ax a x x⎡⎤⎛⎫-- ⎪⎢⎥⎝⎭⎣⎦≤+---=--; 当1102x a-<<时,()0f x '<,()f x 单调递减,不合题意; (2.3)当12a >时,若()0,1x ∈,同理可得()12121ax x a f x x⎡⎤⎛⎫-- ⎪⎢⎝⎣'⎥⎭⎦≤-, 当1012x a<<-时,()0f x '<,()f x 单调递减,不合题意; (2.4)当12a =时,()2113e sin 222x f x x x x =+--,可得()13e cos 22xf x x x =+--', 设()()g x f x '=,则()1e sin 12xg x x '=--,①当0x >时,()111e sin 11sin 10222xg x x x x x x =-'-≥+--≥->,所以()g x 在()0,∞+上单调递增,()f x '在()0,∞+上单调递增, ②当0x >时,若[)1,0x ∈-,()()()1111e sin 11021221x x x g x x x x x +=--≤--=≤--', 若(],1x ∈-∞-,()111e sin 1102e 2x g x x -≤+'=--<, 所以()g x 在(),0∞-上单调递增,()f x '在(),0∞-上单调递增, 由①②可知,()()00f x f ''≥=,所以()f x 在R 上单调递增, 综上所述,12a =.。
专题10 利用导数研究函数的单调性一、单选题(本大题共10小题,共50.0分)1. 已知函数f(x)=e |2x|−4ax 2,对任意x 1,x 2∈(−∞,0]且x 1≠x 2,都有 (x 2−x 1)(f(x 2)−f(x 1))<0,则实数a 的取值范围是 ( )A. (−∞,e2]B. (−∞,−e2]C. [0,e2]D. [−e2,0]2. f(x)是定义在(0,+∞)上的非负可导函数,且满足xf′(x)+f(x)<0,对任意正数a ,b ,若a <b ,则必有( )A. af(b)<bf(a)B. bf(a)<af(b)C. bf(b)<af(a)D. af(a)<bf(b)3. 已知函数f(x)=e x −ax 2(a ∈R)有三个不同的零点,则实数a 的取值范围是( )A. (e4,+∞)B. (e2,+∞)C. (e 24,+∞)D. (e 22,+∞)4. 已知定义域为R 的奇函数y =f(x)的导函数为y =f′(x),当x >0时,xf′(x)−f(x)<0,若a =f(e)e,b =f(ln2)ln2,c =f(−3)−3,则a,b,c 的大小关系正确的是( )A. a <b <cB. b <c <aC. a <c <bD. c <a <b5. 函数f(x)的图象如图所示,则不等式(x −2)f′(x)>0的解集为( )A. (2,+∞)B. (−∞,−1)C. (−∞,−1) ∪(1,2)D. (−1,1)∪(2,+∞)6. 已知函数f(x)=e x−x 22−1,若f(x)≥kx 在x ∈[0,+∞)时总成立,则实数k 的取值范围是( )A. (−∞,1]B. (−∞,e]C. (−∞,2e]D. (−∞,e 2]7. 设点P 为函数f(x)=12x 2+2ax 与g(x)=3a 2lnx +b(a >0)的图像的公共点,以P 为切点可作直线与两曲线都相切,则实数b 的最大值为( )A. 23e 23B. 32e 23C. 23e 32D. 32e 328.已知函数f(x)=13x3+mx2+nx+2,其导函数f′(x)为偶函数,f(1)=−23,则函数g(x)=f′(x)e x在区间[0,2]上的最小值为()A. −3eB. −2eC. eD. 2e9.已知函数f(x)=xe x−mx+m2(e为自然对数的底数)在(0,+∞)上有两个零点,则m的范围是()A. (0,e)B. (0,2e)C. (e,+∞)D. (2e,+∞)10.已知f(x),g(x)都是定义在R上的函数,g(x)≠0,f′(x)g(x)>f(x)g′(x),且f(x)=a x g(x)(a>0,且a≠1),f(1)g(1)+f(−1)g(−1)=103,若数列{f(n)g(n)}的前n项和大于363,则n的最小值为()A. 4B. 5C. 6D. 7二、单空题(本大题共4小题,共20.0分)11.设定义域为R的函数f(x)满足f′(x)>f(x),则不等式e x−1f(x)<f(2x−1)的解集为__________.12.若函数f(x)=xx2+a (a>0)在[1,+∞)上的最大值为√33,则a的值为________.13.已知函数f(x)=a−x2(0<x<√a)在其图象上任意一点P(t,f(t))处的切线,与x轴、y轴的正半轴分别交于M,N两点,设△OMN(O是坐标原点)的面积为S(t),当t=t0时,S(t)取得最小值,则√at0的值为.14.函数f(x)的定义域为R,f(0)=2,对于任意的x∈R,f(x)+f’(x)>1,则不等式e x f(x)>e x+1的解集为__________.三、解答题(本大题共3小题,共30分)15.已知函数f(x)=12x2−(a+1)x+alnx+1.(Ⅰ)若x=3是f(x)的极值点,求f(x)的单调区间;(Ⅱ)若f(x)≥1恒成立,求a的取值范围.16.已知函数f(x)=ax+lnx,g(x)=e x−1−1.(1)讨论函数y=f(x)的单调性;(2)若不等式f(x)≤g(x)+a在x∈[1,+∞)上恒成立,求实数a的取值范围.17.已知函数f(x)=ax +lnx,g(x)=12bx2−2x+2,a,b∈R.(1)求函数f(x)的单调区间;(2)记函数ℎ(x)=f(x)+g(x),当a=0时,ℎ(x)在(0,1)上有且只有一个极值点,求实数b的取值范围.专题10 利用导数研究函数的单调性一、单选题(本大题共10小题,共50.0分)18. 已知函数f(x)=e |2x|−4ax 2,对任意x 1,x 2∈(−∞,0]且x 1≠x 2,都有 (x 2−x 1)(f(x 2)−f(x 1))<0,则实数a 的取值范围是 ( )A. (−∞,e2]B. (−∞,−e2]C. [0,e2]D. [−e2,0]【答案】A【解析】解:因为对任意x 1<0,x 2<0,都有(x 2−x 1)[f (x 2)−f (x 1)]<0, 所以函数f (x )在(−∞,0]单调递减. 又因为f(x)=e |2x|−4ax 2=e −2x −4ax 2, 所以f′(x )=−2e −2x −8ax ,因此−2e −2x −8ax ≤0对(−∞,0]恒成立, 即4a ≤−e −2x x对(−∞,0]恒成立. 令ℎ(x )=−e −2x x,则ℎ′(x )=e −2x (2x+1)x 2,因此当x ∈(−∞,−12)时,ℎ′(x )<0,函数ℎ(x )是减函数; 当x ∈(−12,0)时,ℎ′(x )>0,函数ℎ(x )是增函数, 所以当x =−12时,函数ℎ(x )有最小值ℎ(−12)=2e , 因此4a ≤2e ,即a ≤e2. 故选A .19. f(x)是定义在(0,+∞)上的非负可导函数,且满足xf′(x)+f(x)<0,对任意正数a ,b ,若a <b ,则必有( )A. af(b)<bf(a)B. bf(a)<af(b)C. bf(b)<af(a)D. af(a)<bf(b)【答案】C【解析】解:设g(x)=xf(x),(x >0), 则g′(x)=[xf(x)]′=xf′(x)+f(x)<0, ∴函数g(x)在(0,+∞)上是减函数, ∵a <b ,∴g(a)>g(b)即bf(b)<af(a)故选C.20.已知函数f(x)=e x−ax2(a∈R)有三个不同的零点,则实数a的取值范围是()A. (e4,+∞) B. (e2,+∞) C. (e24,+∞) D. (e22,+∞)【答案】C【解析】解:令f(x)=e x−ax2=0,当x=0时显然不成立,故a=e xx2,令g(x)=e xx2,则问题转化为直线y=a与g(x)=exx2的图象有三个交点,∵g′(x)=(x−2)e xx3,令g′(x)=0,解得x=2,∴当x<0或x>2时,g′(x)>0,g(x)在(−∞,0),(2,+∞)上单调递增,当0<x<2时,g′(x)<0,g(x)在(0,2)上单调递减,g(x)在x=2处取极小值,g(2)=e24,作出g(x)的图象如下:要使直线y=a与曲线g(x)=e xx2有三个交点,,则a>e24,故实数a的取值范围是.故选C.21.已知定义域为R的奇函数y=f(x)的导函数为y=f′(x),当x>0时,xf′(x)−f(x)<0,若a=f(e)e ,b=f(ln2)ln2,c=f(−3)−3,则a,b,c的大小关系正确的是()A. a<b<cB. b<c<aC. a<c<bD. c<a<b 【答案】D【解析】解:构造函数g(x)=f(x)x,∴g′(x)=xf′(x)−f(x)x 2,当x >0时,∵xf′(x)−f(x)<0, ∴g′(x)<0,∴函数g(x)在(0,+∞)单调递减. 又∵函数f(x)为奇函数, ∴g(x)=f(x)x是偶函数,∴c =f(−3)−3=g(−3)=g(3),∵a =f(e)e=g(e),b =f(ln2)ln2=g(ln2),ln2<1<e <3,∴g(3)<g(e)<g(ln2), ∴c <a <b , 故选D .22. 函数f(x)的图象如图所示,则不等式(x −2)f′(x)>0的解集为( )A. (2,+∞)B. (−∞,−1)C. (−∞,−1) ∪(1,2)D. (−1,1)∪(2,+∞)【答案】D【解析】解:由图知,f(x)的单调递增区间为(−∞,−1),(1,+∞),单调递减区间为(−1,1),所以在区间(−∞,−1)及(1,+∞)上,f′(x)>0,在(−1,1)上,f′(x)<0, 又(x −2)f′(x)>0, 所以{x −2>0f′(x)>0或{x −2<0f′(x)<0, 得x >2或−1<x <1,即不等式(x −2)f′(x)>0的解集为(−1,1)∪(2,+∞). 故选D .23.已知函数f(x)=e x−x22−1,若f(x)≥kx在x∈[0,+∞)时总成立,则实数k的取值范围是()A. (−∞,1]B. (−∞,e]C. (−∞,2e]D. (−∞,e2]【答案】A【解析】解:当x=0时,f(x)≥kx显然恒成立;当x>0时,f(x)≥kx即为e x−12x2−kx−1≥0,设g(x)=e x−12x2−kx−1(x>0),则g′(x)=e x−x−k,令ℎ(x)=g′(x)=e x−x−k,ℎ′(x)=e x−1>0,∴函数g′(x)在(0,+∞)上为增函数,①当k≤1时,g′(x)>g′(0)=1−k≥0,故函数g(x)在(0,+∞)上为增函数,∴g(x)>g(0)=0,即f(x)≥kx成立;②当k>1时,g′(0)=1−k<0,g′(k)=e k−2k>0,故存在x0∈(0,k),使得g′(x0)= 0,∴当x∈(0,x0)时,g′(x)<0,g(x)单调递减,则g(x)<g(0)=0,即f(x)<kx,不符题意;综上所述,实数k的取值范围为(−∞,1].故选:A.24.设点P为函数f(x)=12x2+2ax与g(x)=3a2lnx+b(a>0)的图像的公共点,以P为切点可作直线与两曲线都相切,则实数b的最大值为()A. 23e23 B. 32e23 C. 23e32 D. 32e32【答案】B【解析】解:设P(x0,y0),由于点P为两曲线的公切点,则12x02+2ax0=3a2lnx0+b.又在点P处的切线斜率相同,则f′(x0)=g′(x0),即x0+2a=3a2x0,即(x0+3a)(x0−a)= 0.又a>0,x0>0,所以x0=a,于是b=52a2−3a2lna,其中a>0.设ℎ(x)=52x2−3x2lnx,其中x>0,则ℎ′(x)=2x(1−3lnx),其中x>0,所以ℎ(x)在(0,e 13)内单调递增,在(e13,+∞)内单调递减,所以实数b 的最大值为ℎ(e 13)=32e 23.故选B .25. 已知函数f(x)=13x 3+mx 2+nx +2,其导函数f′(x)为偶函数,f(1)=−23,则函数g(x)=f′(x)e x 在区间[0,2]上的最小值为( )A. −3eB. −2eC. eD. 2e【答案】B【解析】f′(x)=x 2+2mx +n , 要使导函数f′(x)为偶函数,则m =0, 故f(x)=13x 3+nx +2,则f(1)=13+n +2=−23,解得n =−3, 所以f′(x)=x 2−3,故g(x)=e x (x 2−3),g′(x)=e x (x 2−3+2x)=e x (x −1)(x +3), 当x ∈[0,1)时,g′(x)<0,当x ∈(1,2]时,g′(x)>0.所以函数g(x)在区间[0,1)上单调递减,在区间(1,2]上单调递增, 所以函数g(x)在区间[0,2]上的最小值为g(1)=e ×(1−3)=−2e . 故选B .26. 已知函数f(x)=xe x −mx +m 2(e 为自然对数的底数)在(0,+∞)上有两个零点,则m 的范围是( )A. (0,e)B. (0,2e)C. (e,+∞)D. (2e,+∞)【答案】D【解析】解:由f(x)=xe x −mx +m 2=0得xe x =mx −m 2=m(x −12),当x =12时,方程不成立,即x ≠12, 则m =xe xx−12,设ℎ(x)=xe xx−12,(x >0且x ≠12),则ℎ′(x)=(xe x )′(x−12)−xe x(x−12)2=e x (x 2−12x−12)(x−12)2=12e x(x−1)(2x+1)(x−12)2,∵x >0且x ≠12,∴由ℎ′(x)=0得x =1,当x >1时,ℎ′(x)>0,函数为增函数,当0<x <1且x ≠12时,ℎ′(x)<0,函数为减函数, 则当x =1时函数取得极小值,极小值为ℎ(1)=2e ,当0<x <12时,ℎ(x)<0,且单调递减,作出函数ℎ(x)的图象如图: 要使m =xe xx−12有两个不同的根,则m >2e 即可,即实数m 的取值范围是(2e,+∞), 方法2:由f(x)=xe x −mx +m 2=0得xe x =mx −m 2=m(x −12),设g(x)=xe x ,ℎ(x)=m(x −12),g′(x)=e x +xe x =(x +1)e x ,当x >0时,g′(x)>0,则g(x)为增函数,设ℎ(x)=m(x −12)与g(x)=xe x 相切时的切点为(a,ae a ),切线斜率k =(a +1)e a , 则切线方程为y −ae a =(a +1)e a (x −a), 当切线过(12,0)时,−ae a =(a +1)e a (12−a),即−a =12a +12−a 2−a ,即2a 2−a −1=0,得a =1或a =−12(舍),则切线斜率k =(1+1)e =2e ,要使g(x)与ℎ(x)在(0,+∞)上有两个不同的交点,则m >2e , 即实数m 的取值范围是(2e,+∞) 故选:D .27. 已知f(x),g(x)都是定义在R 上的函数,g(x)≠0,f′(x)g(x)>f(x)g′(x),且f(x)=a x g(x)(a >0,且a ≠1),f(1)g(1)+f(−1)g(−1)=103,若数列{f(n)g(n)}的前n 项和大于363,则n 的最小值为( )A. 4B. 5C. 6D. 7【答案】C【解析】解:∵f(x)=a x ⋅g(x)(a >0且a ≠1),∴f(x)g(x)=a x , 又∵f′(x)g(x)>f(x)g′(x), ∴(f(x)g(x))′=f′(x)g(x)−f(x)g′(x)g 2(x)>0,∴f(x)g(x)=a x 是增函数, ∴a >1, ∵f(1)g(1)+f(−1)g(−1)=103.∴a +a −1=103,解得a =13或a =3, 综上得a =3.∴数列{f(n)g(n)}是等比数列,f (n )g (n )=3n . ∵数列{f(n)g(n)}的前n 项和大于363, ∴3+32+33+⋯+3n =3(1−3n )1−3=12(3n+1−3)>363,即3n+1>729,∴n +1>6,解得n >5. ∴n 的最小值为6. 故选C .二、单空题(本大题共4小题,共20.0分)28. 设定义域为R 的函数f (x )满足f′(x )>f (x ),则不等式e x−1f (x )<f (2x −1)的解集为__________. 【答案】(1,+∞) 【解析】解:设F(x)=f(x)e x,则F ′(x)=f ′(x)−f(x)e x,∵f ′(x)>f(x),∴F ′(x)>0,即函数F(x)在定义域R 上单调递增, ∵e x−1f(x)<f(2x −1), ∴f(x)e x<f(2x−1)e 2x−1,即F(x)<F(2x −1),∴x <2x −1,即x >1,∴不等式e x−1f(x)<f(2x −1)的解集为(1,+∞), 故答案为(1,+∞).29. 若函数f(x)=xx 2+a (a >0)在[1,+∞)上的最大值为√33,则a 的值为________.【答案】√3−1【解析】解:f′(x)=x 2+a−2x2(x2+a)2=a−x2(x2+a)2,当x>√a时,f′(x)<0,f(x)单调递减,当−√a<x<√a时,f′(x)>0,f(x)单调递增,当x=√a时,f(x)=√a2a =√33,√a=√32<1,不合题意.∴f(x)最大值=f(1)=11+a=√33,a=√3−1,经检验a=√3−1满足题意.故答案为√3−1.30.已知函数f(x)=a−x2(0<x<√a)在其图象上任意一点P(t,f(t))处的切线,与x轴、y轴的正半轴分别交于M,N两点,设△OMN(O是坐标原点)的面积为S(t),当t=t0时,S(t)取得最小值,则√at0的值为.【答案】√3【解析】解:因为f(x)=a−x2(0<x<√a),所以f′(x)=−2x,所以在点P处的切线的斜率为k=f′(t)=−2t,又f(t)=a−t2,所以在点P处切线方程为y−(a−t2)=−2t(x−t),令x=0,得y N=a+t2,令y=0得x M=t2+a2t,所以是坐标原点)的面积为:S(t)=12(a+t2)·t2+a2t=14·t4+2at2+a2t=14(t3+2at+a2t),所以S′(t)=14(3t2+2a−a2t2)=14·3t4+2at2−a2t2,由S′(t)=0,得t=√a3,当0<t<√a3时,S′(t)<0,函数S(t)单调递增,当t>√a3时,S′(t)<0,函数S(t)单调递增,所以当t=√a3时,S(t)取得最小值,此时t0=√a3,所以√a t 0=√a √a 3=√3.故答案为√3.31. 函数f(x)的定义域为R ,f(0)=2,对于任意的x ∈R ,f(x)+f’(x)>1,则不等式e x f(x)>e x +1的解集为__________.【答案】(0,+∞)【解析】解:构造函数g (x )=e x ·f (x )−e x ,则g ′(x )=e x ·f (x )+e x ·f ′(x )−e x=e x [f (x )+f ′(x )]−e x >e x −e x =0,∴g (x )=e x ·f (x )−e x 为R 上的增函数,∵g (0)=e 0·f (0)−e 0=1,∴不等式e x ·f(x)>e x +1转化为g (x )>g (0),∴x >0.则解集为(0,+∞).故答案为(0,+∞).三、解答题(本大题共3小题,共30分)32. 已知函数f(x)=12x 2−(a +1)x +alnx +1.(Ⅰ)若x =3是f(x)的极值点,求f(x)的单调区间;(Ⅱ)若f(x)≥1恒成立,求a 的取值范围.【答案】解:(Ⅰ)由题意知函数的定义域为(0,+∞),f′(x)=x −(a +1)+a x, ∵x =3是f(x)的极值点,∴f′(3)=3−(a +1)+a 3=0,解得a =3,当a =3时,f′(x)=(x−1)(x−3)x ,当x 变化时,故f(x)在(0,1)上单调递增,在(1,3)上单调递减,在(3,+∞)上单调递增;(Ⅱ)要使得f(x)≥1恒成立,即当x>0时,12x2−(a+1)x+alnx≥0恒成立,设g(x)=12x2−(a+1)x+alnx,则g′(x)=x−(a+1)+ax=(x−1)(x−a)x,(ⅰ)当a≤0时,由g′(x)<0得单减区间为(0,1),由g′(x)>0得单增区间为(1,+∞),故g(x)min=g(1)=−a−12≥0,得a≤−12;(ii)当0<a<1时,由g′(x)<0得单减区间为(a,1),由g′(x)>0得单增区间为(0,a),(1,+∞),此时g(1)=−a−12<0,∴不合题意;(iii)当a=1时,g(x)在(0,+∞)上单调递增,此时g(1)=−a−12<0,∴不合题意;(iv)当a>1时,由g′(x)<0得单减区间为(1,a),由g′(x)>0得单增区间为(0,1),(a,+∞),此时g(1)=−a−12<0,∴不合题意.综上所述,a的取值范围为(−∞,−12].33.已知函数f(x)=ax+lnx,g(x)=e x−1−1.(1)讨论函数y=f(x)的单调性;(2)若不等式f(x)≤g(x)+a在x∈[1,+∞)上恒成立,求实数a的取值范围.【答案】解:(1)函数f(x)定义域是(0,+∞),f′(x)=a+1x =ax+1x,当a≥0时,f′(x)>0,函数f(x)在(0,+∞)单调递增,无减区间;当a<0时,函数f(x)在(0,−1a )单调递增,在(−1a,+∞)单调递减,(2)由已知e x−1−lnx−ax−1+a≥0在x≥1恒成立,令F(x)=e x−1−lnx−ax−1+a,x≥1,则F′(x)=e x−1−1x−a,易得F′(x)在[1,+∞)递增,∴F′(x)≥F′(1)=−a,①当a≤0时,F′(x)≥0,F(x)在[1,+∞)递增,所以F(x)≥F(1)=0成立,符合题意.②当a>0时,F′(1)=−a<0,且当x=ln(a+1)+1时,F′(x)=a+1−1x−a=1−1x>0,∴∃x0∈(1,+∞),使F′(x0)=0,即∃x∈(1,x0)时F′(x)<0,F(x)在(1,x0)递减,F(x)<F(1)=0,不符合题意.综上得a≤0.34.已知函数f(x)=ax +lnx,g(x)=12bx2−2x+2,a,b∈R.(1)求函数f(x)的单调区间;(2)记函数ℎ(x)=f(x)+g(x),当a=0时,ℎ(x)在(0,1)上有且只有一个极值点,求实数b的取值范围.【答案】解:的定义域是(0,+∞),且 f′(x)=−ax2+1x=x−ax2;①若a⩽0,则f′(x)>0,f(x)的单调增区间是(0,+∞),②若a>0,令f′(x)=0,得x=a,当0<x<a时,f′(x)<0,当x>a时,f′(x)>0,∴f(x)的单调减区间是(0,a),单调增区间是(a,+∞);综上,当a⩽0时,f(x)的单调增区间是(0,+∞),无单调减区间;当a>0时,f(x)的单调减区间是(0,a),单调增区间是(a,+∞);(2)a=0时,,∴ℎ′(x)=bx−2+1x =bx2−2x+1x ,∵ℎ(x)在(0,1)上有且只有一个极值点,则ℎ′(x)=0在(0,1)上有唯一实数解,且两侧异号,由ℎ′(x)=0,得bx2−2x+1=0;令p(x)=bx2−2x+1,则p(x)在(0,1)上有且只有一个零点,易知p(0)=1>0,①当b =0,由p(x)=0,得x =12,满足题意;②当b >0时,由{Δ=4−4b >0p (1)=b −1<0,解得0<b <1;③当b <0时,{Δ=4−4b >0p (1)=b −1<0,得b <1,故b <0; 综上所述,ℎ(x)在(0,1)上有且只有一个极值点时,b <1. 故实数b 的取值范围为(−∞,1).。
利用导数求单调区间测试题及答案
高二数学(理)利用导数求单调区间、极值人教实验版(A)【本讲教育信息】一. 教学内容:利用导数求单调区间、极值
二. 重点、难点: 1. 在某区间()内,若 >0那么函数y=f(x)
在这个区间内单调递增,若,那么函数在这个区间内单调递减。
2. ,在,则称为的极大值。
3. ,在,则称为的极小值。
4. 极
值是一个局部性质 5. 时,是为极值的既不充分也不必要条件。
【典型例题】 [例1] 求下列函数单调区间(1)解:∴ ∴ (2)∴ ∴ (3)定义域为∴ (4)解:∴
[例2] 求满足条件的的取值范围。
(1)为R上的增函数解:∴ 时,也成立∴ (2)为R上增函数成立成立∴ (3)为R上
增函数∴
[例3] 证明下面各不等式(1)证:① 令∴ 在∴ 任取即:② 令∴ 在(0,+ )上↑ ∴ 任取即(2)令∴ ∴
[例4] 求下列函数的极值。
(1)解: x=1
[例5] 在x=1处取得极值10,求。
解:∴ 或(舍)∴
[例6] 曲线,过P(1,1)在原点取得极小值。
求此函数的极大值
的最小值。
解:由已知∴ ∴ 令∴ (-,-2)-2 (-2,0)-0 + ↓
∴
[例7] 已知在区间[-1,1]上是增函数,求实数的取值范围。
解:∵ 在[-1,1]上是增函数∴ 对恒成立,即对恒成立设,则解得
[例8] 设是R上的偶函数,(1)求的值;(2)证明在(0,+ )
上是增函数。
解:(1)依题意,对一切,有,即即,所以对一
切恒成立由于不恒为0,所以,即,又因为,所以(2)证明:由,得当时,有,此时,所以在(0,+ )内是增函数
[例9] 已知函数的图象过点P(0,2),且在点M(-1,)处的切线方程,(1)求函数的解析式;(2)求函数的单调区间。
解:(1)由的图象经过P(0,2),知,所以,由在点M()处的切线方
程为∴ 即∴ 解得故所求的解析式是(2)令,解得当或时,
当时,故在内是增函数,在内是减函数在内是增函数
[例10] 已知函数是R上的奇函数,当时,取得极值-2。
(1)求的单调区间和极大值。
(2)证明对任意,不等式恒成立。
解:(1)由奇函数定义,应有,即∴ 因此由条件为的极值,必有,故,解得因此,当时,,故在单调区间上是增函数当时,,故在单调区间(-1,1)上是减函数当时,,故在单调区间(1,)上是增函数所以在处取得极大值,极大值为(2)解:由(1)知,是减函数,且在[-1,1]上的最大值在[-1,1]上的最小值所以对任意,恒有
【模拟试题】 1. 两曲线与相切于点(1,-1)处,则值分别为() A. 0,2 B. 1,-3 C. -1,1 D. -1,-1 2. 设函数,则() A. 在(-,+ )单调增加 B. 在(-,+ )单调减少 C. 在(-1,1)单调减少,其余区间单调增加 D. 在(-1,1)单调增加,其余区间单调减少 3. 当时,有不等式() A. B. C. 当时,,当时, D. 当时,,当时, 4. 若连续函数在闭区间上有惟一的极大值和极小值,则() A. 极大值一定是最大值,极小值一定是最小值 B. 极大值必大于极小值 C. 极大值一定是最大值,或极小值一定是最小值 D. 极大值不一定是最大值,极小值也不一定是最小值5. 设在可导,则等于() A. B. C. D. 6. 下列求导运算正确的是() A. B. C. D. 7. 函数有极值的充要条件是() A. B. C.
D. 8. 设、分别是定义在R上的奇函数和偶函数,当时,,且,则不等式的解集是() A. B. C. D. 9. 设函数的图象如图所示,且与在原点相切,若函数的极小值为-4,(1)求的值;(2)求函数的递减区间。
10. 是否存在这样的k值,使函数在(1,2)上递减,在(2,-)上递增。
11. 设函数(1)若导数;并证明有两个不同的极值点;(2)若不等式成立,求的取值范围。
12. 已知过函数的图象上一点B(1,b)的切线的斜率为-3。
(1)求的值;(2)求A的取值范围,使不等式对于恒成立。
令 = ,是否存在一个实数,使得当时,有最大值1?
【试题答案】 1. D 2. C 3. B 4. D 5. D 6. D 7. C 8. D 9. 解析:(1)函数的图象经过(0,0)点∴ ,又图象与x轴相切于(0,0)
点,∴ ,得∴ ,当时,,当时,当时,函数有极小值-4 ∴,得(2),解得∴ 递减区间是(0,2) 10. 解析:,由题意,当时,当时,由函数的连续性可知即得或验证:当时,若,,若,符合题意当时,显然不合题意,综上所述,存在,满足题意 11. 解:(1)令得方程因,故方程有两个不同实根不妨设,由可判断的符号如下:当时,;当时,;当时,因此是极大值点,是极小值点(2)因,故得不等式即又由(1)知代入前面不等式,两边除以,并化简得解不等式得或(舍去)因此,当时,不等式 0成立 12. 解:(1),依题意得∴ ∴ ,把B(1,b)代入得∴ (2)令得或∵ ∴ 要使对于恒成立,则的最大值∴ (1)已知∴ ∵ ∴ ① 当时,,即∴ 在上为增函数的最大值,得(不合题意,舍去)② 当,,令,得列表如下:(0,)
+ 0 -↑ 极大值↓ 在处取最大值∴ ∴ ③ 当时,∴ 在上为减函数∴ 在上为增函数∴ 存在一个,使在上有最大值1。