图像增强基本算法的分析
- 格式:doc
- 大小:25.00 KB
- 文档页数:2
图像增强的基本原理图像增强是一种用于改善图像视觉质量或提取目标特征的技术。
它通过改变图像的亮度、对比度、颜色、清晰度等属性来增强图像的可视性和可识别性。
图像增强的基本原理可以归纳为以下几点:1. 空域增强:采用空域操作,即对图像的每个像素进行操作。
常见的空域增强方法有直方图均衡化、灰度拉伸、滤波等。
直方图均衡化通过重新分布图像中像素的亮度来增加图像的对比度,灰度拉伸则通过线性转换将图像的亮度范围拉伸到整个灰度级范围内。
滤波则通过应用低通、高通、中通等滤波器来增强图像的细节和轮廓。
2. 频域增强:采用频域操作,即将图像转换到频域进行处理。
常见的频域增强方法有傅里叶变换、小波变换等。
傅里叶变换可以将图像从空域转换到频域,通过对频谱进行滤波操作来增强图像的细节和边缘。
小波变换则可以将图像分解为不同频率的子带,可以更加灵活地选择性地增强特定频率的信息。
3. 增强算法:通过应用特定的增强算法来增强图像的视觉效果。
常用的增强算法有Retinex算法、CLAHE算法等。
Retinex算法通过模拟人眼对光源的自适应调整能力来增强图像的亮度和对比度,CLAHE算法则通过分块对比度受限的直方图均衡化来增强图像的细节和纹理。
4. 机器学习方法:利用机器学习算法对图像进行增强。
通过训练模型,学习图像的特征和上下文信息,然后根据学习到的模型对图像进行增强处理。
常见的机器学习方法包括卷积神经网络、支持向量机等。
综上所述,图像增强的基本原理包括空域增强、频域增强、增强算法和机器学习方法等。
这些原理可以单独或结合使用,根据图像的特点和需求,选择合适的方法来对图像进行增强处理,以获得更好的图像视觉质量和目标特征提取效果。
遥感图像处理与分析算法综述随着遥感技术的发展,遥感图像处理与分析算法在各个领域中得到了广泛的应用。
遥感图像处理与分析算法是指通过对遥感图像进行数字处理和分析,来提取和解释图像中的信息。
本文将综述一些常见的遥感图像处理与分析算法,包括图像增强、分类与分割等。
一、图像增强图像增强是指通过一系列的操作,提高图像的质量和可视化效果。
常见的图像增强算法包括直方图均衡化、滤波和增强函数等。
直方图均衡化是一种常用的图像增强方法,它通过对图像的直方图进行变换,来增加图像的对比度。
该方法通过将图像的像素值映射到一个新的分布上,从而改变图像的亮度分布。
滤波是另一种常见的图像增强方法,通过在图像的空域或频域中对像素进行处理,来减少噪声和增强图像细节。
常见的滤波算法包括高通滤波和低通滤波等。
高通滤波可以增强图像的边缘和细节,而低通滤波则能够平滑图像并去除噪声。
增强函数是一种通过对图像的像素值进行非线性映射,来增强图像的方法。
常见的增强函数包括对数变换、幂次变换和伽马变换等。
对数变换可以扩展暗部像素的动态范围,而幂次变换则能够增强图像的对比度。
二、分类与分割分类与分割是遥感图像处理与分析的重要内容,它们能够将图像中的不同对象进行区分和提取。
常见的分类与分割算法包括聚类分析、最大似然分类和支持向量机等。
聚类分析是一种通过将像素划分到不同的类别中,来实现图像分类和分割的方法。
常见的聚类分析算法包括K均值聚类和自适应聚类等。
K均值聚类将图像像素划分为K个簇,每个簇代表一个类别,而自适应聚类则能够根据像素的分布进行不同权重的划分。
最大似然分类是一种基于概率统计的图像分类方法,它通过计算像素在每个类别中的概率,并选择概率最大的类别作为最终的分类结果。
最大似然分类算法能够准确地对图像中的不同对象进行分类,并且具有较强的鲁棒性。
支持向量机是一种通过构建一个最优决策边界,来实现图像分类和分割的方法。
支持向量机利用训练样本,通过最大化分类边界与样本之间的距离,来找到一个最优的分类超平面。
图像增强算法(直⽅图均衡化、拉普拉斯、Log、伽马变换)⼀、图像增强算法原理图像增强算法常见于对图像的亮度、对⽐度、饱和度、⾊调等进⾏调节,增加其清晰度,减少噪点等。
图像增强往往经过多个算法的组合,完成上述功能,⽐如图像去燥等同于低通滤波器,增加清晰度则为⾼通滤波器,当然增强⼀副图像是为最后获取图像有⽤信息服务为主。
⼀般的算法流程可为:图像去燥、增加清晰度(对⽐度)、灰度化或者获取图像边缘特征或者对图像进⾏卷积、⼆值化等,上述四个步骤往往可以通过不同的步骤进⾏实现,后续将针对此⽅⾯内容进⾏专题实验,列举其应⽤场景和处理特点。
本⽂章是⼀篇综合性⽂章,算是⼀篇抛砖引⽟的⽂章,有均衡化、提⾼对⽐度、降低对⽐度的算法。
1.1 基于直⽅图均衡化的图像增强图像对⽐度增强的⽅法可以分为两种:直接对⽐度增强⽅法,间接对⽐度增强⽅法。
直⽅图拉伸和直⽅图均衡化是常见的间接对⽐度增强⽅法。
直⽅图拉伸是利⽤对⽐度拉伸对直⽅图进⾏调整,扩⼤前景和背景灰度的差别,这种⽅法可以通过线性和⾮线性的⽅法来实现,其中ps中就是利⽤此⽅法提⾼对⽐度;直⽅图均衡化则是利⽤累积函数对灰度值进⾏调整,实现对⽐度的增强。
直⽅图均衡化处理原理:将原始图像的灰度图从⽐较集中的某个灰度区间均匀分布在整个灰度空间中,实现对图像的⾮线性拉伸,重新分配图像像素值。
算法应⽤场景:1、算法的本质是重新分布图像的像素值,增加了许多局部的对⽐度,整体的对⽐度没有进⾏太⼤改变,所以应⽤图像为图像有⽤数据的对⽐度相近是,例如:X光图像,可以将曝光过度或曝光不⾜照⽚进⾏更好的显⽰,或者是背景及前景太亮或太暗的图像⾮常有⽤。
2、算法当然也有缺点,具体表现为:变换后的图像灰度级减少,某些细节减少;某些图像有⾼峰值,则处理后对⽐度不⾃然的过分增强。
算法实现特点:1、均衡化过程:直⽅图均衡化保证在图像像素映射过程中原来的⼤⼩关系保持不变,即较亮的区域依旧较亮,较暗的依旧较暗,只是对⽐度增加,不能明暗颠倒;保证像素映射函数的值域在0和255之间。
低光照图像增强算法综述一、本文概述随着计算机视觉技术的快速发展,图像增强技术成为了研究的重要领域之一。
其中,低光照图像增强算法是处理低质量、低亮度图像的关键技术,对于提高图像质量、增强图像细节、提升图像识别精度等方面具有重要的应用价值。
本文旨在对低光照图像增强算法进行全面的综述,介绍其研究背景、发展历程、主要算法及其优缺点,并探讨未来的发展趋势。
本文将对低光照图像增强的研究背景进行介绍,阐述低光照图像增强技术在视频监控、医学影像分析、军事侦察、航空航天等领域的应用需求。
本文将回顾低光照图像增强技术的发展历程,分析不同算法在不同历史阶段的发展特点和主要贡献。
接着,本文将重点介绍当前主流的低光照图像增强算法,包括基于直方图均衡化的算法、基于Retinex理论的算法、基于深度学习的算法等,并详细阐述其原理、实现方法、优缺点等。
本文将展望低光照图像增强技术的未来发展趋势,探讨新技术、新算法在提升图像质量、提高识别精度等方面的潜在应用。
通过本文的综述,读者可以全面了解低光照图像增强算法的研究现状和发展趋势,为相关领域的研究和实践提供有益的参考和借鉴。
二、低光照图像增强的基本原理低光照图像增强算法的核心目标是在保持图像细节和色彩信息的提高图像的亮度和对比度,从而改善图像的视觉效果。
这通常涉及到对图像像素值的调整,以及对图像局部或全局特性的分析和优化。
基本的低光照图像增强算法可以分为两类:直方图均衡化和伽马校正。
直方图均衡化是一种通过拉伸像素强度分布来增强图像对比度的方法。
这种方法假设图像的可用数据跨度大,即图像包含从暗到亮的所有像素值。
然而,对于低光照图像,由于大部分像素值集中在较低的亮度范围内,直方图均衡化可能会过度增强噪声,导致图像质量下降。
伽马校正则是一种更为柔和的增强方法,它通过调整图像的伽马曲线来改变图像的亮度。
伽马曲线描述了输入像素值与输出像素值之间的关系,通过调整这个关系,可以改变图像的亮度分布。
图像处理中的图像增强方法对比与分析导语:在图像处理领域中,图像增强是一个重要的技术,用于改善图像的质量和清晰度。
随着计算机视觉和机器学习的发展,各种图像增强方法被提出和应用于不同领域,如医学影像、卫星图像等。
本文将对几种常见的图像增强方法进行对比与分析,包括直方图均衡化、灰度拉伸、滤波和深度学习。
一、直方图均衡化直方图均衡化是一种通过调整图像的像素灰度分布来增强图像对比度和亮度的方法。
该方法基于直方图的统计特性,可以将原始图像的像素值重新映射到更广泛的范围内,以获得更丰富的灰度级。
直方图均衡化对均匀分布和低对比度的图像效果较好,但对于具有极大动态范围和特定区域灰度差异的图像效果可能不理想。
并且,它也容易产生过度增强的效果,导致图像细节丢失。
二、灰度拉伸灰度拉伸是一种通过重新分配图像的像素灰度级以增加图像对比度的方法。
它基于简单的线性变换,将图像的最低灰度级映射到最小灰度值,将最高灰度级映射到最大灰度值,而中间的灰度级按比例进行映射。
灰度拉伸适用于具有低对比度的图像,可以有效增强图像的细节和边缘。
然而,灰度拉伸方法需要手动选择合适的灰度级范围,并且无法处理非线性关系和部分区域的对比度差异。
三、滤波滤波是一种基于图像频谱的增强方法,通过去除图像中的噪声和模糊以提高图像质量。
滤波方法包括低通滤波和高通滤波。
低通滤波可以平滑图像并去除高频噪声,常用的滤波器包括均值滤波和高斯滤波。
高通滤波可以增强图像的边缘和细节,常用的滤波器包括拉普拉斯滤波和Sobel滤波器。
滤波方法可以较好地增强图像的细节和对比度,但也可能导致图像的细节损失和边缘模糊。
四、深度学习深度学习是一种基于人工神经网络的图像增强方法,它通过训练模型学习图像的特征和映射关系,以生成更高质量的图像。
深度学习方法可以根据不同任务和需求进行适应性调整和优化,具有较强的非线性建模和适应能力。
随着深度学习算法的不断发展和硬件计算能力的提升,该方法在图像增强方面取得了许多重要的突破。
使用计算机视觉技术进行图像去噪和增强的方法介绍图像去噪和增强是计算机视觉领域中的重要研究方向之一。
在现实生活中,图像数据往往受到噪声、模糊、低对比度等因素的影响,这些问题会降低图像的质量,降低了人们对图像的理解和分析能力。
为了提升图像的质量和准确性,科学家们提出了许多方法和算法,本文将介绍其中几种常见的方法。
一、主成分分析法(PCA):主成分分析法是一种常见的图像去噪和增强方法,它通过线性变换的方式将原始图像数据转换为新的坐标系。
在新的坐标系中,通过选择合适的主成分,可以达到去除图像噪声和增强图像细节的目的。
主成分分析法的基本步骤如下:1. 对原始图像进行预处理,包括灰度处理、归一化等;2. 将图像数据矩阵重构为一个向量;3. 计算协方差矩阵,并对其进行特征值分解;4. 选择合适的主成分进行图像变换,得到去噪或增强后的图像。
二、小波变换法:小波变换是一种基于信号处理的方法,在图像去噪和增强中也得到了广泛应用。
小波变换的基本思想是将图像分解为不同尺度上的平滑部分和细节部分,其中细节部分通常是我们关注的目标。
小波变换法的基本步骤如下:1. 对原始图像进行灰度处理;2. 将灰度图像进行小波分解,得到不同尺度上的频域系数;3. 根据不同尺度上的频域系数进行图像去噪和增强;4. 将去噪或增强后的频域系数进行小波反变换,得到最终的图像。
三、非局部均值滤波法:非局部均值滤波法是一种经典的图像去噪方法,它通过利用图像中的冗余信息来降低噪声的影响。
该方法的基本思想是通过计算图像中相似像素点的平均值来去除噪声。
非局部均值滤波法的基本步骤如下:1. 对原始图像进行灰度处理;2. 在给定窗口内,计算每个像素点与邻域像素点之间的相似度;3. 根据相似度计算图像中每个像素点的非局部均值;4. 基于计算得到的非局部均值,生成最终去噪后的图像。
四、卷积神经网络(CNN):卷积神经网络是近年来在图像处理领域取得重大进展的方法之一。
使用计算机视觉技术进行图像增强的实用方法介绍计算机视觉技术是指利用计算机和相关算法对图像进行分析、处理和理解的一门学科。
图像增强是计算机视觉领域中的一个重要任务,它可以通过改善图像的质量和细节来提高图像的可视化效果。
本文将介绍一些实用的方法,以帮助读者了解如何使用计算机视觉技术进行图像增强。
1. 图像锐化图像锐化是一种常用的图像增强技术,它可以增强图像的边缘和细节。
常见的图像锐化算法包括拉普拉斯锐化和锐化掩模等。
拉普拉斯锐化通过计算像素值的二阶导数来增强图像的边缘,而锐化掩模则通过在原始图像上叠加高频成分来增强图像的细节。
这些算法可以通过调整参数来获得不同的效果。
2. 对比度增强对比度增强是一种常见的图像增强方法,它通过调整图像的灰度级别范围来增强图像的对比度。
线性变换和直方图均衡化是常用的对比度增强算法。
线性变换通过将原始图像的灰度级别映射到一个新的范围内来调整图像的对比度,而直方图均衡化通过重新分布图像的像素值来增强图像的对比度。
这些算法在提高图像的可视化效果方面非常有效。
3. 去噪图像噪声是指在图像采集或传输过程中引入的随机干扰,它会降低图像的质量和细节。
去噪是图像增强中的一个重要任务,它通过滤波等方法来减少图像中的噪声。
常见的去噪算法包括中值滤波和高斯滤波等。
中值滤波通过将每个像素的值替换为其邻域像素值的中值来减少图像中的噪声,而高斯滤波则通过对像素周围区域进行加权平均来实现去噪效果。
4. 图像修复图像修复是一种通过填补缺失或损坏区域来恢复图像的方法。
它在修复受损图像或恢复老照片等方面具有重要作用。
常见的图像修复算法包括纹理合成和图像插值等。
纹理合成通过从已知区域中提取纹理信息并将其应用于缺失区域来修复图像,而图像插值则通过在已知像素值之间进行推断来填充缺失的像素值。
这些算法在修复受损图像方面非常有用。
总结:使用计算机视觉技术进行图像增强可以改善图像的质量和细节,从而提高图像的可视化效果。
图像处理中的图像增强算法使用技巧在图像处理领域,图像增强是一项重要的任务。
图像增强的目标是提高图像的视觉质量,使得图像更加清晰、鲜明,以便更好地进行后续处理或者人眼观察。
为了实现这一目标,图像增强算法被广泛使用,并且不断发展。
下面将介绍一些常见的图像增强算法以及它们的使用技巧。
1. 线性滤波线性滤波是一种基础的图像增强算法,常用于对图像进行平滑和锐化。
常见的线性滤波算法包括均值滤波、高斯滤波和拉普拉斯滤波。
在使用线性滤波算法时,需要根据图像的特点选择合适的滤波器大小和参数设置,以达到最佳的增强效果。
2. 直方图均衡化直方图均衡化是一种常用的图像增强算法,用于提高图像的对比度。
它通过对图像的像素值进行重新分布,使得图像的直方图均匀分布在整个灰度范围内。
在应用直方图均衡化时,需要注意处理图像的局部对比度,以避免过度增强和失真。
3. 空域滤波空域滤波是一种基于像素的图像增强算法,通过对图像的像素进行运算来改变图像的外观。
常见的空域滤波算法包括锐化滤波、边缘增强和细节增强。
使用空域滤波算法时,需要选择合适的滤波器类型和参数,以获得理想的增强效果。
4. 频域滤波频域滤波是一种基于图像的频率分析的图像增强算法。
它通过对图像的傅里叶变换来分析图像的频谱特征,并根据需要对频谱进行修正,从而改变图像的视觉质量。
常用的频域滤波算法包括高通滤波和低通滤波。
在应用频域滤波算法时,需要注意选择合适的频率域区域和阈值,以避免引入噪声和失真。
5. 增强图像细节图像细节是图像中重要的信息之一,因此在图像增强过程中,保留和增强图像的细节是很重要的。
为了增强图像的细节,可以使用局部对比度增强算法、非局部均值算法、细节增强滤波器等。
这些算法可以根据图像的特点和需求来调整参数,以突出图像的细节。
6. 抑制噪声图像中常常存在各种类型的噪声,如高斯噪声、椒盐噪声等。
噪声会影响图像的视觉质量和后续处理的效果,因此在图像增强中需要考虑对噪声的抑制。
医学影像处理常见算法介绍医学影像处理是指将医学图像通过计算机技术进行处理和分析,以研究和诊断患者的病情。
医学影像处理算法类别繁多,本文将针对常见的算法进行介绍。
一、图像增强算法图像增强算法用于提高图像的视觉效果,使图像更具有清晰度和对比度。
其中,灰度拉伸技术是最为常见的图像增强算法之一,其基本原理是通过调整图像像素的灰度级别来增强图像的对比度和亮度。
图像的灰度值是非常重要的一个指标,可以通过调整灰度值的分布范围来使图像具有更高的视觉可分性。
二、图像分割算法图像分割算法用于将医学图像中具有特定生物学意义或特征的区域单独提取出来。
其中,阈值分割是最常用的分割算法之一,其基本原理是通过设定一定的灰度值阈值,将图像中的像素分为两组,一组大于或等于阈值,另一组小于阈值。
此外,还有区域生长分割、水平线分割等算法。
三、图像配准算法图像配准算法是将不同的图像进行对齐的一种处理方法。
医学图像在不同时间、不同视角或不同成像设备下获取可能会产生不同位置或大小的误差,这时需要对图像进行配准。
其中,基于特征点匹配的配准算法是最为常用和有效的方法之一。
四、形态学处理算法形态学处理算法可以对医学图像进行腐蚀、膨胀、开操作、闭操作等处理,进而实现对图像的分割、增强等功能。
形态学变换的基本原理是通过基于结构元素进行像素运算,改变图像的形状和结构。
五、滤波算法滤波算法是用于去除图像中噪声、减少图像细节等目的的算法。
其中,中值滤波是最为常见的滤波算法之一,其基本思想是将图像中每一个像素的邻域灰度值进行排序,然后取中间值作为该像素的新灰度值。
六、特征提取算法特征提取算法是从医学图像中提取出具有特定形态、大小、密度等特点的区域或者特征点。
其中,常见的算法包括主成分分析、小波变换等。
七、神经网络算法神经网络算法可以通过对大量训练数据的学习,自动地提取出医学图像中的特征,并输出正确的医学图像诊断结果。
在医学图像文献分类、疾病诊断等方面,已经得到了广泛的应用。
图像增强基本算法的分析
【摘要】图像增强是指按特定的的需要采用特定的方法突出图像中的某些信息,同时削弱和去除无关信息。
本文围绕图像增强基本算法进行了比较,分析了各自的优缺点并指明了最佳适用场景。
【关键词】图像;图像增强;算法
The Analysis of The Basic Algorithm to The Image Enhancement
Chang Da—jun
(Changchun Architecture & Civil Engineering CollegeChangchunJilin130607)【Abstract】Techniques of image enhancement aim at improving the interpretability or perception of information in images for human viewers,eliminating or attenuating unneeded information. This paper is developed according to the algorithm of image enhancement,and systematically investigated and compared. The advantage and defect of the above—mentioned algorithms as well as the suitable application of them.
【Key words】Image;Image Enhancement;Arithmetic
1. 图像增强意义
图像增强是数字图像处理过程中的重要研究技术。
但条件影响致使获得图像效果不佳,这就要使用图像增强技术来改善视觉效果,如突出特点、提取特征参数等,都有利于对目标的识别、跟踪等。
因此,在各个领域中都有应用。
2. 图像增强基本方法
2.1空域邻域基本理论。
空域滤波是基于模板卷积,对图像中任意点的像素点(x,y)进行m×n掩模处理得到的响应,其公式如下所示:
R=W1Z1+ W2Z2+ …+W mn Z mn=∑mn i=1 W iZ i (1)
W为掩模系数,z为对应像素灰度值,mn为包含像素点总数。
主要步骤为:(1)模板在图像中移动,并将模板中心与某个像素位置重合。
(2)读取模板下各对应像素的灰度值,并与模板系数相乘,所得乘积累加。
(3)将和赋值给模板中对应位置的像素。
常用技术:邻域平均法、中值滤波法等。
图1均值滤波
2.2频域图像增强方法的基本理论。
频域增强是利用图像变换技术将原图像空间中的图像以某种形式转换到其它空间中,然后利用该空间特有性质进行图像处理,最后再转换回原图像空间中,致使获得处理后的图像。
主要步骤是:(1)选择变换技术,将原图像变换到频域空间。
(2)在频域空间中,依据处理目的设计转移函数同时进行处理。
(3)将所得结果用反变换得到增强后图像。
频域图像增强技术:低通滤波、高通滤波、带通带阻滤波。
3. 实验分析
3.1空域邻域实验分析。
3.1.1邻域平均法。
以图像自带的eight.tif为例,对其人为地添加少量椒盐噪声,然后利用不同大小模板的均值滤波对其进行去噪处理。
结果如图1所示:
从图1中可以看出,均值滤波去噪时,模板大小的选取至关重要,一般来说,模板越大,去噪能力越强,但同时也会是图像变得模糊。
就像图1所示一样,选用3×3模板时,噪声虽然被减弱,但是仍能清晰得看见噪声的痕迹,选用5×5模板时,噪声被进一步减弱,但是图像变得比使用3×3模板时更模糊,而选用7×7模板时,噪声基本消失不见,但是图像也有些模糊不清了。
图2中值滤波
3.1.2中值滤波法。
如果既要消除噪声又要保持图像的细节,可以使用中值滤波器。
原因是由于中值滤波不是简单地取平均值,因此所产生的模糊比较少。
结果如图2所示:从图2中可以看出,尽管这里人为添加的噪声较多,但中值滤波仍然较好地滤去了椒盐噪声,且克服了均值滤波所带来的图像模糊现象。
同时,也可以看到,去噪后的图像边缘保留了个别的噪声点,这是因为图像的分辨率不是3×3的整数倍,其右侧补0,而这些噪声点的灰度值位于中值排序的中间。
图3椒盐噪声的巴特沃斯地通过滤波
图4椒盐噪声的指数低通滤波图像
3.2频域图像实验分析。
3.2.1巴特沃斯低通滤波器。
对人为添加了少量噪声的图像pout.tif进行巴特沃斯低通滤波。
结果如图3所示:
从图3可以看出,处理前的图像对比度虽然较高,但是噪声点太多。
经过巴特沃斯低通滤波处理以后,噪声虽然消失,但图像相比处理前更为模糊,且图像中有明显的振铃现象。
这是因为噪声点主要存在于高频段,而低通滤波允许处于低频段的像素通过,这就使得处于高频段的噪声点和图像轮廓边缘无法通过,因此图像变得模糊不清。
3.2.2指数低通滤波器。
对人为添加了少量椒盐噪声的图像pout.tif进行指数低通滤波。
结果如图4所示:
从图4可以看出,与图3相比,处理后的图像效果并没有明显改善,甚至图像变得更模糊了,造成这种现象的原因与在巴特沃斯低通滤波中产生模糊的原因基本相同,唯一不同的是在处理过程中引用的处理公式不同,也正是因为这一点,与巴特沃斯低通滤波相比,指数低通滤波的振铃现象有所缓解。
4. 结束语
图像增强技术是现今在计算机方面研究的重点内容,通过对有关基本方法的介绍来了解图像技增强术在今后应用的领域。
参考文献
[1]柏春岚.基于空域图像的研究与分析[J].河南城建学院学报,2011年1月,第20卷第1期:57~60.
[2]贾小军.基于MATLAB的图像增强技术研究[J].渭南师范学院学报,2008年3 月,第23卷第2期:68~70.
[3]张娜.数字图像增强的方法.大众科技报[J],2006年,第8期:27~28.。