北师大数学 八年级下册 第三章 图形的平移与旋转 中心对称 2
- 格式:ppt
- 大小:790.50 KB
- 文档页数:28
第三章图形的平移与旋转2.图形的旋转(一)一、学生起点分析学生在七年级下学期已经学习了“生活中的轴对称”一节,而且在本章的第一节,学生又经历了探索图形平移性质的过程,已经积累了相当的图形变换的数学活动经验,同时八年级学生逻辑思维从经验型逐步向理论型发展,观察能力、记忆能力和想象能力也在迅速发展,他们有强烈的独立思考、自主探索的愿望,这些对本节的学习都会有帮助。
但旋转是三种变换中难度较大的一种,图形也比较复杂,因此,学生对旋转图形的形成过程的理解仍会有一定的困难。
二、教学任务分析图形的旋转是继平移、轴对称之后的又一种图形基本变换,是义务教育阶段数学课程标准中图形变换的一个重要组成部分。
教材从学生实际接触、观察到的一些现象出发,从具体到抽象,从感性到理性,从实践到理论,再用理论检验实践,循序渐进地指导学生认识自然界和生活中的旋转,进而探索其性质。
因此,旋转是培养学生思维能力、树立运动变化观点的良好素材;同时“图形的旋转”也为本章后续学习对称图形、中心对称图形做好准备,为今后学习“圆”的知识内容做好铺垫。
教学目标知识与能力:通过具体事例认识旋转,理解旋转前后两个图形对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角彼此相等的性质.过程与方法:经历对生活中与旋转现象有关的图形进行观察、分析、欣赏、以及动手操作、画图等过程,掌握有关画图的操作技能,发展初步的审美能力,增强对图形欣赏的意识.情感态度价值观:引导学生用数学的眼光看待有关问题,发展学生的数学观,学到活生生的数学.重点:类比平移与旋转的异同,掌握旋转的定义和基本性质,并利用数学知识解释生活中的旋转现象.难点:探索旋转的性质,特别是,对应点到旋转中心的距离相等.三、教学过程设计第一环节创设情境,引入新知演示俄罗斯方块游戏,构成游戏的模块均是由一个小正方形平移变换而来,通过学生玩游戏,发现除了平移运动之外还有旋转运动.引导学生列举出一些具有旋转现象的生活实例,引出课题:“生活中的旋转”。
第三章图形的平移与旋转2.图形的旋转(二)一、教材分析:“图形的旋转”是义务教育教科书北师大版(2013)八年级数学下册第三章图形的平移与旋转的第二节。
图形的旋转是图形变换的基本形式之一,是“义务教育阶段数学课程标准”中图形变换的一个重要组成部分,学习旋转和旋转作图,对发展学生的空间观念是一个很好的提升,是后续学习中心对称图形的基础。
利用旋转研究平行四边形性质、圆的性质的方式之一,因此本节内容在教材中起着承上启下的作用。
学习旋转作图,学习过程中学生就会经历观察、分析、画图和等过程,掌握画图技能. 进一步培养学生的动手操作能力,发展学生的审美观念。
旋转在日常生活中的应用也非常广泛,利用旋转可以帮助我们解决很多实际问题。
本节课的主要内容是通过实例进一步认识旋转变换,探索、理解旋转的特征,并应用旋转的特征作图、解决简单的图形旋转问题。
二、学生起点分析学生此前已经学习了轴对称、平移,积累了一定的活动经验,基于学生已有的旋转知识、生活经验,并且已经了解了旋转的特征。
教材编者将旋转与旋转作图如此安排,目的是力求让学生从动态的角度观察图形、分析解决,画图动手操作,培养学生的能力。
由于旋转与轴对称、平移都是全等变换,在特征上既存在共性又有特性;而学生已经掌握了旋转特征,因此,旋转作图中的相对复杂一点图形——三角形的旋转就成了本节课的难点所在。
三、教学目标1.简单平面图形旋转后的图形的作法,能够按要求作出简单平面图形旋转后的图形.2.确定一个三角形旋转后的位置的条件,3.对具有旋转特征的图形进行观察、分析、画图和动手操作等过程,掌握画图技能. 进一步培养学生的动手操作能力,发展学生的审美观念.教学重点:作简单平面图形旋转后的图形及步骤的总结.教学难点:以三角形外一点为旋转中心作旋转三角形及步骤的总结.四、教学过程设计第一环节回顾旧知师:在前面我们学习了旋转,也了解了旋转的特征,今天我们来学习如何作图形的旋转。
在学习新课之前,我们先来回顾已知。
北师大版八年级下册数学《3.3 中心对称》教案一. 教材分析北师大版八年级下册数学《3.3 中心对称》一课,是在学生已经掌握了平面几何的基本知识,图形变换的基础知识上进行的一课。
本节课主要让学生了解中心对称的概念,理解中心对称的性质,能运用中心对称解决一些简单的问题。
二. 学情分析学生在学习本节课之前,已经掌握了平面几何的基本知识,图形变换的基础知识,对图形变换有一定的理解。
但是,对于中心对称的概念和性质,以及如何运用中心对称解决实际问题,可能还存在一定的困难。
因此,在教学过程中,需要注重引导学生理解中心对称的概念,通过实际操作,让学生感受中心对称的性质,提高学生解决实际问题的能力。
三. 教学目标1.了解中心对称的概念,理解中心对称的性质。
2.能运用中心对称解决一些简单的问题。
3.培养学生的观察能力,动手操作能力,提高学生解决实际问题的能力。
四. 教学重难点1.中心对称的概念和性质。
2.如何运用中心对称解决实际问题。
五. 教学方法采用问题驱动法,引导学生通过观察,操作,思考,总结中心对称的概念和性质。
通过实例,让学生了解如何运用中心对称解决实际问题。
六. 教学准备1.教学PPT。
2.中心对称的图片和实例。
3.练习题。
七. 教学过程1.导入(5分钟)通过展示一些图片和实例,如蜜蜂的蜂窝,让学生观察并思考:这些图形有什么共同的特点?引导学生发现这些图形都是中心对称的,从而引出中心对称的概念。
2.呈现(10分钟)讲解中心对称的概念,以及中心对称的性质。
通过PPT展示中心的定义,对称点的定义,对称性质的证明等,让学生理解和掌握中心对称的概念和性质。
3.操练(10分钟)让学生分组进行动手操作,每组选择一个中心,画出中心对称的图形。
然后,让学生观察和分析中心对称的性质,如对称点的坐标关系,对称图形的形状等。
4.巩固(10分钟)让学生解决一些实际问题,如已知一个图形的一个点,求这个图形的另一个点等。
通过这些问题,让学生运用中心对称的知识,提高解决问题的能力。
第三章图形的平移与旋转3.1图形的平移在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.平移不改变图形的形状和大小.一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在一条直线上)且相等;对应线段平行(或在一条直线上)且相等,对应角相等.在平面直角坐标系中的图形,图形上点的横纵坐标加、减上一个数时,相当于图形依次沿X轴方向、Y轴方向平移后所得图形,可以看成是由原来的图形经过一次平移得到的.3.2图形的旋转在平面内,将一个图形绕一个定点按某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角称为旋转角,旋转不改变图形的形状和大小.一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角;对应线段相等,对应角相等.3.3中心对称如果把一个图形绕着某一点旋转180,它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做它们的对称中心.把一个图形绕某个点旋转180,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心.回顾与思考①平移是否改变图形的位置、形状和大小?旋转呢?②平移旋转各有哪些基本性质?③两个成中心对称的图形有哪些特性?中心对称图形又要哪些特性?第四章因式分解4.1因式分解把一个多项式化成几个整式的积的形式,这种变形叫做因式分解.例如:2(1)(1)a a a a a -=+-,()am bm cm m a b c ++=++,2221(1)x x x ++=+都是因式分解.因式分解也可成为分解因式.例题:把下列各式进行因式分解2(1)44x x ++=2(2)41x -=2(3)105x x -=4.2提公因式法多项式ab bc +的各项都含有相同的因式b .我们把多项式各项都含有的相同因式,叫做这个多项式各项的公因式.如b 就是多项式ab bc +各项的公因式.如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种因式分解的方法叫做提公因式法.例题:把下列各式因式分解2(1)7(1)(1);(2)()()();a x a x x y x y x x y -+-+--+ 32(3)(2)(23)3(2);(4)18()12();a b a b a a b a b b b a +--+--- 4.3公式法事实把乘法公式22()()a b a b a b -+=-反过来就是22()()a b a b a b -=+- 类似的还有2222()a ab b a b ±+=±,像这样的,把利用某些乘法公式把某些多项式因式分解,这种因式分解的方法叫做公式法. 例如:222222(1)21=(2)2()()(3)4x y xy a a b c b c x xy y -+-+++=++=。
2021年北师大版八年级数学下册《第3章图形的平移与旋转》知识点分类训练(附答案)一.生活中的平移现象1.下面生活中的物体的运动情况可以看成平移的是(填写序号即可).①摆动的钟摆;②在笔直的公路上行驶的汽车;③随风摆动的旗帜;④摇动的大绳;⑤汽车玻璃上雨刷的运动.二.平移的性质2.如图,△ABC沿AC平移得到△A'B'C',A'B'交BC于点D,若AC=6,D是BC的中点,则C'C=.三.坐标与图形变化-平移3.如图,点A、B分别在x轴和y轴上,OA=1,OB=2,若将线段AB平移至A'B',则a+b 的值为.四.作图-平移变换4.如图,△ABC的三个顶点坐标分别为A(0,2),B(﹣3,1),C(﹣2,﹣2).(1)将△ABC向右平移3个单位,作出△A′B′C′;(2)写出△A′B′C′的面积;(3)在y轴上是否存在点P,使得△APC的面积与△ABC的面积相等,若存在,求出P 点的坐标;若不存在,说明理由.五.利用平移设计图案5.如图,下列图案中可以看成是由图案自身的一部分经平移后而得到的是()A.B.C.D.六.生活中的旋转现象6.分别以正方形的各边为直径向其内部作半圆得到的图形如图所示,将该图形绕其中心旋转一个合适的角度后会与原图形重合,则这个旋转角的最小度数是度.七.旋转的性质7.如图,Rt△ABC中,∠ACB=90°,∠B=30°,S△ABC=2,将△ABC绕点C逆时针旋转至△A′B′C,使得点A'恰好落在AB上,A'B′与BC交于点D,则S△A′CD为()A.+1B.C.D.2﹣1八.旋转对称图形8.如图,三角形ABC中,∠BAC=150°,AB=6cm,三角形ABC逆时针方向旋转一定角度后,与三角形ADE重合,且点C恰好为AD中点.(1)指出旋转中心和图中所有相等的角;(2)求:AE的长度,请说明理由;(3)若是顺时针旋转,把三角形ABC旋转到与三角形ADE重合,则这个最小旋转角是多少.九.中心对称9.如图,点M为线段EF的中点,△AEC与△BFD成中心对称,试确定对称中心,并指出图中相等的线段和相等的角.十.中心对称图形10.不考虑颜色,对如图的对称性表述,正确的是()A.中心对称图形B.轴对称图形C.既是轴对称图形又是中心对称图形D.既不是轴对称图形又不是中心对称图形十一.关于原点对称的点的坐标11.平面直角坐标系中,点P(﹣2,3)与点Q(a,b)关于原点对称,则a+b=.十二.作图-旋转变换12.如图,在平面直角坐标系中,Rt△ABC的顶点坐标分别为A(﹣1,3),B(﹣3,﹣1),C(﹣3,3),已知△A1B1C1是由△ABC经过顺时针旋转变换得到的.(1)请写出旋转中心的坐标是,旋转角的大小是.(2)以(1)中的旋转中心为中心,画出△A1B1C1按顺时针方向旋转90°得到的△A2B2C2,并写出A2、B2、C2的坐标.十三.利用旋转设计图案13.如图是4×4的网格图.将图中标有①、②、③、④的一个小正方形涂灰,使所有的灰色图形构成中心对称图形,则涂灰的小正方形是()A.①B.②C.③D.④十四.几何变换的类型14.下列关于△ABC与△A'B'C'的几何变换中,配对正确的是()Ⅰ.轴对称;Ⅱ.中心对称;Ⅲ.旋转;Ⅳ.平移.A.①﹣Ⅰ,②﹣Ⅱ,③﹣Ⅲ,④﹣ⅣB.①﹣Ⅱ,②﹣Ⅰ,③﹣Ⅲ,④﹣ⅢC.①﹣Ⅱ,②﹣Ⅰ,③﹣Ⅲ,④﹣ⅣD.①﹣Ⅰ,②﹣Ⅱ,③﹣Ⅲ,④﹣Ⅲ参考答案一.生活中的平移现象1.解:①摆动的钟摆,属于旋转.②在笔直的公路上行驶的汽车,属于平移.③随风摆动的旗帜,不属于平移.④摇动的大绳,不属于平移.⑤汽车玻璃上雨刷的运动,属于旋转.故答案为:②二.平移的性质2.解:由平移的性质,可知,A′D∥AB,∵BD=CD,∴AA′=A′C=3,∴CC′=AA′=3,故答案为:3.三.坐标与图形变化-平移3.解:由作图可知,线段AB向右平移3个单位,再向下平移1个单位得到线段A′B′,∵A(﹣1,0),B(0,2),∴A′(2,﹣1),B′(3,1),∴a=﹣1,b=3,∴a+b=2,故答案为:2.四.作图-平移变换4.解:(1)如图,△A′B′C′即为所求作.(2)△A′B′C′的面积=××=5.(3)存在.设P(0,m),由题意,×|2﹣m|×2=5,解得m=7或﹣3,∴P(0,7)或(0,﹣3).五.利用平移设计图案5.解:A、是一个对称图形,不能由平移得到;B、是应该轴对称图形,不是平移;C、是平移;D、是中心对称图形,不是平移.故选:C.六.生活中的旋转现象6.解:图形可看作由一个基本图形每次旋转90°,旋转4次所组成,故最小旋转角为90°.故答案为:90.七.旋转的性质7.解:过C作CH⊥AB于H,∵∠ACB=90°,∠B=30°,∴∠A=60°,∴∠ACH=30°,∴AC=AB,∴CH=AC=AB,∵S△ABC=2,∴AB•CH=AB•AB=2,∴AB=4,∴AC=2,∵△ABC绕点C逆时针旋转至△A′B′C,使得点A′恰好落在AB上,∴CA=CA′=2,∠CA′B′=∠A=60°,∴△CAA′为等边三角形,∴∠ACA′=60°,∴∠BCA′=30°,∴∠A′DC=90°,在Rt△A′DC中,∵∠A′CD=30°,∴A′D=CA′=1,CD=A′D=,∴△A′CD的面积=×1×=.故选:C.八.旋转对称图形8.解:(1)旋转中心是点A,∠ACB=∠E,∠BAC=∠DAE,∠B=∠D;(2)由旋转的性质可知,AB=AD=6cm,AC=AE,∵AC=CD,∴AE=CD=AD=3(cm).(3)顺时针的最小旋转角=360°﹣∠BAC=210°.九.中心对称9.解:观察图形可知,A、E、M、F、B共线,∴旋转中心为M点,旋转角的度数为180°;根据旋转的性质可知,相等线段为:AC=BD,CE=DF,AE=BF,EM=FM,AM=BM,AF=BE,相等的角为:∠A=∠B,∠C=∠D,∠CEA=∠DFB.十.中心对称图形10.解:根据中心对称图形的概念和轴对称图形的概念可知:此图形是中心对称图形,不是轴对称图形,所以A选项正确.故选:A.十一.关于原点对称的点的坐标11.解:由点P(﹣2,3)与点Q(a,b)关于原点对称,得a=2,b=﹣3,则a+b=2+(﹣3)=﹣1,故答案为:﹣1.十二.作图-旋转变换12.解:(1)观察图象可知,旋转中心的坐标是O(0,0),旋转角为90°.故答案为:O(0,0),90°.(2)如图,△A2B2C2即为所求作.A2(1,﹣3),B2(3,1),C2(3,﹣3).十三.利用旋转设计图案13.解:如图,观察图象可知,把③涂灰,所有的灰色图形构成中心对称图形.故选:C.十四.几何变换的类型14.解:观察图象可知:①是中心对称,②是轴对称,③是旋转变换,④是平移变换.故选:B.。
第三章图形的平移与旋转一、平移定义和规律1平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.关键:a. 平移不改变图形的形状和大小(也不会改变图形的方向,但改变图形的位置)。
b. 图形平移三要素:原位置、平移方向、平移距离。
2平移的规律(性质):经过平移,对应点所连的线段平行且相等,对应线段平行且相等、对应角相等。
注意:平移后,原图形与平移后的图形全等。
3简单的平移作图:平移作图要注意:①方向;②距离。
整个平移作图,就是把整个图案的每一个特征点按一定方向和一定的距离平行移动。
二、旋转的定义和规律1旋转的定义:在平面内,将一个图形饶一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。
这个定点称为旋转中心;转动的角称为旋转角.关键:a。
旋转不改变图形的形状和大小(但会改变图形的方向,也改变图形的位置)。
b。
图形旋转四要素:原位置、旋转中心、旋转方向、旋转角。
2旋转的规律(性质):经过旋转,图形上的每一个点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等.(旋转前后两个图形的对应线段相等、对应角相等。
)注意:旋转后,原图形与旋转后的图形全等.3简单的旋转作图:旋转作图要注意:①旋转方向;②旋转角度。
整个旋转作图,就是把整个图案的每一个特征点绕旋转中心按一定的旋转方向和一定的旋转角度旋转移动。
三、中心对称1.中心对称的有关概念:中心对称、对称中心、对称点把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么称这两个图形关于这点对称,也称这两个图形成中心对称,这个点叫做对称中心,两个图形中的对应点叫做对称点。
2.中心对称的基本性质:(1).成中心对称的两个图形具有图形旋转的一切性质。
(2).成中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
3.中心对称图形的有关概念:中心对称图形、对称中心把一个平面图形绕某一点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形.这个点就是它的对称中心。