高一数学导数求函数单调区间问题
- 格式:ppt
- 大小:508.00 KB
- 文档页数:9
有关高一数学必修一函数知识点总结4篇有关高一数学必修一函数知识点总结4篇积累通识知识可以让我们对各种事物有更全面、更深刻的理解和把握。
积累专业知识可以让我们在自己的领域内成为专家,获得更高的社会地位和经济回报。
下面就让小编给大家带来高一数学必修一函数知识点总结,希望大家喜欢! 高一数学必修一函数知识点总结篇1知识点总结本节知识包括函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性和函数的图象等知识点。
函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性是学习函数的图象的基础,函数的图象是它们的综合。
所以理解了前面的几个知识点,函数的图象就迎刃而解了。
一、函数的单调性1、函数单调性的定义2、函数单调性的判断和证明:(1)定义法(2)复合函数分析法(3)导数证明法(4)图象法二、函数的奇偶性和周期性1、函数的奇偶性和周期性的定义2、函数的奇偶性的判定和证明方法3、函数的周期性的判定方法三、函数的图象1、函数图象的作法(1)描点法(2)图象变换法2、图象变换包括图象:平移变换、伸缩变换、对称变换、翻折变换。
四、常见考法本节是段考和高考必不可少的考查内容,是段考和高考考查的重点和难点。
选择题、填空题和解答题都有,并且题目难度较大。
在解答题中,它可以和高中数学的每一章联合考查,多属于拔高题。
多考查函数的单调性、最值和图象等。
五、误区提醒1、求函数的单调区间,必须先求函数的定义域,即遵循“函数问题定义域优先的原则”。
2、单调区间必须用区间来表示,不能用集合或不等式,单调区间一般写成开区间,不必考虑端点问题。
3、在多个单调区间之间不能用“或”和“ ”连接,只能用逗号隔开。
4、判断函数的奇偶性,首先必须考虑函数的定义域,如果函数的定义域不关于原点对称,则函数一定是非奇非偶函数。
5、作函数的图象,一般是首先化简解析式,然后确定用描点法或图象变换法作函数的图象。
高一数学必修一函数知识点总结篇2一、函数的定义域的常用求法:1、分式的分母不等于零;2、偶次方根的被开方数大于等于零;3、对数的真数大于零;4、指数函数和对数函数的底数大于零且不等于1;5、三角函数正切函数y=tanx中x≠kπ+π/2;6、如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围。
浅谈数学中函数的单调性及其应用浅谈数学中函数的单调性及其应用摘要函数的单调性是高一数学课程中所接触到的函数的第一个性质,单调性的判断(用定义证明一个函数的单调性、求复合函数的单调性)及其应用(包括利用单调性求解不等式、利用单调性求函数的值域、利用单调性求函数的最值等)在高中数学中的作用和地位是非常重要的,它可以和高中阶段的很多知识点联系在一起,出题的方式、解题的方法也是多种多样的。
下面就我个人的理解和掌握,对函数的单调性判断及利用函数的单调性求解不等式、利用单调性求最值和参量等问题,举些具有代表性的例子。
关键词:函数;单调性;数学前言函数单调性是中学数学的重要内容之一,是高考的热点,常作为高考压轴题的考查内容,比如,本文通过整理发现陕西近年的高考数学题呈现一个现象,即多次要用函数单调性去做一些较难层次的题,分别是求参数范围、解不等式、证明不等式等。
同时,新课标对于函数单调性的教学目标是,要求学生能够熟练掌握单调性概念的证明方法,并应用单调性来求解一些基础题。
不管是高考趋势,还是新课标所倡导的教学理念,都对学生学习函数单调性提出了较高层次的要求。
但由于函数单调性的证明和应用的复杂性,使得学生在学习和做题过程中存在很多困难,例如,通常掌握单调性的概念证明是远远不够的。
那么,就出现了一个问题,除了它的的概念,是否还有其他可以证明函数单调性的方法,同时这些方法可以用来解决高考题。
针对于以上提到的两点,本文选择了函数单调性的判断和应用进行研究。
函数的单调性,是函数在它的定义域或其子集内如何增减的刻画。
它是研究函数必不可少的内容,不论是现实生活,还是学习其它理论知识,单调性都是一个很有用的工具。
函数是高中数学的中心内容,几乎渗透到数学的每一个角落,它不仅是一条重要的数学概念,而且是种重要的数学思想。
而函数的单调性则是函数的一条重要性质,它是历年高考重点考查的重要内容,它的应用十分广泛。
通过研究函数的单调性可以揭示函数值的变化特性,对于一些学问题,若解题中注意应用函数的单调性,合理巧妙地加以运用,定会带来快捷的解题思路,可以使问题的解决简捷明快。
高一数学利用导数研究函数的单调性试题答案及解析1.若函数在区间内是增函数,则实数的取值范围是()A.B.C.D.【答案】B【解析】∵f(x)=x3+ax-2,∴f′(x)=3x2+a,∵函数f(x)=x3+ax-2在区间[1,+∞)内是增函数,∴f′(1)=3+a≥0,∴a≥-3.故选B..【考点】利用导数研究函数的单调性..2.已知函数(1)若,试确定函数的单调区间;(2)若,且对于任意,恒成立,试确定实数的取值范围;【答案】(1)详见解析(2).【解析】(1)求出函数的导数,只要解导数的不等式即可,根据导数与0的关系判断函数的单调性;(2)函数f(|x|)是偶函数,只要f(x)>0对任意x≥0恒成立即可,等价于f(x)在[0,+∞)的最小值大于零.试题解析:解:(1)由得,所以.由得,故的单调递增区间是,由得,故的单调递减区间是. 4(2)由可知是偶函数.于是对任意成立等价于对任意成立.由得.①当时,.此时在上单调递增.故,符合题意.②当时,.当变化时的变化情况如下表:单调递减极小值单调递增由此可得,在依题意,,又.综合①,②得,实数的取值范围是.【考点】1.利用导数求闭区间上函数的最值;2.利用导数研究函数的单调性..3.已知函数f(x)=2x--aln(x+1),a∈R.(1)若a=-4,求函数f(x)的单调区间;(2)求y=f(x)的极值点(即函数取到极值时点的横坐标).【答案】(1)f(x)的单调增区间为(-1,3),单调减区间为(3,+∞)。
(2)ⅰ. 7分ⅱ.当时,若,由函数的单调性可知f(x)有极小值点;有极大值点。
若时, f(x)有极大值点,无极小值点。
【解析】(1)因为,f(x)=2x--aln(x+1),a∈R,定义域为(-1,+∞)。
所以,,故,f(x)的单调增区间为(-1,3),单调减区间为(3,+∞)。
(2)因为,f(x)=2x--aln(x+1),a∈R,定义域为(-1,+∞)。
函数的单调性与导数说课稿一、说教材1、地位和作用本节的教学内容属导数的应用,是在学生学习了导数的概念、计算、几何意义的基础上学习的内容,学好它既可加深对导数的理解,又可为后面研究函数的极值,最值及函数的其他相关性质打好基础。
另外,由于学生在高一已经掌握了函数单调性的定义,并能用定义判定在给定区间上函数的单调性。
通过本节课的学习,应使学生体验到,用导数判断单调性要比用定义判断简捷得多,充分展示了导数解决问题的优越性。
2.教学目标知识与技能:1.结合实例,借助几何直观探索并感受函数的单调性与导数的关系。
2.尝试利用导数判断简单函数的单调性。
3.能根据导数的正负性画出函数的大致图象过程与方法:1.通过具体函数单调性与其导数正负关系,归纳概括出一般函数单调性的判断方法。
2.体会函数单调性定义判断方法与导数判断方法的比较,进一步认识函数单调性与导函数正负性之间的关系。
3.通过实验操作,直观感知,结合函数图象,初步尝试从导数的角度解释函数在某一范围内增减的快慢。
情感态度与价值观:通过在教学过程中让学生多动手、多观察、勤思考、善总结,引导学生养成自主学习的学习习惯3、重点与难点重点:探索并应用函数单调性与导数的关系求单调区间。
难点:利用导数信息绘制函数的大致图象。
二、说教法1.教学方法的选择:本节课运用“问题解决”课堂教学模式,采用发现式、启发式的教学方法。
通过问题激发学生求知欲,使学生主动参与教学实践活动,在教师的指导下发现、分析和解决问题,总结规律,培养积极探索的科学精神。
2.教学手段的利用:本节课采用多媒体课件等辅助手段以加大课堂容量,通过数形结合,图、表并用,使抽象的知识直观化,形象化,以促进学生的理解。
三、说学法为使学生积极参与课堂学习,主要采用自主探究法和实验教学法,让学生自己发现问题,自己归纳总结,自己评析解题对错,从而提高学生的参与意识和数学表达能力。
四、说教学过程(一)提问引入:1.判断函数的单调性有哪些方法?(意图:引导学生回顾单调性的定义及利用定义判断函数单调性的方法)(引导学生回答“定义法”,“图象法”。
高一数学试题答案及解析1.(3分)设函数f(x)在区间[a,b]上满足f′(x)<0,则函数f(x)在区间[a,b]上的最小值为,最大值为.【答案】f(b) f(a)【解析】先利用导数的符号判断函数f(x)在区间[a,b]上的单调性,再求出f(x)在区间[a,b]上的最大值和最小值即可.解析:由f′(x)<0,可知f(x)在区间[a,b]上为单调减函数,则最小值为f(b),最大值为f (a).故答案为:f(b) f(a)点评:本题考查了利用导数求闭区间上函数的最值,利用函数的单调性求函数的最值,属于基础题.2.(3分)函数f(x)=x3﹣3x+1在[﹣3,0]上的最大值和最小值之和为.【答案】﹣14【解析】利用求导公式先求出函数导数,求出导数等于0时x的值,吧x值代入原函数求出极值,再求出端点值,极值与端点值比较,求出最大值和最小值,做差.(1)解:f′(x)=3x2_3令f′(x)="0" 则x=±1,极值:f(1)=﹣1,f(﹣1)=3,端点值:f(﹣3)=﹣17,f(0)=1.所以:最大值为3 最小值为﹣17,最大值和最小值之和为﹣14故答案为:﹣14点评:该题考查函数求导公式,以及可能取到最值的点,属于基本题,较容易.3.(3分)已知f(x)=2x3﹣6x2+m(m为常数)在[﹣2,2]上有最大值3,则m的值为.【答案】3【解析】本题是典型的利用函数的导数求最值的问题,只需要利用已知函数的最大值为3,进而求出常熟m的值.解析:f′(x)=6x2﹣12x,6x2﹣12x=0⇒x=0或x=2.当x>2,或x<0时,f′(x)>0;当0<x<2时,f′(x)<0,∴当x=0时,f(x)取得极大值,当x=2时,f(x)取得极小值.又f(0)=m,f(2)=m﹣8,f(﹣2)=m﹣40,∴f(x)的最大值为f(0)=3.∴m=3.故答案:3.点评:本题考查利用函数的导数求最值的问题,解一元二次不等式的方法.属于中档题.4.设函数f(x)=﹣x3+2ax2﹣3a2x+b,0<a<1.(1)求函数f(x)的单调区间、极值;(2)若x∈[0,3a],试求函数f(x)的最值.【答案】(1)函数f(x)的单调减区间为(﹣∞,a),(3a,+∞),单调增区间为(a,3a).当x=a时,f(x)的极小值为﹣a3+b;当x=3a时,f(x)的极大值为b.(2)当x=a时,f(x)的最小值为﹣a3+b;当x=0或x=3a时,f(x)的最大值为b.【解析】(1)要求函数f(x)的单调区间,即求函数f(x)的f′(x),令f′(x)=0,解出x,再根据导数与单调性的关系求解即可得到函数f(x)的单调区间、极值;(2)由(1)知函数当x∈(0,a)时,函数f(x)为减函数;当x∈(a,3a)时,函数f(x)为增函数.进而得到函数f(x)在[0,3a]上的最值.解:(1)f′(x)=﹣x2+4ax﹣3a2.令f′(x)=0,解得x=a或x=3a,列表:﹣a3+b由表可知:当x∈(﹣∞,a)时,函数f(x)为减函数;当x∈(3a,+∞)时,函数f(x)也为减函数;当x∈(a,3a)时,函数f(x)为增函数.∴函数f(x)的单调减区间为(﹣∞,a),(3a,+∞),单调增区间为(a,3a).当x=a时,f(x)的极小值为﹣a3+b;当x=3a时,f(x)的极大值为b.(2)x∈[0,3a],列表如下:x0(0,a)a(a,3a)3a﹣a3+b由表知:当x∈(0,a)时,函数f(x)为减函数;当x∈(a,3a)时,函数f(x)为增函数.∴当x=a时,f(x)的最小值为﹣a3+b;当x=0或x=3a时,f(x)的最大值为b.点评:本题考查了利用导数求闭区间上函数的最值,利用导数研究函数的单调性,函数在某点取得极值的条件,属于中档题.5.函数y=++的导数是.【答案】﹣x﹣2﹣4x﹣3﹣3x﹣4.【解析】利用导数的运算法则即可得出.解:y=++=x﹣1+2x﹣2+x﹣3,∴y′=(x﹣1+2x﹣2+x﹣3)′=﹣x﹣2﹣4x﹣3﹣3x﹣4.故答案为﹣x﹣2﹣4x﹣3﹣3x﹣4.点评:熟练掌握导数的运算法则是解题的关键.6.函数的导数为.【答案】【解析】根据导数的运算法则可得答案.解:∵∴y'==故答案为:点评:本题主要考查导数的运算法则.属基础题.求导公式一定要熟练掌握.7.曲线y=x3在点(0,0)处的切线方程是.【答案】y=0.【解析】先求出函数y=x3的导函数,然后求出在x=0处的导数,从而求出切线的斜率,利用点斜式方程求出切线方程即可.解:∵y′=(x3)′=3x2,∴k=3×02=0,∴曲线y=x3在点(0,0)切线方程为y=0.故答案为:y=0.点评:本题主要考查了利用导数研究曲线上某点切线方程,考查运算求解能力,属于基础题.8.已知直线y=kx与曲线y=lnx相切,则k= .【答案】【解析】设切点,求出切线斜率,利用切点在直线上,代入方程,即可得到结论.解:设切点为(x0,y),则∵y′=(lnx)′=,∴切线斜率k=,又点(x0,lnx)在直线上,代入方程得lnx=•x=1,∴x=e,∴k==.故答案为:.点评:本题考查切线方程,考查导数的几何意义,考查学生的计算能力,属于中档题.9.函数y=(1﹣)(1+)的导数为.【答案】【解析】利用导数的运算法则和导数公式进行求导.解:因为y=(1﹣)(1+)=1﹣=,所以.故答案为:.点评:本题主要考查导数的计算以及导数的四则运算法则,比较基础.10.曲线在点(﹣1,﹣1)处的切线方程.【答案】2x﹣y+1=0.【解析】先求曲线的导数,因为函数在切点处的导数就是切线的斜率,求出斜率,再用点斜式写出切线方程,再化简即可.解:的导数为y′=,∴曲线在点(﹣1,﹣1)处的切线斜率为2,切线方程是y+1=2(x+1),化简得,2x﹣y+1=0故答案为:2x﹣y+1=0.点评:本题主要考查了函数的导数与切线斜率的关系,属于导数的应用.11.求下列函数的导数:(1)y=+2x;(2)y=lgx﹣sinx;(3)y=2sinxcosx;(4)y=.【答案】见解析【解析】分别利用导数的公式求函数的导数.解:(1).(2).(3)y'=(2sinxcosx)'=2cosxcosx﹣2sinxsinx=2cos2x.(4).点评:本题主要考查导数的运算,要求熟练掌握常见函数的导数公式和导数的运算法则.12.航天飞机升空后一段时间内,第t s时的高度h(t)=5t3+30t2+45t+4,其中h的单位为m,t 的单位为s.(1)h(0),h(1),h(2)分别表示什么?(2)求第2s内的平均速度;(3)求第2s末的瞬时速度.【答案】(1)h(0)表示航天飞机发射前的高度;h(1)表示航天飞机升空后1s的高度;h(2)表示航天飞机升空后2s的高度;(2)125米/秒;(3)225m/s.【解析】(1)由h(t)表示航天飞机发射t秒后的高度分别说明h(0),h(1),h(2)的意义;(2)直接由(h(2)﹣h(0))除以2得到第2s内的平均速度;(3)求出2秒时刻的瞬时变化率,取极限值求第2s末的瞬时速度.解:(1)答:h(0)表示航天飞机发射前的高度;h(1)表示航天飞机升空后1s的高度;h(2)表示航天飞机升空后2s的高度;(2)航天飞机升空后第2秒内的平均速度为===125(m/s).答:航天飞机升空后第2秒内的平均速度为125米/秒;(3)航天飞机升空后在t=2时的位移增量与时间增量的比值为v====5(△t)2+60(△t)+225,当△t趋向于0时,v趋向于225,因此,第2s末的瞬时速度为225m/s.答:航天飞机升空后第2秒末的瞬时速度为225米/秒.点评:本题考查了变化的快慢与变化率,解答的关键是准确的计算,是基础的概念题.13.试求过点P(3,5)且与曲线y=x2相切的直线方程.【答案】y=2x﹣1和y=10x﹣25.【解析】欲求出切线方程,只须求出其斜率即可,故先利用导数求出在切点(x0,x2)处的导函数值,再结合导数的几何意义即可求出切线的斜率.最后结合切线过点P(3,5)即可求出切点坐标,从而问题解决.解:y′=2x,过其上一点(x0,x2)的切线方程为y﹣x02=2x(x﹣x),∵所求切线过P(3,5),∴5﹣x02=2x(3﹣x),解之得x=1或x=5.从而切点A的坐标为(1,1)或(5,25).当切点为(1,1)时,切线斜率k1=2x=2;当切点为(5,25)时,切线斜率k2=2x=10.∴所求的切线有两条,方程分别为y﹣1=2(x﹣1)和y﹣25=10(x﹣5),即y=2x﹣1和y=10x﹣25.点评:本小题主要考查导数的概念、导数的几何意义和利用导数研究曲线上某点切线方程的能力,考查运算求解能力.属于基础题.14.如图是一种加热水和食物的太阳灶,上面装有可旋转的抛物面形的反光镜,镜的轴截面是抛物线的一部分,盛水和食物的容器放在抛物线的焦点处,容器由若干根等长的铁筋焊接在一起的架子支撑.已知镜口圆的直径为12 m,镜深2 m,(1)建立适当的坐标系,求抛物线的方程和焦点的位置;(2)若把盛水和食物的容器近似地看作点,试求每根铁筋的长度.【答案】(1)y2=18x,F(,0).(2)6.5m.【解析】(1)先建立直角坐标系,得到A的坐标,然后设出抛物线的标准方程进而可得到P的值,从而可确定抛物线的方程和焦点的位置.(2)根据盛水的容器在焦点处,结合两点间的距离公式可得到每根铁筋的长度.解:(1)如图,在反光镜的轴截面内建立直角坐标系,使反光镜的顶点(即抛物线的顶点)与原点重合,x轴垂直于镜口直径.由已知,得A点坐标是(2,6),设抛物线方程为y2=2px(p>0),则36=2p×2,p=9.所以所求抛物线的标准方程是y2=18x,焦点坐标是F(,0).(2)∵盛水的容器在焦点处,∴A、F两点间的距离即为每根铁筋长.|AF|==(或|AF|=+2=).故每根铁筋的长度是6.5m.点评:本题主要考查抛物线的应用.抛物线在现实生活中应用很广泛,在高考中也占据重要的地位,一定要掌握其基础知识做到活学活用.15.有一种电影放映机的放映灯泡的玻璃上镀铝,只留有一个透明窗用作通光孔,它的反射面是一种曲线旋转而成的曲面的一部分,灯丝定在某个地方发出光线反射到卡门上,并且这两物体间距离为4.5 cm,灯丝距顶面距离为2.8 cm,为使卡门处获得最强烈的光线,在加工这种灯泡时,应使用何种曲线可使效果最佳?试求这个曲线方程.【答案】+=1.【解析】采用椭圆旋转而成的曲面,效果最佳,如图建立平面直角坐标系,设出椭圆的方程,根据灯丝距顶面距离为p,根据椭圆的性质可知|F1F2|=2c,且△BF1F2为直角三角形,利用勾股定理即可表示出|BF2|的长,然后根据椭圆的定义可知|F1B|+|F2B|=2a,即可求出a与b的值,代入设出的椭圆方程即可确定出解析式.解:采用椭圆旋转而成的曲面,如图建立直角坐标系,中心截口BAC是椭圆的一部分,设其方程为+=1,灯丝距顶面距离为p,由于△BF1F2为直角三角形,因而,|F2B|2=|F1B|2+|F1F2|2=p2+4c2,由椭圆性质有|F1B|+|F2B|=2a,所以a=(p+)=(2.8+)≈4.05cm,b=≈3.37m.∴所求方程为+=1.点评:此题考查学生掌握椭圆的简单性质,考查了数形结合的数学思想,是一道中档题.16.(3分)已知椭圆以两条坐标轴为对称轴,一个顶点是(0,13),另一个顶点是(﹣10,0),则焦点坐标为()A.(±13,0)B.(0,±10)C.(0,±13)D.(0,±)【答案】D【解析】由题意可得椭圆的焦点在y轴上且a=13,b=10,利用c2=a2﹣b2即可得到c.解:由题意可得椭圆的焦点在y轴上且a=13,b=10,∴=.∴焦点为.故选D.点评:熟练掌握椭圆的性质是解题的关键.17.(3分)(2009•广东)巳知椭圆G的中心在坐标原点,长轴在x轴上,离心率为,且G上一点到G的两个焦点的距离之和为12,则椭圆G的方程为.【答案】.【解析】由题设条件知,2a=12,a=6,b=3,由此可知所求椭圆方程为.解:由题设知,2a=12,∴a=6,b=3,∴所求椭圆方程为.答案:.点评:本题考查椭圆的性质和应用,解题时要注意公式的灵活运用.18.(3分)已知p:∅⊆{0},q:{1}∈{1,2}.由他们构成的新命题“p∧q”,“p∨q”,“¬p”中,真命题有()A.1个B.2个C.3个D.4个【答案】A【解析】由集合之间的关系判断出命题p、q的真假,再由复合命题的真假性原则进行判断即可.解:由集合之间的关系得:命题p:∅⊆{0}是真命题,命题q:{1}∈{1,2}是假命题,所以p∧q是假命题,p∨q真命题,命题p是假命题,故选A.点评:本题考查了集合之间的关系,以及复合命题真假性原则的应用.19.(3分)命题p:方向相同的两个向量共线,q:方向相反的两个向量共线,则命题“p∨q”为.【答案】方向相同或相反的两个向量共线.【解析】根据复合命题p∨q的定义和题意,直接写出命题“p∨q”即可.解:由命题p:方向相同的两个向量共线命题,q:方向相反的两个向量共线,得即命题“p∨q”为:“方向相同或相反的两个向量共线”.故答案为:方向相同或相反的两个向量共线.点评:本题考查了复合命题的定义,属于基础题.20.(3分)命题“若a<b,则2a<2b”的否命题为,命题的否定为.【答案】否命题为:若a≥b,则2a≥2b命题的否定为:若a<b,则2a≥2b【解析】同时否定条件和结论得到命题的否命题.不改变条件,只否定结论,得到命题的否定.解:命题“若a<b,则2a<2b”的否命题为:若a≥b,则2a≥2b,命题的否定为:若a<b,则2a≥2b.故答案为:否命题为:若a≥b,则2a≥2b命题的否定为:若a<b,则2a≥2b点评:本题考查了命题的否命题和命题的否定.。
1.3.1函数的单调性与导数(第二课时)教学设计【教学目标】1.知识与能力:会利用导数解决函数的单调性及单调区间。
会求单调区间,会讨论含参函数单调性2.过程与方法:通过利用导数研究单调性问题的探索过程,体会从特殊到一般的、数形结合的研究方法。
3.情感态度与价值观:通过导数方法研究单调性问题,体会到不同数学知识间的内在联系,同时通过学生动手、观察、思考、总结,培养学生的探索精神,引导学生养成自主学习的学习习惯。
通过导数研究单调性的步骤的形成和使用,使得学生认识到利用导数解决一些函数(尤其是三次、三次以上的多项式函数)的问题,因而认识到导数的实用价值。
【教学重点和难点】对于本节课学生的认知困难主要体现在:用准确的数学语言描述函数单调性与导数的关系,这种由特殊到一般、数到形、直观到抽象的转变,对学生是比较困难的。
根据以上的分析和新课程标准的要求,我确定了本节课的重点和难点。
教学重点:1.利用导数研究函数的单调性,求函数的单调区间.(重点)2.利用数形结合思想理解导函数与函数单调性之间的关系,及单调性的逆用.(难点)3.含参数的函数讨论单调性(难点)【教学设计思路】现代教学观念要求学生从“学会”向“会学”转变,本节可从单调性与导数的关系的发现到应用都有意识营造一个较为自由的空间,让学生能主动的去观察、猜测、发现、验证,积极的动手、动口、动脑,使学生在学知识同时形成思想、方法。
整个教学过程突出了三个注重:1、注重学生参与知识的形成过程,体验应用数学知识解决简单数学问题的乐趣。
2、注重师生、生生间的互相协作、共同提高。
3、注重知能统一,让学生获得知识同时,掌握方法,灵活应用。
根据新课程标准的要求,本节课的知识目标定位在以下三个方面:一是能探索并应用函数的单调性与导数的关系求单调区间;二是掌握判断函数单调性的方法;三是能由导数信息绘制函数大致图像,会根据单调性求字母范围。
教学过程:(一)复习回顾,温故知新让学生填写导数公式,运算法则,复合函数求导法则(利用选号程序,挑选两名幸运的同学回答,可提升学生注意力)设计意图:通过复习回顾,加深对公式的记忆和理解,尤其是运算法则,复合函数求导公式的理解,有利于本节熟练应用。
-1-常用函数单调性知识点总结判断函数单调性的常用方法有:图像法、性质法、复合函数法、定义法、导数法等.利用函数图象确定函数单调性及单调区间是一种直观又简单的方法,而对于较复杂函数的单调性和单调区间,往往利用一些基本函数的单调性、函数单调性定义或利用导数法来求.注:1.函数的单调区间应该用区间表示,不宜用集合或不等式表示。
2.如果一个函数有多个单调区间,则注意要分别写,往往不能用“ ”和“或”连接.3.“函数的单调区间”指的是函数所有单调增或单调减的最大区间。
“函数在某区间上单调”中的“区间”既可以是函数的某个最大的单调区间,也可以是函数的某个最大的单调区间的子区间.一、抽象函数单调性1.(1)()y f x =-与()y f x =的单调性相反.(2)()y f x c =+(其中c 为常数)与()y f x =的单调性相同.(3)()y c f x =⋅与()y f x =的单调性关系①当0c >时,两者的单调性相同.②当0c <时,两者的单调性相反.(4)设()y f x =在某区间D 上的函数值恒正或恒负,则有()y f x =在区间D 上具有单调性时,()1y f x =也在区间D 上具有单调性,且()1y f x =与()y f x =在该区间上的单调性相反.(5)若()0f x ≥,则()y f x α=(0α>)与()y f x =的单调性相同.(6)具有公共定义域的两个单调函数中,常用到以下结论:①增函数+增函数=增函数;②减函数+减函数=减函数;③增函数-减函数=增函数;④减函数-增函数=减函数.二、复合函数的单调性1.定义设()(),y f u u u x ==,则函数()()y f u x =叫做复合函数.2.复合函数单调性口诀:“同增异减”.(1)内外两层函数单调性相同时,复合函数为增函数.即:①内 ,外 ⇒ ;②内 ,外 ⇒ .(2)内外两层函数单调性相反时,复合函数为减函数.即:①内 ,外 ⇒ ;②内 ,外 ⇒ .注:1.注意复合函数与两函数的四则运算的区别.2.运用复合函数口诀判定单调性时,一定要分清内外层函数对应的函数形式.三、函数单调性相关问题的常见类型和解题策略(1)比较大小。
教学设计【教学目标】1.知识与技能了解函数的单调性和导数的关系;能利用导数求函数的单调区间;已知函数单调性会求参数的取值范围。
2.过程与方法通过利用导数研究单调性问题的探索过程,体会从特殊到一般、数形结合、分类讨论、化归转化的数学思想方法。
3.情感态度与价值观通过利用导数方法研究单调性问题,体会不同知识间的联系,同时通过学生的交流讨论,引导学生养成自主学习的好习惯,激发学生的学习兴趣,培养学生分享成功的喜悦。
【教学重点和难点】教学重点:函数单调性的判定方法及应用。
教学难点:已知单调性求参数范围。
【教学方法】本节课拟运用“问题——解决”课堂教学模式,采用启发式,讲练结合的教学方法。
通过问题激发学生的求知欲,使学生主动参与教学,同时采用多媒体辅助教学,节省时间,加大课堂容量。
【教学过程】一、课堂引入师:导数是高考的热点之一,常与函数、不等式、解析几何结合出题,今天我们一起复习一下如何利用导数研究函数的单调性。
首先看一下考试要求。
多媒体展示考试要求,板书课题生:看考试说明,读考试要求设计意图:使学生明确利用导数研究函数单调性在高考中的要求。
师:函数单调性与导数的关系是什么呢?显示多媒体生:齐答问题1.函数的单调性与导数的关系设函数)(x f 在),(b a 内可导,如果在),(b a 内0)(>'x f ,则)(x f 在此区间内是_______如果在),(b a 内0)(<'x f ,则)(x f 在此区间内是_______师:由此可以得出求函数单调区间步骤生:思考,回答求解步骤2.利用导数判断函数单调性的一般步骤(1)求函数定义域;(2)求)(x f ';(3)在定义域内解不等式0)(>'x f ,得增区间,解不等式0)(<'x f ,得减区间;设计意图:通过对知识的回顾,使学生明确函数增减性与导数正负的关系。
二、概念辨析师:下面我们通过几个小题,加深对导数与函数单调性关系式的理解多媒体展示1.若函数f(x)在(a,b)上单调递增,那么在(a,b)上一定有f ′(x)>0( )2.若函数在某个区间内恒有f ′(x) =0,则函数f(x)在此区间内没有单调性( )3.)(x f y '=的图象如图所示,则)(x f y =的图象可能的是( )生:回答每个题目,(1)举出反例,得出f ′(x)>0是函数单调递增的什么条件,(2)说明函数类型(3)说明解题过程,并说出已知原函数图像如何得导函数图像,如D 选项设计意图:通过三个小题的辨析,加深学生对导数与函数单调性关系的理解。
高一数学知识点函数的单调性一、函数单调性知识结构【知识网络】1.函数单调性的定义,2.证明函数单调性;3.求函数的单调区间4.利用函数单调性解决一些问题;5.抽象函数与函数单调性结合运用二、重点叙述1. 函数单调性定义(一)函数单调性概念(1)增减函数定义一般地,设函数y=f(x)的定义域为I,对于定义域I内某个区间D上的任意两个自变量的值x1、x2 :如果当x1<x2时,都有f(x1 ) <f(x2 ),那么就说函数y=f(x)在区间D上是增函数;如果当x1<x2时,都有f(x1 ) >f(x2 ),那么就说函数y=f(x)在区间D上是减函数。
如果函数在区间D上是增函数或减函数,那么就说函数在这一区间具有(严格的)单调性,区间D叫做的单调区间。
(2)函数单调性的内涵与外延⑴函数的单调性也叫函数的增减性。
函数的单调性是对某个区间而言的,是一个局部概念。
⑵由函数增减性的定义可知:任意的x1、x2∈D,① x1<x2 ,且f(x1 ) <f(x2 ),y=f(x)在区间D上是增函数;(可用于判断或证明函数的增减性)② y=f(x)在区间D上是增函数,且x1<x2 , f(x1 ) <f(x2 ) ;(可用于比较函数值的大小)③ y=f(x)在区间D上是增函数,且f(x1 ) <f(x2 ), x1<x2。
(可用于比较自变量值的大小)2. 函数单调性证明方法证明函数单调性的方法有:定义法(即比较法);导数法。
实际上,用导数方法证明一般函数单调性是很便捷的方法,定义法是基本方法,常用来证明解决抽象函数或不易求导的函数的单调性。
(1)定义法:利用增减函数的定义证明。
在证明过程中,把数式的大小比较转化为求差比较(或求商比较)。
⑴转化为求差比较证明程序:①设任意的x 1、x 2∈D,使x 1<x 2 ;②求差—变形—判断正负;此为关键步骤,变形大多要“因式分解”。
求差:; 变形:化简、因式分解; 判断:差的符号的正或负。
导数在研究函数中的应用——单调性【教学分析】1.教材分析本节课是高中数学苏教版教材选修2-2第节导数在研究函数单调性中的应用.这节内容是导数作为研究函数的工具的起点,是本节的重点,学生对本节的收获直接影响着后面极值、最值的学习.函数单调性是高中阶段讨论函数“变化”的一个最基本的性质.学生在中学阶段对于单调性的学习共分为三个阶段:第一阶段,在初中以具体函数为载体,从图形直观上感知单调性;第二阶段在高中学习必修一时,用运算的性质研究单调性;第三阶段就是在本节课中,用导数的性质研究单调性.本节内容属于导数的应用,是本章的重点,学生在学习了导数的概念、几何意义、基本函数的导数、导数的四则运算的基础上学习本节内容.学好它既可加深对导数的理解,又为研究函数的极值和最值打好基础,具有承前启后的重要作用.研究过程蕴含了数形结合、分类讨论、转化与化归等数学思想方法,以及研究数学问题的一般方法,即从特殊到一般,从简单到复杂,培养了学生应用导数解决实际问题的意识.2.学情分析《普通高中数学新课程标准(实验)》中要求:结合实例,借助几何直观探索并了解函数的单调性与导数间的关系.对于函数的单调性学生已经掌握图象、定义两种判断方法,但是图象和定义法不是万能的.对于不能用这两种方法解决的单调性问题学生需要思考.学生之前学习了导数的概念,经历过从平均变化率到瞬时变化率的过程,研究过导数的几何意义是函数图象在某点处的切线,从数和形的角度认识了导数也是刻画函数变化陡峭程度的量,但是沟通导数和单调性之间的练习对学生来说是教学中要突破的难点和重点.3. 教学目标(1)了解函数的单调性与导数的关系,能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间.(2)通过实例,借助几何直观、数形结合探索函数的单调性与导数的关系;通过初等方法与导数方法研究函数性质过程中的比较,体会导数在研究函数性质中的一般性和有效性,同时感受和体会数学自身发展的一般规律.(3)通过教师指导下的学生交流探索活动,激发学生的学习兴趣,培养学生转化与化归的思维方式,并引导学生掌握从特殊到一般,从简单到复杂的思维方法,用联系的观点认识问题,提高学生提出问题、分析问题、解决问题的能力.4. 教学重点:利用导数研究函数的单调性5. 教学难点:发现和揭示导数的正负与函数单调性的关系.6. 教学方法与教学手段:问题教学法、合作学习法、多媒体课件等【教学过程】1.创设情境,激发兴趣情境一:过山车章头图情境二:观看过山车视频【设计意图】通过章头图拉近学生与数学的关系,让学生感受到生活处处有数学,也为本节课的研究埋下伏笔。
高一数学函数的基本性质试题答案及解析1.(本小题12分)已知函数,(1)判断函数在区间上的单调性;(2)求函数在区间是区间[2,6]上的最大值和最小值.【答案】(1)函数是区间上的减函数;(2),【解析】(1)设是区间上的任意两个实数,且,则-==.由得,,于是,即.所以函数是区间上的减函数. ……6分(2)由(1)知函数函数在区间的两个端点上分别取得最大值与最小值,即当时,;当时,. ……12分【考点】本小题主要考查利用定义判断函数的单调性和利用函数的单调性求函数的最值,考查学生对定义的掌握和利用能力以及数形结合思想的应用.点评:利用单调性的定义判断或证明函数的单调性时,要把结果划到最简,尽量不要用已知函数的单调性判断未知函数的单调性.2.设函数,若,则实数=()A.-4或-2B.-4或2C.-2或4D.-2或2【答案】B【解析】当时,;当时,.【考点】本小题主要考查分段函数的求值,考查学生的运算求解能力.点评:分段函数求值,分别代入求解即可.3.函数,则的取值范围是()A.B.C.D.【答案】A【解析】因为f(x)的对称轴为,所以,所以.4.若奇函数在[1,3]上为增函数,且有最小值7,则它在[-3,-1]上( )A.是减函数,有最小值-7B.是增函数,有最小值-7C.是减函数,有最大值-7D.是增函数,有最大值-7【答案】D【解析】解:由奇函数的性质,∵奇函数f(x)在[1,3]上为增函数∴奇函数f(x)在[-3,-1]上为增函数,又奇函数f(x)在[1,3]上有最小值7,∴奇函数f(x)在[-3,-1]上有最大值-7,故选D5.(12分)求证:函数在R上为奇函数且为增函数.【答案】见解析【解析】解:显然,奇函数;令,则,其中,显然,=,由于,,且不能同时为0,否则,故.从而. 所以该函数为增函数.6.下列f(x)=(1+a x)2是()A.奇函数B.偶函数C.非奇非偶函数D.既奇且偶函数【答案】B【解析】函数定义域为R.故选B7.设a是实数,试证明对于任意a,为增函数【答案】见解析【解析】证明:设∈R,且则由于指数函数 y=在R上是增函数,且,所以即<0,又由>0得+1>0, +1>0所以<0即因为此结论与a取值无关,所以对于a取任意实数,为增函数8.函数y=x+ ()A.有最小值,无最大值B.有最大值,无最小值C.有最小值,最大值2D.无最大值,也无最小值【答案】A【解析】∵y=x+在定义域[,+∞)上是增函数,∴y≥f()=,即函数最小值为,无最大值,选A.9.(05福建卷)是定义在R上的以3为周期的偶函数,且,则方程=0在区间(0,6)内解的个数的最小值是()A.5B.4C.3D.2【答案】B【解析】因为是定义在R上以3为周期的偶函数,且,所以故选B10.定义在上的函数是减函数,且是奇函数,若,求实数的范围。
函数的单调性与导数教学内容:人教版《普通高中课程标准实验教科书数学》选修1- 1 P 97—101教学目标:(1)知识目标:能探索并应用函数的单调性与导数的关系求单调区间,能由导数信息绘制函数大致图象。
⑵能力目标:培养学生的观察能力、归纳能力,增强数形结合的思维意识。
(3)情感目标:通过在教学过程中让学生多动手、多观察、勤思考、善总结,引导学生养成自主学习的学习习惯。
b5E2RGbCAP教学重点:探索并应用函数单调性与导数的关系求单调区间。
教学难点:利用导数信息绘制函数的大致图象。
教学方法:发现式、启发式教学手段:多媒体课件等辅助手段教具、学具准备:CAI课件一套、学生每人一份实验表格及一支牙签教学过程预设:、观察与表达(探索函数的单调性和导数的关系)问:函数的单调性和导数有何关系呢?教师仍以y=x2为例,借助几何画板动态演示, 让学生记录结果在课前发的表格第二行中: 1 •这一部分是后面利用导数求函数单调区间的理论依据,重要性不言而喻,而学生又只学习了导数的意义和一些基本运算,要想得到严格的证明是不现实的,因此,只要求学生能借助几何直观得出结论,这与新课标中的要求是相吻合的。
2 •教师对具体例子进行动态演示,学生对一般情况进行实验验证。
由观察、猜想到归纳、总结,让学生体验知识的发现、发生过程,变灌注知识为学生主动获取知识,从而使之成为课堂教学活动的主体。
问:有何发现?(学生回答)问:这个结果是否具有一般性呢?我们来考察两个一般性的例子:(教师指导学生动手实验:把准备的牙签放在表中曲线y=f(x)的图象上,作为曲线的切线,移动切线并记录结果在上表第三、四行中。
)问:能否得出什么规律?让学生归纳总结,教师简单板书:在某个区间(a,b)内,若f ' (x)>0,则f(x)在(a,b)上是增函数;若f ' (x)<0,则在f(x)(a,b)上是减函数。
教师说明:要正确理解某个区间”的含义,它必需是定义域内的某个区间。
高一数学函数经典习题及答案函数练题一、求函数的定义域1、求下列函数的定义域:⑴y = (x-1)/(2x^2-2x-15)⑵y = 1-((2x-1)+4-x^2)/(x+1)(x+3)-3/(x-1)^22、设函数f(x)的定义域为[-1,1],则函数f(x-2)的定义域为[-3,-1];函数f(2x-1)的定义域为[-1/2,1]。
3、若函数f(x+1)的定义域为[-2,3],则函数f(2x-1)的定义域是[-3/2,2];函数f(2)的定义域为[1,4]。
4、已知函数f(x)的定义域为[-1,1],且函数F(x) = f(x+m)-f(x-m)的定义域存在,求实数m的取值范围为[-1/2,1/2]。
二、求函数的值域5、求下列函数的值域:⑴y = x+2/x-3 (x∈R)⑵y = x+2/x-3 (x∈[1,2])⑶y = 2/(3x-1)-3/(x-1) (x∈R)⑷y = (x+1)/(x+1)(5x^2+9x+4)-2/(x^2+ax+b) (x≥5)⑸y = x-3+1/x+2⑹y = x^2-x/(2x-1)+2⑺y = x-3+1/x+2⑻y = x^2-x/(2x-1)+2⑼y = -x^2+4x+5⑽y = 4-1/(x^2+4x+5)⑾y = x-1-2x/(2x^2+ax+b)6、已知函数f(x) = (2x+1)/(x-1)的值域为[1,3],求a,b的值为(-1,5)。
三、求函数的解析式1、已知函数f(x-1) = x-4x,求函数f(x)和f(2x+1)的解析式为f(x) = x-3x,f(2x+1) = 2x-3x+2.2、已知f(x)是二次函数,且f(x+1)+f(x-1) = 2x-4x,代入二次函数的通式y = ax^2+bx+c中,得到a = -1/2,b = 0,c = 1,所以f(x) = -(1/2)x^2+1.3、已知函数2f(x)+f(-x) = 3x+4,代入奇偶性的性质f(-x) = -f(x),得到f(x) = (3x+4)/4.4、设f(x)是R上的奇函数,且当x∈[0,+∞)时,f(x) =x(1+1/(x+1)),则f(x)在R上的解析式为f(x) = |x|(1+1/(|x|+1))。
§2.2函数的单调性与最值1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f (x )的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2当x 1<x 2时,都有f (x 1)<f (x 2),那么就说函数f (x )在区间D 上是增函数当x 1<x 2时,都有f (x 1)>f (x 2),那么就说函数f (x )在区间D 上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间.2.函数的最值前提设函数y =f (x )的定义域为I ,如果存在实数M 满足条件(1)对于任意的x ∈I ,都有f (x )≤M ;(2)存在x 0∈I ,使得f (x 0)=M(1)对于任意的x ∈I ,都有f (x )≥M ;(2)存在x 0∈I ,使得f (x 0)=M结论M 为最大值M 为最小值概念方法微思考1.在判断函数的单调性时,你还知道哪些等价结论?提示对∀x 1,x 2∈D ,x 1≠x 2,f (x 1)-f (x 2)x 1-x 2>0⇔f (x )在D 上是增函数;对∀x 1,x 2∈D ,x 1≠x 2,(x 1-x 2)·[f (x 1)-f (x 2)]>0⇔f (x )在D 上是增函数.减函数类似.2.写出函数y =x +ax (a >0)的增区间.提示(-∞,-a ]和[a ,+∞).题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)若定义在R 上的函数f (x ),有f (-1)<f (3),则函数f (x )在R 上为增函数.(×)(2)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).(×)(3)函数y =1x 的单调递减区间是(-∞,0)∪(0,+∞).(×)(4)所有的单调函数都有最大值和最小值.(×)题组二教材改编2.如图是函数y =f (x ),x ∈[-4,3]的图象,则下列说法正确的是()A .f (x )在[-4,-1]上是减函数,在[-1,3]上是增函数B .f (x )在区间(-1,3)上的最大值为3,最小值为-2C .f (x )在[-4,1]上有最小值-2,有最大值3D .当直线y =t 与f (x )的图象有三个交点时-1<t <2答案C3.函数y =2x -1在[2,3]上的最大值是______.答案24.若函数f (x )=x 2-2mx +1在[2,+∞)上是增函数,则实数m 的取值范围是________.答案(-∞,2]解析由题意知,[2,+∞)⊆[m,+∞),∴m≤2.题组三易错自纠5.函数f(x)=12log(-2x2+x)的单调增区间是________;f(x)的值域是________.答案14,[3,+∞)6.函数y=f(x)是定义在[-2,2]上的减函数,且f(a+1)<f(2a),则实数a的取值范围是________.答案[-1,1)解析2≤a+1≤2,2≤2a≤2,+1>2a,解得-1≤a<1.7.设函数f(x)x≥1,是单调函数.则a的取值范围是________;若f(x)的值域是R,则a=________.答案(0,2]2解析当x≥1时,f(x)=x2+1x=x+1x,则f′(x)=1-1x2≥0恒成立,∴f(x)在[1,+∞)上单调递增,∴f(x)min=f(1)=2,当x<1时,f(x)=ax,由于f(x)是单调函数,∴f(x)=ax在(-∞,1)上也单调递增,且ax≤2恒成立,>0,≤2,故a的取值范围为(0,2],∵当x≥1时,f(x)≥2,由f(x)的值域是R,可得当x=1时,ax=2,故a=2.确定函数的单调性命题点1求具体函数的单调区间例1(1)(2019·郴州质检)函数f(x)=ln(x2-2x-8)的单调递增区间是() A.(-∞,-2)B.(-∞,1)C.(1,+∞)D.(4,+∞)答案D解析由x2-2x-8>0,得f(x)的定义域为{x|x>4或x<-2}.设t=x2-2x-8,则y=ln t为增函数.要求函数f(x)的单调递增区间,即求函数t=x2-2x-8的单调递增区间(定义域内).∵函数t=x2-2x-8在(4,+∞)上单调递增,在(-∞,-2)上单调递减,∴函数f(x)的单调递增区间为(4,+∞).故选D.(2)设函数f(x)1,x>0,0,x=0,-1,x<0,g(x)=x2f(x-1),则函数g(x)的单调递减区间是__________.答案[0,1)解析由题意知g(x)x2,x>1,0,x=1,-x2,x<1,该函数图象如图所示,其单调递减区间是[0,1).命题点2判断或证明函数的单调性例2讨论函数f(x)=axx-1(a>0)在(-∞,1)上的单调性.解方法一∀x1,x2∈(-∞,1),且x1<x2,f(x)=x-1+1x-1=1+1x-1f(x1)-f(x2)=a 1+1x1-11+1x2-1=a(x2-x1)(x1-1)(x2-1),由于x1<x2<1,∴x 2-x 1>0,x 1-1<0,x 2-1<0,故当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),∴函数f (x )在(-∞,1)上单调递减.方法二f ′(x )=a (x -1)-ax (x -1)2=-a(x -1)2,∵(x -1)2>0,a >0,∴f ′(x )<0,故a >0时,f (x )在(-∞,1)上是减函数.思维升华确定函数单调性的四种方法(1)定义法:利用定义判断.(2)导数法:适用于初等函数、复合函数等可以求导的函数.(3)图象法:由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集;二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接.(4)性质法:利用函数单调性的性质,尤其是利用复合函数“同增异减”的原则时,需先确定简单函数的单调性.跟踪训练1(1)(2019·北京)下列函数中,在区间(0,+∞)上单调递增的是()A .y =12xB .y =2-xC .y =12log x D .y =1x答案A解析y =12x =x ,y =2-x,y =12log x ,y =1x 的图象如图所示.由图象知,只有y =12x 在(0,+∞)上单调递增.(2)函数f (x )=|x -2|x 的单调递减区间是________.答案[1,2]解析f (x )2-2x ,x ≥2,x 2+2x ,x <2.画出f (x )的大致图象(如图所示),由图知f (x )的单调递减区间是[1,2].(3)函数f (x )=110log (6x 2+x -1)的单调增区间为________.答案解析由6x 2+x -1>0得,f (x )|x <-12或x >13由复合函数单调性知f (x )的增区间即y =6x 2+x -1的减区间(定义域内),∴f (x )∞函数单调性的应用命题点1比较函数值的大小例3(1)若函数f (x )=x 2,设a =log 54,b =15log 13,c =152,则f (a ),f (b ),f (c )的大小关系是()A .f (a )>f (b )>f (c )B .f (b )>f (c )>f (a )C .f (c )>f (b )>f (a )D .f (c )>f (a )>f (b )答案D解析因为函数f (x )=x 2在(0,+∞)上单调递增,而0<15log 13=log 53<log 54<1<152,所以f (b )<f (a )<f (c ).故选D.(2)已知定义在R 上的函数f (x )=2|x -m |+1(m ∈R )为偶函数.记a =f (log 22),b =f (log 24),c =f (2m ),则a ,b ,c 的大小关系为()A .a <b <cB .c <a <bC .a <c <bD .c <b <a答案B解析∵定义在R 上的函数f (x )=2|x-m |+1(m ∈R )为偶函数,∴m =0,∴f (x )=2|x |+1,∴当x ∈(-∞,0)时,f (x )是减函数,当x ∈(0,+∞)时,f (x )是增函数.∵a =f (log 22)=f (1),b =f (log 24)=f (2),c =f (2m )=f (0),∴a ,b ,c 的大小关系为c <a <b .命题点2求函数的最值例4(1)函数f (x )-log 2(x +2)在区间[-1,1]上的最大值为________.答案3解析由于y 在R 上单调递减,y =log 2(x +2)在[-1,1]上单调递增,所以f (x )在[-1,1]上单调递减,故f (x )在[-1,1]上的最大值为f (-1)=3.(2)(2020·深圳模拟)函数y =x 2+4x 2+5的最大值为________.答案25解析令x 2+4=t ,则t ≥2,∴x 2=t 2-4,∴y =tt 2+1=1t +1t,设h (t )=t +1t ,则h (t )在[2,+∞)上为增函数,∴h (t )min =h (2)=52,∴y ≤152=25(x =0时取等号).即y 最大值为25.命题点3解函数不等式例5(1)已知函数f (x )=3,x ≤0,(x +1),x >0,若f (2-x 2)>f (x ),则实数x 的取值范围是________.答案(-2,1)解析根据函数f (x )的图象可知,f (x )是定义在R 上的增函数.∴2-x 2>x ,∴-2<x <1.(2)已知函数f (x )=ln x +2x ,若f (x 2-4)<2,则实数x 的取值范围是______________.答案(-5,-2)∪(2,5)解析因为函数f (x )=ln x +2x 在定义域(0,+∞)上单调递增,且f (1)=ln 1+2=2,所以由f (x 2-4)<2得,f (x 2-4)<f (1),所以0<x 2-4<1,解得-5<x <-2或2<x < 5.命题点4求参数的取值范围例6(1)已知f (x )a -1)x +4a ,x <1,a x ,x ≥1是(-∞,+∞)上的减函数,则实数a 的取值范围是()A .(0,1)C.17,D.17,答案C解析由f (x )a -1<0,<a <1.3a -1)×1+4a ≥log a 1,∴17≤a <13,∴实数a 的取值范围是17,(2)已知函数f (x )2+12a -2,x ≤1,x -a ,x >1,若f (x )在(0,+∞)上单调递增,则实数a 的取值范围为________.答案(1,2]解析由题意,得12+12a -2≤0,则a ≤2,又y =a x -a (x >1)是增函数,故a >1,所以a 的取值范围为1<a ≤2.(3)已知函数y =log a (2-ax )在[0,1]是减函数,则实数a 的取值范围是________.答案(1,2)解析设u =2-ax ,∵a >0且a ≠1,∴函数u在[0,1]上是减函数.由题意可知函数y=log a u在[0,1]上是增函数,∴a>1.又∵u在[0,1]上要满足u>0,-a×1>0,-a×0>0,得a<2.综上得1<a<2.思维升华函数单调性应用问题的常见类型及解题策略(1)比较大小.(2)求最值.(3)解不等式.利用函数的单调性将“f”符号脱掉,转化为具体的不等式求解,应注意函数的定义域.(4)利用单调性求参数.①依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较.②需注意若函数在区间[a,b]上是单调的,则该函数在此区间的任意子集上也是单调的.③分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.跟踪训练2(1)(2019·唐山模拟)已知函数f(x)为R上的减函数,则满足f f(1)的实数x 的取值范围是________.答案(-1,0)∪(0,1)解析因为f(x)在R上为减函数,且f f(1),所以1|x|>1,即0<|x|<1,所以0<x<1或-1<x<0.(2)函数f(x)x≥1,x2+2,x<1的最大值为________.答案2解析当x≥1时,函数f(x)=1x为减函数,所以f(x)在x=1处取得最大值,为f(1)=1;当x<1时,易知函数f(x)=-x2+2在x=0处取得最大值,为f(0)=2.故函数f(x)的最大值为2.(3)已知函数y=12log(6-ax+x2)在[1,2]上是增函数,则实数a的取值范围为________.答案[4,5)解析设u=6-ax+x2,∵y =12log u 为减函数,∴函数u 在[1,2]上是减函数,∵u =6-ax +x 2,对称轴为x =a2,∴a2≥2,且u >0在[1,2]上恒成立.≥4,-2a +4>0,解得4≤a <5,∴实数a 的取值范围是[4,5).1.下列函数中,在区间(0,+∞)上为增函数的是()A .y =ln(x +2)B .y =-x +1C .yD .y =x +1x答案A解析函数y =ln(x +2)的增区间为(-2,+∞),所以在(0,+∞)上一定是增函数.2.函数f (x )=1-1x -1()A .在(-1,+∞)上单调递增B .在(1,+∞)上单调递增C .在(-1,+∞)上单调递减D .在(1,+∞)上单调递减答案B解析f (x )图象可由y =-1x图象沿x 轴向右平移一个单位长度,再向上平移一个单位长度得到,如图所示.3.(2019·沧州七校联考)函数f(x)=log0.5(x+1)+log0.5(x-3)的单调递减区间是() A.(3,+∞)B.(1,+∞)C.(-∞,1)D.(-∞,-1)答案A解析+1>0,-3>0,即x>3,f(x)=log0.5(x+1)+log0.5(x-3)=log0.5(x+1)(x-3),x>3,令t=(x+1)(x-3),则t在[3,+∞)上单调递增,又0<0.5<1,∴f(x)在(3,+∞)上单调递减.4.若f(x)=-x2+2ax与g(x)=ax+1在区间[1,2]上都是减函数,则实数a的取值范围是() A.(-1,0)∪(0,1)B.(-1,0)∪(0,1]C.(0,1)D.(0,1]答案D解析因为f(x)=-x2+2ax在[1,2]上是减函数,所以a≤1,又因为g(x)=ax+1在[1,2]上是减函数,所以a>0,所以0<a≤1.5.已知函数f(x)=x|x+2|,则f(x)的单调递减区间为() A.[-2,0]B.[-2,1] C.[-2,-1]D.[-2,+∞)答案C解析由于f(x)=x|x+2|2+2x,x≥-2,x2-2x,x<-2,当x≥-2时,y=x2+2x=(x+1)2-1,显然,f(x)在[-2,-1]上单调递减;当x<-2时,y=-x2-2x=-(x+1)2+1,显然,f(x)在(-∞,-2)上单调递增.综上可知,f(x)的单调递减区间是[-2,-1].6.(2020·青岛模拟)已知定义在R上的奇函数f(x)在[0,+∞)上单调递减,若f(x2-2x+a)<f(x +1)对任意的x∈[-1,2]恒成立,则实数a的取值范围为()B.(-∞,-3)C .(-3,+∞)答案D 解析依题意得f (x )在R 上是减函数,所以f (x 2-2x +a )<f (x +1)对任意的x ∈[-1,2]恒成立,等价于x 2-2x +a >x +1对任意的x ∈[-1,2]恒成立,等价于a >-x 2+3x +1对任意的x ∈[-1,2]恒成立.设g (x )=-x 2+3x +1(-1≤x ≤2),则g (x )+134(-1≤x ≤2),当x =32时,g (x )取得最大值,且g (x )max ==134,因此a >134,故选D.7.(多选)已知π为圆周率,e 为自然对数的底数,则()A .πe <3eB .3e -2π<3πe -2C .log πe<log 3eD .πlog 3e>3log πe答案CD解析已知π为圆周率,e 为自然对数的底数,∴π>3>e>2,>1,πe >3e ,故A 错误;∵0<3π<1,0<e -2<1,-2>3π,∴3e -2π>3πe -2,故B 错误;∵π>3,∴log πe<log 3e ,故C 正确;由π>3,可得log 3e>log πe ,则πlog 3e>3log πe ,故D 正确.8.函数y =-x 2+2|x |+1的单调递增区间为________,单调递减区间为________.答案(-∞,-1]和[0,1](-1,0)和(1,+∞)解析由于y x 2+2x +1,x ≥0,x 2-2x +1,x <0,即y (x -1)+2,x ≥0,(x +1)2+2,x <0.画出函数图象如图所示,单调递增区间为(-∞,-1]和[0,1],单调递减区间为(-1,0)和(1,+∞).9.如果函数f (x )=ax 2+2x -3在区间(-∞,4)上单调递增,则实数a 的取值范围是______________.答案-14,0解析当a =0时,f (x )=2x -3在定义域R 上是单调递增的,故在(-∞,4)上单调递增;当a ≠0时,二次函数f (x )的对称轴为x =-1a,因为f (x )在(-∞,4)上单调递增,所以a <0,且-1a ≥4,解得-14≤a <0.综上,实数a 的取值范围是-14,0.10.(2019·福州质检)如果函数f (x )=(2-a )x +1,x <1,a x ,x ≥1满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,那么实数a 的取值范围是________.答案32,2解析对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0,所以y =f (x )在R 上是增函数.2-a >0,a >1,(2-a )×1+1≤a ,解得32≤a <2.故实数a 的取值范围是32,211.试判断函数f (x )=x 3-1x在(0,+∞)上的单调性,并加以证明.证明方法一设0<x 1<x 2,f (x )=x 3-1x=x 2-1x ,f (x 1)-f (x 2)=x 21-x 221x 1-1x 2(x 1-x 2x 1+x 2+1x 1x 2∵x 2>x 1>0,∴x 1-x 2<0,x 1+x 2+1x 1x 2>0.∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).故f (x )在(0,+∞)上单调递增.方法二f′(x)=2x+1 x2 .当x>0时,f′(x)>0,故f(x)在(0,+∞)上为增函数.12.已知函数f(x)对于任意x,y∈R,总有f(x)+f(y)=f(x+y),且x>0时,f(x)<0.(1)求证:f(x)在R上是奇函数;(2)求证:f(x)在R上是减函数;(3)若f(1)=-23,求f(x)在区间[-3,3]上的最大值和最小值.(1)证明∵函数f(x)对于任意x,y∈R总有f(x)+f(y)=f(x+y),令x=y=0得f(0)=0,令y=-x得f(-x)=-f(x),∴f(x)在R上是奇函数.(2)证明在R上任取x1>x2,则x1-x2>0,f(x1)-f(x2)=f(x1)+f(-x2)=f(x1-x2),∵x>0时,f(x)<0,∴f(x1-x2)<0,∴f(x1)<f(x2),∴f(x)在R上是减函数.(3)解∵f(x)是R上的减函数,∴f(x)在[-3,3]上也是减函数,∴f(x)在[-3,3]上的最大值和最小值分别为f(-3)和f(3),而f(3)=3f(1)=-2,f(-3)=-f(3)=2,∴f(x)在[-3,3]上的最大值为2,最小值为-2.13.若存在正数x使2x(x-a)<1成立,则实数a的取值范围是________.答案(-1,+∞)解析由题意可得,存在正数x使a>x成立.令f(x)=x,该函数在(0,+∞)上为增函数,可知f(x)的值域为(-1,+∞),故a>-1时,存在正数x使原不等式成立.14.设函数f (x )x 2+4x ,x ≤4,2x ,x >4.若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a的取值范围是__________________.答案(-∞,1]∪[4,+∞)解析作函数f (x )的图象如图所示,由图象可知f (x )在(a ,a +1)上单调递增,需满足a ≥4或a +1≤2,即a ≤1或a ≥4.15.(2019·石家庄模拟)已知函数f (x )=2021x -2021-x +1,则不等式f (2x -1)+f (2x )>2的解集为____________.答案解析由题意知,f (-x )+f (x )=2,∴f (2x -1)+f (2x )>2可化为f (2x -1)>f (-2x ),又由题意知函数f (x )在R 上单调递增,∴2x -1>-2x ,∴x >14,∴16.已知函数f (x )=+a x-a 是大于0的常数.(1)求函数f (x )的定义域;(2)当a ∈(1,4)时,求函数f (x )在[2,+∞)上的最小值;(3)若对任意x ∈[2,+∞)恒有f (x )>0,试确定实数a 的取值范围.解(1)由x +a x -2>0,得x 2-2x +a x>0.①当a >1时,x 2-2x +a >0恒成立,定义域为(0,+∞);②当a =1时,定义域为{x |x >0且x ≠1};③当0<a <1时,定义域为{x |0<x <1-1-a 或x >1+1-a }.(2)设g (x )=x +a x -2,当a ∈(1,4),x ∈[2,+∞)时,g (x )=x +a x-2在[2,+∞)上是增函数.∴f (x )=lg +a x-[2,+∞)上是增函数,∴f (x )=lg +a x -[2,+∞)上的最小值为f (2)=lg a 2.(3)对任意x ∈[2,+∞)恒有f (x )>0,即x +a x-2>1对x ∈[2,+∞)恒成立.∴a >3x -x 2,x ∈[2,+∞).设h (x )=3x -x 2,x ∈[2,+∞),则h (x )=3x -x 2+94在[2,+∞)上是减函数,∴h (x )max =h (2)=2.∴a >2.即实数a 的取值范围是(2,+∞).。
高一数学导数与函数的单调性与极值函数的单调性和极值是数学中的重要概念,对于理解函数的性质和解决实际问题都具有重要意义。
在这篇文章中,我们将探讨高一数学中导数与函数的单调性和极值的概念、性质及其应用。
一、导数与函数的单调性函数的单调性是指函数在定义域上的变化趋势。
在数学中,导数是描述函数变化率的重要工具。
1.1 导数的定义对于函数 y=f(x),若函数在点 x0 处可导,则导数 f'(x0) 的定义如下:f'(x0) = lim(h->0) [f(x0+h) - f(x0)] / h其中,lim 表示极限,h 为自变量的增量。
1.2 单调性的判定通过导数的符号来判断函数的单调性:若在某一区间内,f'(x)>0,函数单调递增;若在某一区间内,f'(x)<0,函数单调递减;若在某一区间内,f'(x)=0,函数在该区间内可能有极值点。
1.3 单调性的应用函数的单调性在实际问题的建模和求解中具有重要应用,例如在经济学中,可以利用函数的单调性来研究供求关系、市场行为等问题。
在求解最优化问题时,函数的单调性也是一个重要考虑因素。
二、导数与函数的极值函数的极值包括最大值和最小值,用于描述函数的局部极限。
2.1 极值点的定义对于函数 y=f(x),若存在 a,使得 f(a) 是函数在该点上的最大值或最小值,则称 a 为函数的极值点,而 f(a) 称为函数的极值。
2.2 极值点的判定通过导数的性质来判断函数的极值点:1) 若 f'(x) 在 a 点两侧变号,则 a 点是函数的极值点;2) 若 f'(x) 在 a 点两侧保持符号相同,则 a 点不是函数的极值点。
2.3 极值点的应用函数的极值在实际问题的求解中起着重要的作用。
例如,在工程中优化设计问题,可以通过求解函数的极值来找到最优解。
在生物学中,可以利用极值点来研究生物体的最佳生长环境。
总结:通过学习导数与函数的单调性和极值,我们可以更深入地理解函数的性质和变化趋势。
高中数学函数单调性的几种常见题型总结在高中数学学习中,函数是非常重要的一部分内容。
其中,函数的基本性质——单调性更是重中之重。
在对函数问题的考查中,函数的单调性占很大的比重。
因此,需要对函数单调性的常见题型进行系统的归纳总结。
本文将从以下四方面结合具体的例子来分析总结涉及到函数单调性的几种常见题型。
一、分段函数单调性问题目前,高中数学教材必修一中这样定义函数单调性:一般地,设函数定义域为 :如果对于定义域内某个区间上的任意两个自变量的值,当时,都有,那么就说函数在区间上是增函数;如果对于定义域内某个区间上的任意两个自变量的值,当时,都有,那么就说函数在区间上是减函数。
根据定义,我们可以得到,若函数在上单调递增,则满足两个条件:(1)在上单调递增,在上单调递增;(2);同理,若函数在上单调递减,则满足两个条件:(1)在上单调递减,在上单调递减;(2) .例题:已知函数在上是减函数,则的取值范围是.这道题考查的是分段函数的单调性问题。
根据题意,时,是二次函数,在对称轴左侧单调递减;时,是对数函数,在时单调递减;再利用端点处的函数值大小关系即可得出满足条件的的取值范围。
解答:当时,为二次函数,对称轴为,在对称轴左侧单调递减,所以,解得;当时,,当时单调递减。
所以可得到,需满足,解得 .所以答案为.这里需要注意的是端点处函数值的大小关系是学生容易忽略或出错的地方,我们在教学中需要加以解释与强调。
利用函数单调性参数取值范围在这一类问题中,我们重点分析以下这种与对数函数相关的复合函数类型的题目,这是学生们的易错点,我们在上课时需要引起重视。
例题:若在区间上递减,则的取值范围为().这道题考查与对数函数相关的复合函数的单调性,我们知道复合函数单调性遵从“同增异减”的原则。
解答:令,则,由题意,在区间上,的取值需令真数,且函数在区间上单调递减。
配方得,故对称轴为,如图所示:由图像可知,当对称轴时,在区间上单调递减,又真数,二次函数在上单调递减,故只需当时,,则时,真数恒成立,代入解得,所以得取值范围是 .故选 .在教学过程中,我发现“真数大于0”这一条件在解题过程中很容易被忽略,或者有的学生对“真数大于0”这一条件该如何列不等式计算模棱两可,所以这一类型的题目在学生们中出现了“屡教不改”的现象。