一维随机变量及其分布习题
- 格式:doc
- 大小:79.50 KB
- 文档页数:1
第⼆章⼀维随机变量及其分布第⼆章⼀维随机变量及其分布⼀、填空题1.已知F (x )=P {}X x ≤,则P {}a2.设随机变量 X 的分布函数为,()0,x A Be F x -?+=?00x x >≤ 则A= ,B= (A,B 均为常数)3.设X 的分布函数为0,11,116()1,1221,2x x F x x x <--≤≤则{}1P X <= ,{}12P X <<= . 4.当常数C= 时,{},1,2,(1)CP X n n n n ===+ 为X 的分布律.5.设X 的密度函数为2,()0,x ke f x -?=??00x x >≤则{}12P X -<<= . 6.设X 服从参数为λ的泊松分布,且{}{}122p X P X ===,则{}3P X == . 7.设(1,4)X N ,则{}1P X <= .8.设X 的分布律为101211114436X -??,则2X 的分布律为 .9.设X 服从[]0,1上的均匀分布,则21Y X =-的密度函数为 .10.设X 的密度函数为f(x),则XY e-=的密度函数为 .⼆、选择题1.设连续型随机变量X 的密度函数为f(x),分布函数为F (x ),则下列结论正确的是()<+=()D 当12x x <时,12()()F x F x <2.设X 的分布函数为F(x),则下列函数中,仍为分布函数的是( )()(21)A F x - ()(1)B F x -3()()C F x ()1()D F x --3.设X 的分布函数为20,()F x x b c ??=-,,x a a x x ≤<≤>则常数a,b,c 的值为( )()A -1,1,1. ()B 1,1,1. ()C 1,0,1. ()D 1,1,0.4.设离散型随机变量X 的分布律为{},1,2,kP X k b k λ=== ,则常数b,λ应满⾜( )()A b>0 ()B 0<λ<1 ()C b=11λ-- ()D 以上都应满⾜5.设X 服从参数为λ的泊松分布,s 表⽰X 取偶数的概率,t 表⽰X 取奇数的概率,则有( )()A s=t ()B st ()D s 与t 的⼤⼩关系不定6.某公司汽车站从上午6点起,每15分钟有⼀班车⽤过,若某乘客到达该站的时间在 8:00到9:00服从均匀分布,则他候车的时间少于5分钟的概率是( )()A 13 ()B 23 ()C 14 ()D 127.设2X N(0,)σ,则对任⼀实数λ,下列结论正确的是( ){}{}()1A P X P x λλ<=-<- {}{}()B P X P X λλ<=> 22()X (0,)C N λλσ 22()(,)D X N λλλσ++8.设22()x xf x CeB ()C ()D9.设X 在[],a b 上服从均匀分布,,λµ的任意两实数,则下列命题正确的是( )()A X 服从均匀分布 ()B 2X 服从均匀分布()C 2(1)X λµ++服从均匀分布 ()D 2(1)X λµ-+服从均匀分布10.设X 为⼀随机变量,Y 为X 的单值函数,则下列命题不正确的是( )()A 若X 为连续型时,Y 未必为连续型 ()B 若X 为连续型时,Y 未必为离散型 ()C 若X 为离散型时,Y 未必为连续型 ()D 若X 为离散型时,Y 未必为离散型三、解答题1.盒中有4只⽩球1只⿊球,现⼀只⼀只地将球取出来,取出后不放回,设X 表⽰取到⿊球的取球次数,求X 的分布律. 2.设甲,⼄,丙三⼈同时向⼀⽬标射击⼀次,命中率分别为0.4,0.5,0.7,设X 表⽰击中,⽬标的⼈数,求X 的分布律. 3.设1cos ,0221()sin ,0220,x x f x x x ππ-≤其它试问f(x)是否为某随机变量X 的密度函数?如果是,求X 的分布函数. 4.设X 的密度函数为2(),0,k xf x Ae k x -=>-∞<<+∞,试求:(1)常数A (2){}(1,0)P X ∈- (3)X 的分布函数()F x5.设X 服从参数为1的泊松分布,{}{}2,50Y X P Y k P Y k ===+≠,k 为某⾮负整数.求{}{}5P Y k P Y k =-=+.⾍卵是否发育成幼⾍是相互独⽴的.证明昆⾍所产的幼⾍数η服从参数为p λ的泊松分布.7.设X 是[]0,1上的连续型随机变量, {}0.290.75,1P X Y X ≤==-,试决定y ,使得{}0.25P Y y ≤=.8.某班有40名学⽣,某次考试的成绩()72,64X N ,已知⼀学⽣成绩为80分.问该学⽣在全班⼤概排到多少位?9.某⼚⽣产的电⼦管寿命()()2N 1600X σ以⼩时计,,若电⼦管寿命在1200⼩时以上的概率不⼩于0.96,求σ的范围.10.已知某电⼦管元件的寿命(X ⼩时)的概率密度为110001,0()10000,0e xf x x -?>?=??≤?求 (1)这种元件能使⽤1200⼩时以上的概率; (2)5个这种元件中⾄少有3个能使⽤1200⼩时以上的概率.11.已知测量误差N 7.5,100X (⽶)(),问必须测量多少次才能使⾄少有⼀次误差的绝对值不超过10⽶的概率⼤于0.9?12设13,3X B ??,Y 服从[]0,3上的均匀分布,且X 与Y 独⽴,问⾏列式1102011X X Y -->的概率是多少? 13.设连续型随机变量X 的密度函数为(),()0,x a x b e f x -?-=??00x x >≤期中,a b 为常数,已知曲线()y f x =在2x =时取得拐点. (1)求,a b 的值;(2)设{}()1(0)g t P t X t t =<<+>,问t 为何值时,()g t 取得最⼤值? 14.(1)设ξ服从参数为λ的泊松分布,证明当[]k λ=时,{}P k ξ==最⼤; (2)设(,)B n p ξ,证明当[](1)k n p =+时,{}P k ξ=最⼤. 15.设X 服从指数分布,证明当,0s t >时,{}{}P X s t X s P X t >+>=>.16.设连续型随机变量X 的密度函数()f x 为偶函数,()F X 为X 的分布函数,证明()(),02x F x f t dt x -=->?.17.设X 的分布律为{}1,1,2,2k P X k k === ,求sin 2Y X π=的分布律.18对圆⽚直径进⾏测量,测量值X 在[]5,6上服从均匀的分布,求圆⽚⾯积Y 的概率密度()Y f y .19.设2(,)X N µσ ,求Y X =的概率密度()Y f y .20.设X 在[]0,2π上服从均匀分布,求Y sinX =的密度函数()Y f y21.设X 在[],a b 上服从均匀分布,Y cx d =+(0)c ≠,证明Y 仍服从均匀分布. 22.设连续型随机变量X 的分布函数为()F x ,若对任意{},(),(,)0a b a b P X a b <∈>,证明()Y F X =服从[]0,1上的均匀分布.23.设Z 为连续型随机变量,分布函数为()Z F z ,且对任意{},(),(,)0a b a b P Z a b <∈>,X 服从[]0,1上的均匀分布,证明1()Z Y F X -=与Z 同分布.24.设X 与Y 独⽴,X 的密度函数为()f x ,1ab Y p p ?? ?-??,证明X Y +的密度函数为()()(1)()h x p x a p f x b =-+--.第⼆章习题答案⼀、填空题1.(0)(),()(0)F b F a F b F a ----.2.1,1A B ==-.3.由题意可得X 的分布律为112111632X -??,故116P X ??<=,{}120X <<=4.由111(1)n cc n n ∞==?=+∑ 5.由20()12x f x dx ke dx k +∞+∞12()21x P X f x dx e dx e ---<<===-??6.12211!2!e e λλλλλ--=?=.{}1136P X e -==7.{}{}111110(0)(1)2X P X P X φφ-?<=-<<==-<<=--[]1111(1)(1)0.84130.3413222φφ=--=-=-= 8.24011176412X ?? ? ?9.2(1)Y X =-服从[]0,2上的均匀分布,故有:1, 02()20,Y y f y ?≤≤?=其他10.1(ln ),0()0,0Y f y y yf y y ?->?=??≤?⼆、选择题1.C6.A7.A8.B9.C 10.D 三、解答题 1.设A i 表⽰第i 次取到⿊球,1,2,3,4,5.i ={}111()5P X P A ==={}{}()()()()()()112112341213124123512344112()()()545543211154325P X P A A P A A A P X P A A A A AP A P A A P A A A P A A A A P A A A A A ====?======所以X 的分布律为X 1 2 3 4 5P15 15 15 15 152.设,,A B C 分别表⽰甲,⼄,丙击中⽬标,由题意知,,A B C 相互独⽴,则{}{}{}{}00.50.30.091230.40.50.70.14P X P ABC P A P B P C P X P ABC ABC ABC P X P ABC ABC ABC P X P ABC ==??===++==+==??=()=()()()=0.6()=0.36(+)=0.41()=所以X 的分布律为X 0 1 2 3 P 0.06 0.36 0.41 0.143.显然()f x ⾮负可积,且2201111()cos sin 12222f x dx xdx xdx ππ+∞故()f x 可为某随机变量X 的密度函数220202()()(),210cos ,022110cos sin ,022210,2xx x x xF x f t dtf t dt x dt tdt x dt tdt tdt x dt x ππππππππ-∞-∞--∞---∞-+∞=?<-+-≤-≥0,21sin ,0221cos ,021,2x x x x x x ππ<-+?-≤4.(1)由()1f x dx +∞-∞=?,得21k xAAedx k+∞--∞==?,所以A k =(2){}0022111(1,0)()(1)2k xk P X f x dx kedx e ----∈-===-??(3)20220,0()(),x kt xxktkt ke dt x F x f t dtp ke dt ke dt x -∞-∞--∞=??+≥221,0211,0kx e x e x -?-≥5.由题意知2k m =,25k n +=,,m n 为两个⾮负整数,225m n -=.()()5n m n m +-=.进⽽得5,1n m n m +=-=.解得3n =,2m =.即有4k =. {}{}{}{}{}{}54923P Y k P Y k P Y P Y P X P X =-=+==-===-=2311111112!3!33e e e e---=-==. 6.{},0,1,2!rP r e r r λλξ-==={}(1),0k k r k r P k r C p p r k ηξ-===-≥≥由全概率公式可得{}{}{}(1)!rk k r k r r kr kP k P r P k r e C p p r λληξηξ∞∞--========-∑∑(1)!(1)!!()!!()!r k rk k r k k r kr kp r e p p e p r k r k k r k λλλλλ-∞∞---==??-??=-=--∑∑(1)()(),0,1,2,!!k k p p p p e e e k k k λλλλλ---===即η服从参数为p λ的泊松分布.7.{}{}{}110.25P Y y P X y P X y ≤=-≤=≥-=.有对⽴事件的概率公式8.{}72807287280111888X P X P P --->=>==-≤1(1)10.84130.1587φ=-=-=400.1587 6.348?= 因此该学⽣在全班排在⼤约第七位.9.{}16001200160040012000.96X P X P σσσ--??>=>=-≥?16004004000.04,()0.04X P φσσσ-??≤-≤-≤?,即得400400400()0.96,1.75228.61.75φσσσ≥≥?≤≈ 10.(1){}6100051200112000.30121000x P X e dx e --+∞>==≈?(2)5个元件中⾄少有3个能使⽤1200⼩时以上的概率为6618612555555553()(1)101560.1674iiii C ee ee e -----=??-=-+≈∑ 11.设测量n 次,则有{}1(17.510)0.9n P X ---≤>解得2n >,故n ⾄少取3.12.{}1120(1)(2)0101XX P Y P X Y ?-->=-->{}{}{}{}{}{}223300333310,2010,201212121112223(()())()()333333381P X Y P X Y P X P Y P X P Y C C C =->->+-<-<=>>+<<=++=13.(1)当0x >时,()(1),()(2)x x f x a b x e f x a x b e --'''=+-=--,由当2x =时,()y f x =取得拐点知(2)0f ''=,得0b =.⼜()11x f x a xe dx a +∞+∞--∞=?==?,即 1a =所以,0,()0,0.x xe x f x x -?>=?≤?(2)111()()()t t t x tttg t f x dx f x dx xe dx +++-===?[](1)(1)()(1)1(1)tt tg t t e t e ee t -+--+'=+-=-- 令()0g t '=,得11t e =-,且易知当11t e =-时,()g t 取得最⼤值.14.{}{}11,(1)1,!(1)!11,kk k P k ee k k k P k k k λλλξλλλλξλ--->?表明{}P k ξ=随着k 的增⼤,由递增变成递减,若λ为整数,则k λ=及1λ-时,{}P k ξ=最⼤;若λ不为整数,则[]k λ=时,{}P k ξ=最⼤. (2)⽅法同上.15.设X 的密度函数为,()0,x e f x λλ-?=??00x x >≤{}{}{}{}{},P X s t X s P X s t P X s t X s P X s P X s >+>>+>+>==>>()x s t t s t s x se dxe e e e dxλλλλλλλ+∞--+-++∞--===??{}x t tP X t e dx e λλλ+∞-->==?所以{}{}P X s t X s P X t >+>=> 16.(1)()()()x xF x f t dt t uf u du --∞+∞-==---?()1()1()x xf u du f t dt F x +∞-∞==-=-?所以 ()()1F x F x +-=(2)01()()()()()2xx xF x f t dt f t dt f t dt f t dt --∞-∞--==-=-?17.由于1,sin 0,21,n π-??=??412241n m n m m =-==+故Y 只取1,0,1-三个值.{}{}{}{}{}41121121412151102232181115315m m mm P Y P X m P Y P X m P Y ∞-=∞==-==-=========--=∑∑所以Y 的分布律为Y 1- 0 1P215 13 81518.2224X Y X ππ??==,且X 在[]5,6上服从均匀分布.{}2()4Y F y P Y y P X y π??=≤=≤.当254y π<时,()0Y F y =;当9y π>时,()1Y F y =;当2594y ππ<<时,()55Y F y P X P X =-≤≤=≤≤=??2594()()0,Y Y y f y F y ππ<<'==?其他19.{}{}{}()X Y F y P Y y P y P y X y =≤=≤=-≤≤ 当0y ≤时,()0Y F y =;当0y >时,()Y y X y y y F y P µµµµµσσσσσ-------=≤≤=Φ-Φ?? ? ???????,1,0()()0,0Y Y y y y f y F y y µµ??σσσ??---?+>? ? ???'==???≤20.{}{}()sin Y F y P Y y P X y =≤=≤. 当1y ≤-时,()0Y F y =;当1y ≥时,()1Y F y = 当1a y ≤<时,arcsin 20arcsin 111()(2arcsin )222yY y F y dx dx y ππππππ-=+=+?;当10y -<<时,2arcsin arcsin 11()(2arcsin )22yY yF y dx y πππππ+-==+?.11()()0,Y Y y F y F y -<<'==?其他22.由(){},0P X a b ∈>知,()F x 单增,进⽽有反函数.由于0()1F x ≤≤,故当0y <时,()0Y F y =;当1y >时,()1Y F y =;01y ≤≤时,{}11()()(()).Y F y P X F y F F y y --=≤==1,01()()0,Y y y F y F y ≤≤?'==?其他23.本题只须证明Z ()()Y F y F y =.{}{}{}1Z ()(X)()()Y Z Z F y P Y y P F y P X F y F y -=≤=≤=≤=.24.{}{}{},,P X Y x P Y a X Y x P Y b X Y x +≤==+≤+=+≤{}{}{}{}{}{},,()(1)()x a x bP Y a X x a P Y b X x b P Y a P X x a P Y b P X x b p f t dt p f t dt ---∞-∞==≤-+=≤-==≤-+=≤-=+-?求导便得X Y +的密度函数为()()(1)()h x pf x a p f x b =-+--.。
一.解答题(共8小题)1.(1)100件产品中有10件次品,从中有放回地任取5件,求其中次品数ξ的分布列;(2)某批数量较大的商品的次品率为10%,从中任意地连续抽取5件,求其中次品数η的分布列.2.为创建国家级文明城市,某城市号召出租车司机在高考期间至少进行一次“爱心送考”,该城市某出租车公司共200名司机,他们进行“爱心送考”的次数统计如图所示.(1)求该出租车公司的司机进行“爱心送考”的人均次数;(2)从这200名司机中任选2人,设这2人进行送考次数之差的绝对值为随机变量X,求X的概率分布.3.从6名男生和4名女生中随机选出3名同学参加一项竞技测试.(1)求选出的3名同学中至少有1名女生的概率;(2)设ξ表示选出的3名同学中男生的人数,求ξ的分布列.4.甲袋中有2个黑球,4个白球,乙袋中有3个黑球,3个白球,从两袋中各取一球.(Ⅰ)求“两球颜色相同”的概率;(Ⅱ)设ξ表示所取白球的个数,求ξ的概率分布列.5.设X是一个离散型随机变量,其分布列为:X−101P1﹣2q q2(1)求q的值;(2)求P(X<0),P(X<1).6.某射手进行射击训练,假设每次射击击中目标的概率为,且每次射击的结果互不影响.(1)求射手在3次射击中,至少有两次连续击中目标的概率(用数字作答);(2)求射手第3次击中目标时,恰好射击了4次的概率(用数字作答);(3)设随机变量ξ表示射手第3次击中目标时已射击的次数,求ξ的分布列.7.袋中有3个红球,4个黑球,从袋中任取4个球.(1)求红球个数X的分布列;(2)若取到一个红球得2分,取到一个黑球得1分,求得分不小于6分的概率.8.从5名男生和3名女生中任选2人去参加学校组织的“低碳杯”知识抢答赛,用ξ表示选出的女生的人数.(1)求随机变量ξ的分布列;(2)求事件“选出的2学生至少有一女生”的概率.参考答案与试题解析一.解答题(共8小题)1.(1)100件产品中有10件次品,从中有放回地任取5件,求其中次品数ξ的分布列;(2)某批数量较大的商品的次品率为10%,从中任意地连续抽取5件,求其中次品数η的分布列.【解答】解:(1)由题意知ξ的可能取值为0,1,2,3,4,5,每次取出次品的概率为:,相当于5次独立重复实验,ξ~B(5,),P(ξ=0)==0.59059,P(ξ=1)==0.32805,P(ξ=2)==0.07329,P(ξ=3)==0.0081,P(ξ=4)==0.00045,P(ξ=5)==0.00001,∴ξ的分布列为:ξ012345P0.590590.328050.07290.00810.000450.00001(2)由题意知η的可能取值为0,1,2,3,4,5,且η~B(5,0.1),∴η的分布列为:η012345P0.590590.328050.07290.00810.000450.000012.为创建国家级文明城市,某城市号召出租车司机在高考期间至少进行一次“爱心送考”,该城市某出租车公司共200名司机,他们进行“爱心送考”的次数统计如图所示.(1)求该出租车公司的司机进行“爱心送考”的人均次数;(2)从这200名司机中任选2人,设这2人进行送考次数之差的绝对值为随机变量X,求X的概率分布.【解答】解:(1)由统计图得200名司机中送考1次的有20人,送考2次的有100人,送考3次的有80人,∴该出租车公司的司机进行“爱心送考”的人均次数为;(2)从该公司任选两名司机,记“这两人中﹣人送考1次,另一人送考2次”为事件A,“这两人中一人送考2次,另一人送考3次“为事件B,“这两人中﹣人送考1次,另一人送考3次”为事件C,“这两人送考次数相同”为事件D,由题意知X的所有可能取值为0,1,2,,,,所以X的分布列为:X012P3.从6名男生和4名女生中随机选出3名同学参加一项竞技测试.(1)求选出的3名同学中至少有1名女生的概率;(2)设ξ表示选出的3名同学中男生的人数,求ξ的分布列.【解答】解:(1)由意可知,选出的3名同学全是男生的概率为=,∴选出的3名同学中至少有1名女生的概率为P=1﹣=.(2)根据题意,ξ的可能取值为0,1,2,3,P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,P(ξ=3)==,∴ξ的分布列为:ξ0123P4.甲袋中有2个黑球,4个白球,乙袋中有3个黑球,3个白球,从两袋中各取一球.(Ⅰ)求“两球颜色相同”的概率;(Ⅱ)设ξ表示所取白球的个数,求ξ的概率分布列.【解答】解:(I)从甲中取出黑球的概率为,取出白球的概率为,从乙中取出黑球的概率为,取出白球的概率为,故“两球颜色相同”的概率P=.(II)由题意可得,ξ所有可能取值为0,1,2,P(ξ=0)==,P(ξ=1)=,P(ξ=2)=,故ξ的分布列为:ξ012P5.设X是一个离散型随机变量,其分布列为:X−101P1﹣2q q2(1)求q的值;(2)求P(X<0),P(X<1).【解答】解:(1)依题意,得,解得或(舍去),所以.(2)由(1)得,,所以,.6.某射手进行射击训练,假设每次射击击中目标的概率为,且每次射击的结果互不影响.(1)求射手在3次射击中,至少有两次连续击中目标的概率(用数字作答);(2)求射手第3次击中目标时,恰好射击了4次的概率(用数字作答);(3)设随机变量ξ表示射手第3次击中目标时已射击的次数,求ξ的分布列.【解答】解:(1)设事件该射手第i次射击,击中目标为A i,i=1,2,3,则,所以,事件射手在3次射击中,至少有两次连续击中目标可表示为,因为事件,,A1A2A3互斥,所以又事件A1,A2,A3相互独立,所以==;(2)事件射手第3次击中目标时,恰好射击了4次等于事件前3次中恰好击中两次目标且第四次击中目标,又各次击中目标的概率为,所以前3次中恰有两次击中目标的概率为,第四次击中目标的概率为,所以事件射手第3次击中目标时,恰好射击了4次的概率;(3)由已知ξ的取值有3,4,5,⋅⋅⋅,n,⋅⋅⋅,又,,,⋅⋅⋅,,所以随机变量ξ的分布列为:ξ345…n…P……7.袋中有3个红球,4个黑球,从袋中任取4个球.(1)求红球个数X的分布列;(2)若取到一个红球得2分,取到一个黑球得1分,求得分不小于6分的概率.【解答】解:(1)由题意可得,X可能取值为0,1,2,3,P(X=0)=,P(X=1)=,P(X=2)=,P(X=3)=,故X的分布列为:X0123P(2)设得分为Y,则得分Y可以取4,5,6,7,分别对应4个黑球,3黑1红,2黑2红,1黑3红四种情况,P(Y≥6)=P(Y=6)+P(Y=7)=,故得分不小于6分的概率为.8.从5名男生和3名女生中任选2人去参加学校组织的“低碳杯”知识抢答赛,用ξ表示选出的女生的人数.(1)求随机变量ξ的分布列;(2)求事件“选出的2学生至少有一女生”的概率.【解答】解:(1)由题意得ξ的可能取值为0,1,2,P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,∴随机变量ξ的分布列为:ξ012P(2)事件“选出的2学生至少有一女生”的概率为:P=P(ξ=1)+P(ξ=2)==.。
第 2 章一维随机变量及其分布一、选择题1.设 F(x)是随机变量X的分布函数,则以下结论不正确的选项是(A)若 F(a)=0 ,则对任意 x≤a 有 F(x)=0(B)若 F(a)=1 ,则对任意 x≥a 有 F(x)=1(C)若 F(a)=1/2 ,则 P( x≤a)=1/2(D)若 F(a)=1/2 ,则 P( x≥a)=1/22.设随机变量 X 的概率密度 f(x) 是偶函数,分布函数为 F(x) ,则(A)F(x)是偶函数(B)F(x) 是奇函数(C)F(x)+F(-x)=1(D)2F(x)-F(-x)=1 3.设随机变量 X1, X 2的分布函数、概率密度分别为 F1 (x) 、F2 (x) ,f 1 (x)、f 2 (x) ,若 a>0, b>0, c>0,则以下结论中不正确的选项是(A)aF (x)+bF2(x)是某一随机变量分布函数的充要条件是a+b=11(B)cF1(x) F 2(x)是某一随机变量分布函数的充要条件是c=1(C)af 1(x)+bf2(x)是某一随机变量概率密度的充要条件是a+b=1(D)cf 1(x) f 2(x)是某一随机变量分布函数的充要条件是c=14.设随机变量 X1, X2是任意两个独立的连续型随机变量,它们的概率密度分别为 f 1 (x)和 f 2 (x) ,分布函数分别为 F1 (x) 和 F2 (x) ,则(A)f 1 (x) +f 2 (x)必为某一随机变量的概率密度(B)f 1(x) f 2(x)必为某一随机变量的概率密度(C)F1(x)+F 2(x)必为某一随机变量的分布函数(D)F1(x)F 2 (x)必为某一随机变量的分布函数5.设随机变量 X 遵从正态分布N (1,12),Y遵从正态分布N (2,22) ,且P(|X1| 1) P(|Y 2| 1) ,则必有(A)1 2(B)1 2(C)1 2(D)1 26.设随机变量 X 遵从正态分布N ( ,2 ) ,则随σ的增大,概率P(|X|)(A)单调增大(B)单调减小(C)保持不变(D)增减不定7.设随机变量 X1,X2的分布函数分别为 F1 (x) 、F2(x) ,为使 aF1 (x) -bF2 (x)是某一随机变量分布函数,在以下给定的各组数值中应取(A)a3 , b2(B)a2 , b2(C)a1 , b3(D)a1 , b3 553322228.设 f(x)是连续型随机变量 X 的概率密度,则 f(x)必然是(A)可积函数(B)单调函数(C)连续函数(D)可导函数9.以下陈述正确的命题是(A)若P(X1) P(X 1), 则 P(X 1)12(B)若 X~b(n, p),则 P(X=k)=P(X=n-k), k=0,1,2,,n(C)若 X 遵从正态分布 , 则 F(x)=1-F(-x)(D)lim [ F (x) F ( x)]1x10.假设随机变量X遵从指数分布,则随机变量Y=min{X,2} 的分布函数(A)是连续函数(B)最少有两其中止点(C)是阶梯函数(D)恰好有一其中止点二、填空题1.一实习生用同一台机器连接独立的制造了 3 个同种零件,第i个零件不合格的概率为 p i1个零件中合格品的个数,则 P X2i 1,2,3 ,以 X 表示3i12.设随机变量X的概率密度函数为 f x2x0 x 1以 Y 表示对 X 的三次重复观察中0其他事件 X 1出现的次数,则 P Y2 23.设连续型随机变量X的分布密度为 f x axe 3x x 0,则 a,X的分布0x0函数为4.设随机变量的分布函数b , x0, 则 a =, b =,cF ( x)ax) 2(1c,x 0,=。
第2章一维随机变量 习题2一. 填空题:1.设 离 散 型 随 机 变 量 的 分 布 函 数 是 (){}x P x F ≤=ξ, 则 用 F (x) 表 示 概 {}0x P =ξ = __________。
解:()()000--x F x F 2.设 随 机 变 量 的 分 布 函 数 为 ()()+∞<<∞-+=x arctgx x F π121 则 P{ 0<<1} = ____14_____。
解: P{ 0<<1} = =-)0(F )1(F 143.设 服 从 参 数 为 的 泊 松 分 布 , 且 已 知 P{ = 2 } = P{ = 3 },则 P{ = 3 }= ___2783e - 或 。
4.设 某 离 散 型 随 机 变 量 的 分 布 律 是 {}⋅⋅⋅===,2,1,0,!k k C k P Kλξ,常 数 >0, 则 C 的 值 应 是 ___ e _____。
解:{}λλλλξ-∞=∞=∞==⇒=⇒=⇒=⇒==∑∑∑e C Ce k C k Ck P KK KK K 11!1!105 设 随 机 变 量 的 分 布 律 是 {}4,3,2,1,21=⎪⎭⎫⎝⎛==k A k P kξ则 ⎭⎬⎫⎩⎨⎧<<2521ξP = 。
解:()A A k P k 161516181412141=⎪⎭⎫ ⎝⎛+++==∑=ξ 令15161A = 得 A =1615()()212521=+==⎪⎭⎫ ⎝⎛<<ξξξp p P 8.041211516=⎥⎦⎤⎢⎣⎡+=6.若 定 义 分 布 函 数 (){}x P x F ≤=ξ, 则 函 数 F(x)是 某 一 随 机 变 量 的 分 布 函 数 的 充 要 条 件 是F ( x ) 单 调 不 减 , 函 数 F (x) 右 连 续 , 且 F (- ) = 0 , F ( + ) = 17. 随机变量) ,a (N ~2σξ,记{}σ<-ξ=σa P )(g ,则随着σ的增大,g()σ之值 保 持 不 变 。
概率论与数理统计练习题系第二章专业班姓名随机变量及其分布(一)学号一.选择题:1 .设X是失散型随机变量,以下可以作为X的概率分布是[B]X x1x2x3x4X x1x2x3x4( A)1111(B)1111 p p248162488X x1x2x3x4(D)X x1x2x3x4( C)1111p1111 p23412234122 .设随机变量ξ的分布列为X0123C ] p0.10.30.4F ( x) 为其分布函数,则 F ( 2) = [0.2( A)(B)( C)(D)1二、填空题:1 .设随机变量X的概率分布为X012,则 a = p a0.20.52 .某产品 15 件,其中有次品 2 件。
现从中任取3 件,则抽得次品数X 的概率分布为P(X 0)C13366, P( x1)C21 C13236, P( xC22 C1313 C153105C1531052)105C1533 .设射手每次击中目标的概率为, 连续射击10 次,则击中目标次数X 的概率分布为P( X k ) C10k(0.7)k (0.3)10 k(k0,1, 2,L ,10)三、计算题:1 .同时掷两颗骰子,设随机变量X为“两颗骰子点数之和”求:( 1)X的概率分布;(2)P( X3) ;(3)P( X12)解:(1)P( X2)1P( X3)2P( X4)3P(X 5)4,,,,36363636P( X6)5,P( X7) 6 , P( X5 436 8), P(X 9)363636P( X10)3 ,P( X11)2 ,P( X 1363612)36所以 X 的概率分布列:X 2 34 5 6 7 89 10 11 12P12 34 5 6 5 4 3 2 1363636363636 3636363636(2) P(X3) 336( 3) P(X>12)=02 .产品有一、 二、三等品及废品四种, 其中一、 二、三等品及废品率分别为 60%,10%,20%及 10%,任取一个产品检查其质量,试用随机变量X 描述检查结果。
第二章 《随机变量及其分布》练习题一、选择题1.任意抛掷三枚均匀硬币,恰有2枚正面朝上的概率为( )A .34 B .38 C .13 D .142.在4次独立重复试验中,事件A 发生的概率相同,若事件A 至少发生1次的概率为6581,则事件A 在1次试验中发生的概率为( )A .13 B .25 C .56 D .343.若X ~B (10,0.8),则P (X =8)等于( )A .C 810×0.88×0.22B .C 810×0.82×0.28 C .0.88×0.22D .0.82×0.284.若X 是一个随机变量,则E (X -E (X ))的值为( )A .无法求B .0C .E (X )D .2E (X )5.某人从家乘车到单位,途中有3个交通岗.假设在各交通岗遇到红灯的事件是相互独立的,且概率都是0.4,则此人上班途中遇红灯次数的均值为( ) A .0.4 B .1.2 C .0.43D .0.66.已知随机变量ξ的概率分布如下表所示:且η=2ξ+3,则E (η)等于( )A.35 B.65 C.215 D.1257.随机变量ξ的分布列为则ξ的数学期望是( )A .2B .2.1C .2.3D .随m 的变化而变化8.某班有14的学生数学成绩优秀,如果从班中随机地找出5名学生,那么其中数学成绩优秀的学生数ξ~B ⎝⎛⎭⎫5,14,则E (-ξ)的值为( ) A.14 B .-14 C.54 D .-549.有10张卡片,其中8张标有数字2,2张标有数字5,从中任意抽出3张卡片,设3张卡片上的数字之和为X ,则X 的数学期望是( )A .7.8 B .8 C .16 D .15.6 10.设随机变量ξ的分布列如下表:且E (ξ)=1.6,则a -b 等于( D .-0.411.设一随机试验的结果只有A 和A 且P (A )=m ,令随机变量ξ=⎩⎪⎨⎪⎧1,A 发生0,A 不发生,则ξ的方差D (ξ)等于( )A .mB .2m (1-m )C .m (m -1)D .m (1-m )12.由以往的统计资料表明,甲、乙两运动员在比赛中得分情况为:D .无法确定 13.已知随机变量ξ,η满足ξ+η=8,且ξ服从二项分布ξ~B (10,0.6),则E (η)和D (η)的值分别是( )A .6和2.4B .2和2.4C .2和5.6D .6和5.614.随机变量X 的分布列如下:若E (X )=158,则D (X )等于( ) A.732 B.932 C.3364 D.556415.若随机变量ξ的分布列为P (ξ=m )=13,P (ξ=n )=a ,若E (ξ)=2,则D (ξ)的最小值等于( )A .0B .2C .4D .无法计算16.某班举行了一次“心有灵犀”的活动,教师把一张写有成语的纸条出示给A 组的某个同学,这个同学再用身体语言把成语的意思传递给本组其他同学.若小组内同学甲猜对成语的概率是0.4,同学乙猜对成语的概率是0.5,且规定猜对得1分,猜不对得0分,则这两个同学各猜1次,得分之和X (单位:分)的数学期望为( )A .0.9 B .0.8 C .1.2 D .1.117.有10张卡片,其中8张标有数字2,2张标有数字5,从中任意抽出3张卡片,设3张卡片上的数字之和为X ,则X 的数学期望是( )A .7.8 B .8 C .16 D .15.6二、填空题1.一射手对靶射击,直到第一次命中为止,每次命中的概率为0.6,现有4颗子弹,命中后的剩余子弹数目X 的期望为________.2.袋中装有6个红球,4个白球,从中任取1个球,记下颜色后再放回,连续摸取4次,设X 是取得红球的次数,则E (X )=________.3.随机变量ξ的取值为0,1,2.若P (ξ=0)=15,E (ξ)=1,则D (ξ)=________.4.节日期间,某种鲜花的进价是每束2.5元,售价是每束5元,节后对没有卖出的鲜花以每束1.6元处理.根据前5年节日期间对这种鲜花需求量ξ(束)的统计(如下表),若进这种鲜花500束在今年节日期间销售,则利润的均值是________元.三、解答题1.某师范大学志愿者支教团体有6名男同学,4名女同学.在这10名同学中,3名同学来自数学系,其余7名同学来自物理、化学等其他互不相同的七个系.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同). (Ⅰ)求选出的3名同学来自互不相同的系的概率;(Ⅱ)设X 为选出的3名同学中女同学的人数,求随机变量X 的分布列和数学期望.2.现有甲、乙两个靶,某射手向甲靶射击一次,命中的概率为34;向乙靶射击一次命中的概率为23,该射手每次射击的结果相互独立.假设该射手进行一次测试,先向甲靶射击两次,若两次都命中,则通过测试;若两次中只命中一次,则再向乙靶射击一次,命中也可通过测试,其它情况均不能通过测试.(1)求该射手通过测试的概率;(2)求该射手在这次测试中命中的次数X 的分布列及数学期望.3.在“出彩中国人”的一期比赛中,有6位歌手(1~6)登台演出,由现场的百家大众媒体投票选出最受欢迎的出彩之星,各家媒体独立地在投票器上选出3位出彩候选人,其中媒体甲是1号歌手的歌迷,他必选1号,另在2号至6号中随机的选2名;媒体乙不欣赏2号歌手,他必不选2号;媒体丙对6位歌手的演唱没有偏爱,因此在1至6号歌手中随机的选出3名.(1)求媒体甲选中3号且媒体乙未选中3号歌手的概率;(2)用X表示3号歌手得到媒体甲、乙、丙的票数之和,求X的分布列及数学期望.4.某学校举行知识竞赛,第一轮选拔共设有A、B、C、D四个问题,规则如下:①每位参加者计分器的初始分均为10分,答对问题A、B、C、D分别加1分、2分、3分、6分,答错任一题减2分;②每回答一题,计分器显示累计分数,当累计分数小于8分时,答题结束,淘汰出局;当累计分数大于或等于14分时,答题结束,进入下一轮;当答完四题,累计分数仍不足14分时,答题结束,淘汰出局;③每位参加者按问题A、B、C、D顺序作答,直至答题结束.假设甲同学对问题A、B、C、D回答正确的概率依次为34、12、13、14,且各题回答正确与否相互之间没有影响.(1)求甲同学能进入下一轮的概率;(2)用ξ表示甲同学本轮答题结束时答题的个数,求ξ的分布列和数学期望E(ξ).第二章 《随机变量及其分布》练习题一、选择题1.任意抛掷三枚均匀硬币,恰有2枚正面朝上的概率为( )A .34 B .38 C .13 D .14[解析] 抛一枚硬币,正面朝上的概率为12,则抛三枚硬币,恰有2枚朝上的概率为P =C 23⎝⎛⎭⎫122×12=38. 2.在4次独立重复试验中,事件A 发生的概率相同,若事件A 至少发生1次的概率为6581,则事件A 在1次试验中发生的概率为( )A .13 B .25 C .56 D .34[解析] 事件A 在一次试验中发生的概率为p ,由题意得1-C 04p 0(1-p )4=6581,所以1-p =23,p =13, 3.若X ~B (10,0.8),则P (X =8)等于( )A .C 810×0.88×0.22B .C 810×0.82×0.28 C .0.88×0.22D .0.82×0.28[解析] ∵X ~B (10,0.8),∴P (X =k )=C k 100.8k (1-0.8)10-k ,∴P (X =8)=C 8100.88·0.22,故选A . 4.若X 是一个随机变量,则E (X -E (X ))的值为( )A .无法求B .0C .E (X )D .2E (X )[解析] 只要认识到E (X )是一个常数,则可直接运用均值的性质求解.∵E (aX +b )=aE (X )+b ,而E (X )为常数,∴E (X -E (X ))=E (X )-E (X )=0. [答案] B5.某人从家乘车到单位,途中有3个交通岗.假设在各交通岗遇到红灯的事件是相互独立的,且概率都是0.4,则此人上班途中遇红灯次数的均值为( )A .0.4B .1.2C .0.43D .0.6[解析] ∵途中遇红灯的次数X 服从二项分布,即X ~B (3,0.4),∴E (X )=3×0.4=1.2. [答案] B 6.已知随机变量ξ的概率分布如下表所示:且η=2ξ+3,则E (η)等于( )A.35 B.65 C.215 D.125解析:E (ξ)=0×715+1×715+2×115=35,E (η)=E (2ξ+3)=2E (ξ)+3=2×35+3=215.答案:C7.随机变量ξ的分布列为则ξ的数学期望是( )A .2B .2.1C .2.3D .随m 的变化而变化解析:∵0.2+0.5+m =1,∴m =0.3,∴E (ξ)=1×0.2+2×0.5+3×0.3=2.1.答案:B8.某班有14的学生数学成绩优秀,如果从班中随机地找出5名学生,那么其中数学成绩优秀的学生数ξ~B ⎝⎛⎭⎫5,14,则E (-ξ)的值为( )A.14 B .-14 C.54 D .-54 解析:∵E (ξ)=5×14=54,∴E (-ξ)=-E (ξ)=-54,故选D.9.有10张卡片,其中8张标有数字2,2张标有数字5,从中任意抽出3张卡片,设3张卡片上的数字之和为X ,则X 的数学期望是( )A .7.8 B .8 C .16 D .15.6解析:X 的取值为6,9,12,P (X =6)=C 38C 310=715,P (X =9)=C 28C 12C 310=715,P (X =12)=C 18C 22C 310=115.E (X )=6×715+9×715+12×115=7.8.答案:A10.设随机变量ξ的分布列如下表:且E (ξ)=1.6,则a -b 等于( D .-0.4解析:根据题意,⎩⎪⎨⎪⎧ 0.1+a +b +0.1=1,0×0.1+a +2×b +3×0.1=1.6,解得⎩⎪⎨⎪⎧a =0.3b =0.5.所以a -b =-0.2.答案C11.设一随机试验的结果只有A 和A 且P (A )=m ,令随机变量ξ=⎩⎪⎨⎪⎧1,A 发生0,A 不发生,则ξ的方差D (ξ)等于( )A .mB .2m (1-m )C .m (m -1)D .m (1-m ) 解析:依题意ξ服从两点分布,∴D (ξ)=m (1-m ),故选D.12.由以往的统计资料表明,甲、乙两运动员在比赛中得分情况为:A .甲B .乙C .甲、乙均可D .无法确定解析:E (ξ1)=E (ξ2)=1.1,D (ξ1)=1.12×0.2+0.12×0.5+0.92×0.3=0.49,D (ξ2)=1.12×0.3+0.12×0.3+0.92×0.4=0.69,∴D (ξ1)<D (ξ2),即甲比乙得分稳定,选甲参加较好,故选A.13.已知随机变量ξ,η满足ξ+η=8,且ξ服从二项分布ξ~B (10,0.6),则E (η)和D (η)的值分别是( )A .6和2.4 B .2和2.4 C .2和5.6D .6和5.6解析:由已知E (ξ)=10×0.6=6,D (ξ)=10×0.6×0.4=2.4.∵ξ+η=8,∴η=8-ξ.∴E (η)=-E (ξ)+8=2,D (ξ)=(-1)2D (ξ)=2.4.答案:B 14.随机变量X 的分布列如下:若E (X )=158,则D (X )等于( ) A.732 B.932 C.3364 D.5564解析:由⎩⎪⎨⎪⎧1×0.5+2x +3y =158,0.5+x +y =1,得⎩⎨⎧x =18,y =38.所以D (X )=⎝⎛⎭⎫1-1582×12+⎝⎛⎭⎫2-1582×18+⎝⎛⎭⎫3-1582×38=5564. 答案:D15.若随机变量ξ的分布列为P (ξ=m )=13,P (ξ=n )=a ,若E (ξ)=2,则D (ξ)的最小值等于( )A .0B .2C .4D .无法计算解析:由于分布列中,概率和为1,则a +13=1,a =23. ∵E (ξ)=2,∴m 3+2n3=2.∴m =6-2n .∴D (ξ)=13×(m -2)2+23×(n -2)2=23×(n -2)2+13×(6-2n -2)2=2n 2-8n +8=2(n -2)2.∴n =2时,D (ξ)取最小值0.答案:A16.某班举行了一次“心有灵犀”的活动,教师把一张写有成语的纸条出示给A 组的某个同学,这个同学再用身体语言把成语的意思传递给本组其他同学.若小组内同学甲猜对成语的概率是0.4,同学乙猜对成语的概率是0.5,且规定猜对得1分,猜不对得0分,则这两个同学各猜1次,得分之和X (单位:分)的数学期望为( )A .0.9 B .0.8 C .1.2D .1.1[解析] X 的取值为0、1、2,P (X =0)=(1-0.4)(1-0.5)=0.3, P (X =1)=0.4×(1-0.5)+(1-0.4)×0.5=0.5, P (X =2)=0.4×0.5=0.2,∴E (X )=0×0.3+1×0.5+2×0.2=0.9. [答案] A17.有10张卡片,其中8张标有数字2,2张标有数字5,从中任意抽出3张卡片,设3张卡片上的数字之和为X ,则X 的数学期望是( )A .7.8 B .8 C .16 D .15.6[解析] X 的取值为6、9、12,P (X =6)=C 38C 310=715,P (X =9)=C 28C 12C 310=715,P (X =12)=C 18C 22C 310=115. E (X )=6×715+9×715+12×115=7.8. [答案] A二、填空题1.一射手对靶射击,直到第一次命中为止,每次命中的概率为0.6,现有4颗子弹,命中后的剩余子弹数目X 的期望为________.解析:X 的可能取值为3,2,1,0,P (X =3)=0.6;P (X =2)=0.4×0.6=0.24;P (X =1)=0.42×0.6=0.096;P (X =0)=0.43=0.064.所以E (X )=3×0.6+2×0.24+1×0.096+0×0.064=2.376.2.袋中装有6个红球,4个白球,从中任取1个球,记下颜色后再放回,连续摸取4次,设X 是取得红球的次数,则E (X )=________.解析:每一次摸得红球的概率为610=35,由X ~B ⎝⎛⎭⎫4,35,则E (X )=4×35=125. 3.随机变量ξ的取值为0,1,2.若P (ξ=0)=15,E (ξ)=1,则D (ξ)=________.解析:由题意设P (ξ=1)=p ,则ξ的分布列如下由E (ξ)=1,可得p =35,所以D (ξ)=12×15+02×35+12×15=25. 答案:254.节日期间,某种鲜花的进价是每束2.5元,售价是每束5元,节后对没有卖出的鲜花以每束1.6元处理.根据前5年节日期间对这种鲜花需求量ξ(束)的统计(如下表),若进这种鲜花500束在今年节日期间销售,则利润的均值是________元.解析:节日期间这种鲜花需求量的均值为E (ξ)=200×0.20+300×0.35+400×0.30+500×0.15=340(束).设利润为η,则η=5ξ+1.6×(500-ξ)-500×2.5=3.4ξ-450, 所以E (η)=3.4E (ξ)-450=3.4×340-450=706(元). 三、解答题1.某师范大学志愿者支教团体有6名男同学,4名女同学.在这10名同学中,3名同学来自数学系,其余7名同学来自物理、化学等其他互不相同的七个系.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同). (Ⅰ)求选出的3名同学来自互不相同的系的概率;(Ⅱ)设X 为选出的3名同学中女同学的人数,求随机变量X 的分布列和数学期望. 解:(Ⅰ)3A 设“选出的名同学来自互不相同的系”为事件,1203373731049()60C C C C P A C346310()(0,1,2,3)k k c c p xk k c (Ⅱ)随机变量X 的所有可能值为0,1,2,3.随机变量X 的分布列为数学期望113161236210305E X .2.现有甲、乙两个靶,某射手向甲靶射击一次,命中的概率为34;向乙靶射击一次命中的概率为23,该射手每次射击的结果相互独立.假设该射手进行一次测试,先向甲靶射击两次,若两次都命中,则通过测试;若两次中只命中一次,则再向乙靶射击一次,命中也可通过测试,其它情况均不能通过测试.(1)求该射手通过测试的概率;(2)求该射手在这次测试中命中的次数X 的分布列及数学期望.[解析] (1)设“该射手通过测试”为事件A ,“向甲靶射击两次都命中”为事件B ,“向甲靶射击两次中只命中一次,则再向乙靶射击一次,命中”为事件C .事件B ,C 互斥,且A =B +C .所以该射手通过测试的概率P (A )=P (B )+P (C )=⎝⎛⎭⎫342+C 12·34·⎝⎛⎭⎫1-34·23=1316. (2)由题意知,X =0,1,2. P (X =0)=⎝⎛⎭⎫1-342=116;P (X =1)=C 12·34·⎝⎛⎭⎫1-34·⎝⎛⎭⎫1-23=18;P (X =2)=P (A )=1316. 所以该射手在这次测试中命中的次数X 的分布列为该射手在这次测试中命中的次数X 的数学期望为E (X )=0×116+1×18+2×1316=74.3.在“出彩中国人”的一期比赛中,有6位歌手(1~6)登台演出,由现场的百家大众媒体投票选出最受欢迎的出彩之星,各家媒体独立地在投票器上选出3位出彩候选人,其中媒体甲是1号歌手的歌迷,他必选1号,另在2号至6号中随机的选2名;媒体乙不欣赏2号歌手,他必不选2号;媒体丙对6位歌手的演唱没有偏爱,因此在1至6号歌手中随机的选出3名.(1)求媒体甲选中3号且媒体乙未选中3号歌手的概率;(2)用X 表示3号歌手得到媒体甲、乙、丙的票数之和,求X 的分布列及数学期望.[分析] (1)设A 表示事件:“媒体甲选中3号歌手”,B 表示事件“媒体乙选中3号歌手”,C 表示事件“媒体丙选中3号歌手”,由等可能事件概率公式求出P (A ),P (B ),由此利用相互独立事件的概率乘法公式和对立事件的概率公式能求出媒体甲选中3号歌手且媒体乙未选中3号歌手的概率.(2)先由等可能事件概率计算公式求出P (C ),由已知得X 的可能取值为0,1,2,3,分别求出相应的概率,由此能求出X 的分布列及数学期望.[解析] (1)设A 表示事件“媒体甲选中3号歌手”,B 表示事件“媒体乙选中3号歌手”,C 表示事件“媒体丙选中3号歌手”, P (A )=C 14C 25=25,P (B )=C 24C 35=35,媒体甲选中3号且媒体乙未选中3号歌手的概率为P (A B )=P (A )(1-P (B ))=25×(1-35)=425.(2)P (C )=C 25C 36=12,由已知得X 的可能取值为0,1,2,3,P (X =0)=P (A B C )=(1-25)(1-35)(1-12)=325,P (X =1)=P (A B C )+P (A B C )+P (A B C )=25(1-35)(1-12)+(1-25)×35×(1-12)+(1-25)(1-35)×12=1950, P (X =2)=P (AB C )+P (A B C )+P (A BC )=25×35×(1-12)+25(1-35)×12+(1-25)×35×12=1950,P (X =3)=P (ABC )=25×35×12=325,∴X 的分布列为E (X )=0×325+1×1950+2×1950+3×325=32.114.某学校举行知识竞赛,第一轮选拔共设有A 、B 、C 、D 四个问题,规则如下:①每位参加者计分器的初始分均为10分,答对问题A 、B 、C 、D 分别加1分、2分、3分、6分,答错任一题减2分;②每回答一题,计分器显示累计分数,当累计分数小于8分时,答题结束,淘汰出局;当累计分数大于或等于14分时,答题结束,进入下一轮;当答完四题,累计分数仍不足14分时,答题结束,淘汰出局;③每位参加者按问题A 、B 、C 、D 顺序作答,直至答题结束.假设甲同学对问题A 、B 、C 、D 回答正确的概率依次为34、12、13、14,且各题回答正确与否相互之间没有影响.(1)求甲同学能进入下一轮的概率;(2)用ξ表示甲同学本轮答题结束时答题的个数,求ξ的分布列和数学期望E (ξ).[解析] 设A 、B 、C 、D 分别表示甲同学能正确回答第一、二、三、四个问题的事件,A -、B -、C -、D-分别为A 、B 、C 、D 的对立事件(例如A -表示甲同学第一题回答错误).由题设条件知,P (A )=34,P (B )=12,P (C )=13,P (D )=14,P (A -)=14,P (B -)=12,P (C -)=23,P (D -)=34. (1)记“甲同学能进入下一轮”为事件W ,则由题设条件知W =ABC +AB C -D +A B -CD +A -BCD +A-B C -D ,∵A 、B 、C 、D 各事件相互独立,∴P (W )=P (A )·P (B )·P (C )+P (A )·P (B )·P (C -)·P (D )+P (A )·P (B -)·P (C )·P (D )+P (A -)·P (B )·P (C )·P (D )+P (A -)·P (B )·P (C -)·P (D )=34×12×13+34×12×23×14+34×12×13×14+14×12×13×14+14×12×23×14=14. (2)由题意知,ξ的可能取值为2、3、4,则P (ξ=2)=P (A -B -)=P (A -)·P (B -)=14×12=18, P (ξ=3)=P (ABC +A B -C -)=P (A )P (B )P (C )+P (A )P (B -)P (C -)=34×12×13+34×12×23=38. P (ξ=4)=1-P (ξ=2)-P (ξ=3)=1-18-38=12, ∴ξ的分布列为∴E (ξ)=2×18+3×38+4×12=278.。
随机变量及其概率分布练习题(共90分)一.选择题(每题2分共20分)2.F(X)是随机变量X 的分布函数,则下列结论不正确的是( )A.≤0F(x )1≤B.F(x )=P{X=x }C.F(x )=P{X x ≤}D.F(∞+)=1, F(∞-)=03.设随机变量X 的分布律为如下表格:F(x)为其分布函数,则F(5)=( ) X0 2 4 6 P 0.1 0.2 0.3 0.4A.0.3B.0.5C.0.6D.0.44.下列函数可以作为随机变量分布函数的是( ) 4x 01≤≤x 2x 10<≤xA.F(x)=B.F(x)=1 其它2 其它-1 x<0 0 x<0C.F(x)= 2x 10<≤xD.F(x)= 2x 5.00<≤x 1 其它 1 x ≥0.54x 31<<-x 5.设X 的密度函数为f(x)= 则P{-2<x<2}=( ) 0, 其它A. 0B.83C. 43D. 856. 以下函数可作为随机变量X 的概率密度的是( )A.f(x)=.;11,0,其它<<-⎩⎨⎧x xB.f(x)=.;11,,02其它<<-⎩⎨⎧x xC.f(x)=.;11,0,21其它<<-⎪⎩⎪⎨⎧x D.f(x)=.;11,0,2其它<<-⎩⎨⎧x7.设随机变量X~N(1,4),5.0)0(,8413.0)1(=Φ=Φ,则事件{13X ≤≤}的概率为() A.0.1385 B.0.2413 C.0.2934 D.0.34138.已知随机变量X 的分布函数为( )F(x)= ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥<≤<≤<313132102100x x x x ,则P }{1X ==A . 61B .21C .32D .19.已知连续型随机变量X 服从区间[a ,b ]上的均匀分布,则概率=⎭⎬⎫⎩⎨⎧+<32b a X P ( )A .0B .31C .32D .110、设随机变量X 在区间[2,6]上服从均匀分布,则P{2<x<4}=( )A.P{5<x<7}B.p{1<x<3}C.P{3<x<5}D.P{4.5<x<6.5}二.填空题(每题2分共20分)2.设连续型随机变量X 的分布函数为如下F(x), 则X 的概率密度)(x f 为( ) 0 x<0F(x)= 2x, 5.00<≤x1 x ≥0.53.设随机变量X 的分布为P{X=k}=10k,k=0,1,2,3,4,则P{0.5<X ≤2}=( )4.设随机变量X ~N(2,9),已知标准正态分布函数值=Φ)1(0.8413,为使P{X<a}<0.8413,则常数a<( )5.某人掷五次骰子,则在五次中得到点为6的次数X 的分布率为P{X=i}=( ) i=0,1,2,3,4,56.设随机变量X 服从区间[]10,0上的均匀分布,则P (X>4)=_ _.7.在[]T ,0内通过某交通路口的汽车数X 服从泊松分布,且已知P{X=4}=3P{X=3},则在[]T ,0内至少有一辆汽车通过的概率为_ _.8.已知随机变量X 的分布函数为F(x)=⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤<3x 13x 1321x 0210x 0 则P{2<X ≤4}=_ _.9.已知随机变量X 的概率密度为f(x)=ce -|x|,-∞<x<+∞,则c=_ _.10.设随机变量X 的概率分布为F (x )为其分布函数,则F (3)=_ _.三.计算题。
1 一维随机变量及其分布
本章重点是:离散型随机变量的分布律、分布函数;连续型随机变量的分布律、分布函数;随机变量函数的密度函数
1.口袋中有5个球,编号为1,2,3,4,5,.从中任取3个,以X 表示取出的3个球中的最大号码.
(1)试求X 的分布列;(2)写出X 的分布函数,并作图.(2)X 的分布函数为
2.有3个盒子,第一个和装有1个白球,4个黑球,第二个和装有2个白球,3个黑球,第三个和装有3个白球,2个黑球,现任取一个盒子,从中任取3个球.以X 表示所取到的白球数.
(1)求X 的概率分布列;(2)取到的白球数不少于2个的概率是多少? 3设随机变量的分布函数为
求X 的概率分布列及 ()()()()3,3,1,1P X P
X P X P X <≤>≥..
4.随机变量X 的密度函数为1,
11,()0,.x x p x ⎧--≤≤=⎨⎩其它求X 的分布函数.
5.学生完成一道作业的时间X 是一个随机变量,(单位h )密度函数为
(1)确定常数c ;(2)X 的分布函数;(3)求在20min 内完成一道作业的概率;
(4)求在10min 以上完成一道作业的概率.
6.已知随机变量X 的密度函数为()21,x x p x x e e π-=-∞<<+∞+试求随机变量
()Y g X =的概率分布,其中()1,0;1,
0.
x g x x -<⎧=⎨≥⎩ 7. 设随机变量X ~(1,2)U -,记 试求Y 的分布列.
8. 设随机变量X 的密度函数()23,1120,
.X x x p x ⎧-≤≤⎪=⎨⎪⎩其它 试求下列随机变量的分布:(1)3;(2)3.Y X Y X ==-(3)2Y X =
0,0;14,01;()13,13;12,36;1,
6.x x F x x x x <⎧⎪≤<⎪⎪=≤<⎨⎪≤<⎪≥⎪⎩2,00.5,()0,.
cx x x p x ⎧+≤≤=⎨⎩其它1,0,1,0X Y X -<⎧=⎨≥⎩。