钢-混凝土组合桁架梁性能分析
- 格式:pdf
- 大小:223.56 KB
- 文档页数:3
钢与混凝土组合结构随着我国经济得快速发展,各种新得结构型式不断涌现。
其中刚与混凝土组合结构越来越受到大家得重视,由于组合结构具有许多突出得优点,高层建筑与大型桥梁等建构筑物在我国各地大量兴建,各种型式组合结构逐渐被广泛应用。
组合结构已经与钢结构、木结构、钢筋混凝土结构、砌体结构并称五大结构。
组合结构主要包括压型钢板与混凝土组合板、组合梁、型钢混凝土结构、钢管混凝土结构等。
一、压型钢板与混凝土组合板。
压型钢板与混凝土组合板就是在压成各种形式得凹凸肋与中形式槽纹得钢板上浇注混凝土而制成得组合板,依靠凹凸肋及不同得槽纹使钢板与混凝土组合在一起。
压型钢板安琪在组合楼板中得作用可分为三类、第一类,以压型钢板作为楼板得主要承重构件,混凝土只就是作为楼板得面层以形成平整得表面及起到分布荷载得作用。
第二类,压型钢板只作为混凝土得永久性模板,并作为施工时得操作平台。
第三类,就是考虑组合作用得压型钢板混凝土组合结构。
其优点在于:1、节省大量木模板及其支撑。
2、压型钢板非常轻便,因此堆放、运输及安装都非常方便。
3、压型钢板在使用阶段,因其与混凝土得组合作用,还可代替受拉钢筋、4、组合楼板具有较大得刚度,省却许多受拉区混凝土,使组合楼板得自重减轻。
5、便于铺设通信、电力、采暖等管线。
6、压型钢板作为浇注混凝土得模板直接支撑于钢梁上,而且为各种作业提供了宽广得工作平台,大大加快了施工得进度,缩短了工期。
7、压型钢板可直接作顶棚、8。
与木模相比,压型钢板组合楼板施工时,减小了发生火灾得可能性。
二、组合梁。
将钢梁与混凝土板组合在一起形成组合梁。
组合梁根据混凝土板与钢梁组合连接程度可分为完全剪切连接组合梁与部分剪切连接组合梁;两大类。
组合梁充分发挥了混凝土与钢材得有利性能,因此具有以下优点:1、混凝土板成为组合梁得一部分,比按非组合梁考虑,承载力显著提高。
2、比非组合梁得竖线刚度侧香刚度都明显提高。
3、混凝土与钢梁两种材料都能充分发挥各自得产出,受力合理,节约材料、4、明显得提高了钢梁得整体与局部得稳定性。
安徽建筑中图分类号:U448.21+1文献标识码:A文章编号:1007-7359(2024)3-0162-03DOI:10.16330/ki.1007-7359.2024.3.059为了使传统钢桁架桥在结构体系上更趋合理、经济性能更具竞争力,钢-混凝土组合桁梁桥应运而生。
其主要通过剪力连接件将混凝土桥面板和钢桁架上弦杆组合在一起共同受力,目前国内外普遍采用有限元分析对钢桁架-混凝土组合结构的力学性能进行研究。
在模拟方法及模型建立方面,王军文等[1]采用了空间杆系梁单元来模拟钢桁架梁,矩形板壳单元模拟公路桥面板;朱海松[2]运用有限元程序SAP-5进行分析,对主桁架分别采用空间刚接梁单元和空间铰接杆单元两种形式进行建模,对混凝土桥面板则亦采用板壳单元建立;周惟德和陈辉求[3]将组合桁架划分为四个单元,混凝土面板采用板单元,钢桁架的上下弦杆采用钢架单元,腹杆则采用杆单元。
不同学者根据所建得的不同模型得出了有关钢桁架-混凝土组合结构的各种研究成果,为后人提供了坚实的基础和有益的参考。
本文基于有限元软件ABAQUS6.10,依托天津滨海新区西外环海河特大桥主桥(95+140+95)m ,建立有限元模型,比较分析钢桁架-混凝土组合梁桥和纯钢桁架梁桥的力学性能。
1研究对象依托工程为上承式钢桁架-混凝土组合梁桥。
立面简图见图1,节点间距及腹杆高度见表1。
图1组合桁架立面简图2计算模拟方法及模型的建立为了保证模型的收敛性,将桁架杆件均划分为梁单元,将桥面板离散为板壳单元。
混凝土桥面板被看成是各向同性的均质材料,且不考虑钢筋的作用,桥面板既可承受压力亦可承受拉力,且不会开裂而导致刚度降低。
所有构件均在弹性范围内工作,其应力-应变关系符合胡可定律,所有由于加工制造和安装原因导致的缺陷、偏心和残余应力影响均不考虑。
分别计算纯钢桁架结构和钢桁架混凝土组合结构在结构自重+活载(汽车荷载)下的位移和应力。
对结构自重(包括结构附加重力),可按结构构件的设计尺寸与材料的重力密度计算确定,桥梁结构的整体计算采用车道荷载,车道荷载由均布荷载和集中荷载组成。
钢筋桁架楼承板技术性能与工程应用一、概述钢筋桁架楼承板是将楼板中的受力钢筋在工厂内焊接成钢筋桁架,并将钢筋桁架与镀锌钢板焊接成整体,形成模板和受力钢筋一体化建筑制品。
钢筋桁架楼承板是在施工阶段能够承受湿混凝土及施工荷载,在使用阶段钢筋桁架成为混凝土配筋,承受使用荷载的新技术。
采用钢筋桁架楼承板的混凝土楼板兼有传统现浇混凝土楼板整体性好、刚度大、防火性能好,及压型钢板组合楼盖无模板、施工快的优势,钢筋桁架楼承板桁架受力模式合理,可调整桁架高度与钢筋直径,实现更大跨度。
采用钢筋桁架楼承板的钢-混凝土组合楼盖,可减少次梁,抗剪栓钉焊接速度快,施工质量稳定。
作为一种成熟的新技术,钢筋桁架楼承板已在国内外建筑工程中大量应用,在多高层建筑中具有广阔的应用前景。
钢筋桁架楼承板将混凝土楼板中的钢筋与施工模板组合为一体,所以在施工阶段能够承受湿混凝土自重及施工荷载的承重构件,并且该构件在施工阶段可作为钢梁的侧向支撑使用。
在使用阶段,钢筋桁架与混凝土共同工作,共同承受使用荷载。
与传统的施工方法不同,在施工现场,可以将钢筋桁架楼承板直接铺设在梁上,然后进行简单的钢筋工程,便可浇筑混凝土,楼板施工不需要架设木模板及脚手架,底部镀锌钢板仅做模板用,不替代受力钢筋,故不需考虑防火喷涂及防腐维护的问题,可采用最薄的钢板。
并且,楼板的主要受力钢筋在自动控制生产线上进行定位和焊接成型,钢筋排列均匀,位置准确,施工快速,可减少现场钢筋绑扎工作量70%左右,大大缩短工期,并节省成本。
上下两层钢筋间距及混凝土保护层厚度能充分得到保证,为提高楼板施工质量创造了有利条件。
钢筋桁架楼承板将钢筋骨焊成整体,整体刚度大,楼板浇筑混凝土时变形小,一般无需加临时支撑,而且可承受更大的施工阶段荷载。
二、钢筋桁架楼承板的经济和技术优势(1)施工速度快钢筋桁架楼承板直接支承在钢梁或混凝土梁上,本身既是混凝土楼板的受力钢筋,也是施工脚手架更是混凝土楼板的模板,节省了搭设脚手架和支模板的时间。
一钢—混凝土组合结构概况(一)钢—混凝土组合结构的一般概念组合结构定义:组合结构的种类繁多,从广义上讲,组合结构是指两种或多种不同材料组成一个结构或构件而共同工作的结构(Composite Structure)。
钢—混凝土组合结构是继木结构、砌体结构、钢筋混凝土结构和钢结构之后发展兴起的第五大类结构。
从广义概念上看,钢筋混凝土结构就是具有代表性的组合结构的一种。
组合结构分类:组合结构通常是指钢—混凝土组合结构,其中钢又分为钢筋和型钢,混凝土可以是素混凝土也可以是钢筋混凝土。
国内外常用的钢—混凝土组合结构主要包括以下五大类:(1)压型钢板混凝土组合板;(2)钢—混凝土组合梁;(3)钢骨混凝土结构(也称为型钢混凝土结构或劲性混凝土结构);(4)钢管混凝土结构;(5)外包钢混凝土结构。
(二)钢—混凝土组合结构的发展概况钢—混凝土组合结构这门学科起源于本世纪初期。
于本世纪二十年代进行了一些基础性的研究。
到了五十年代已基本形成独立的学科体系。
至今组合结构在基础理论,应用技术等方面都有很大的发展。
目前钢—混凝土组合结构在高层建筑、桥梁工程等许多土木工程中得到广泛的应用,并取得了较好的经济效益。
在国外,钢—混凝土组合结构最初大量应用于土木工程旨在二次世界大战结束后,当时的欧洲急需恢复战争破坏的房屋和桥梁,工程师们采用了大量的钢—混凝土组合结构,加快了重建的速度,完成了大量的道路桥梁和房屋的重建工程。
1968年日本十胜冲地震以后,发现采用钢—混凝土组合结构修建的房屋,其抗震性能良好,于是钢—混凝土组合结构在日本的高层与超高层中得到迅速发展。
60年代以后世界上许多国家(包括英、美、日、苏、法、德)根据本国的试验研究成果及施工技术条件制定了相应的设计与施工技术规范。
1971年成立了由欧洲国际混凝土委员会(CES)、欧洲钢结构协会(ECCS)、国际预应力联合会(FIP)和国际桥梁及结构工程协会(IABSE)组成的组合结构委员会,多次组织了国际性的组合结构学术讨论会,并于1981年正式颁布了《组合结构》规范。
对钢--混凝土组合梁抗弯承载力的认识西平铁路后河村特大桥:有着亚洲铁路“第一跨”之称的西平铁路后河村特大桥80米钢-混凝土组合桁架梁。
钢--混凝土组合梁由于能充分发挥钢材和混凝土各自的材料特性,使其在桥梁结构中大量被采用,成为第五大类结构。
钢--混凝土组合梁最初的计算方法是基于弹性理论的换算截面法,即假设钢材与混凝土均为理想弹性体,两者连接可靠,完全共同变形,通过弹性模量比将两种材料换算成一种材料进行计算。
然而,钢材和混凝土都是弹塑性材料,需要考虑塑性发展带来承载力的提高。
我国现行的涉及组合梁计算的规范中,《钢结构设计规范》和《钢--混凝土组合结构设计规程》规定,组合梁的计算可采用塑性设计方法,考虑全截面的塑性发展,但都没有考虑钢梁与混凝土桥面板的相对滑移对承载能力的影响。
钢-混凝土组合梁的欧洲分类《欧洲规范4》根据截面的转动能力将钢-混凝土组合梁分为四类。
第一类截面能够形成塑性铰,具有满足塑性分析所需要的转动能力,截面的最大承载力大于全塑性弯矩Mp1;第二类截面的最大承载力能够达到全塑性弯矩Mp1,但塑性铰的转动会受到局部屈曲或者混凝土破坏的限制;第三类截面中,由于局部屈曲阻碍了截面塑性抗弯能力的发展,截面的最大抗弯能力仅能达到弹性弯矩Me1;第四类截面为钢梁受压截面提前发生屈曲,使其不能达到屈服强度,截面的最大承载力不能达到弹性弯矩Me1。
四类截面的划分情况详见图1。
Mp1和Me1分别为截面的塑性抗弯强度和弹性抗弯强度。
图1 欧洲规范对四类截面的划分剪力连接键是组合梁的关键部位。
根据剪力连接键所能提供的抗力与组合梁达到完全塑性截面应力分布时纵向剪力的关系,可将组合梁分为完全抗剪连接组合梁和部分抗剪连接组合梁。
完全抗剪连接是指抗剪连接件的纵向水平抗剪承载力能够保证最大弯矩截面上抗弯承载力得以充分发挥的连接,否则则为部分抗剪连接。
从定义中可以看出,抗剪连接件的设计会影响到组合梁的抗弯承载力。
因此在《欧洲规范4》中分别给出了完全抗剪连接和部分抗剪连接下组合梁的抗弯承载能力。
高等混凝土结构王吉忠电话:84708275(O)E-mail: wang_jizhong@办公室:综合实验楼522第八章钢-混凝土组合结构8.1 钢-混凝土组合梁混凝土板和钢梁的楼盖结构中。
如果在钢梁上翼缘设置足够的剪力连接件并伸入混凝土板,阻止板和钢梁之间的相对滑移,使它们的弯曲变形协调,形成整体共同承担外荷载的作用,这种梁称为组合梁。
混凝土板滑移错动钢梁8.1.2 钢-混凝土组合梁的优点(1)节约钢材(2)混凝土板参加梁的工作,使截面高度增大(3)增强了钢梁的侧向刚度(4)可以利用钢梁的刚度和承载力(5)抗火与抗震性能更好(6)托架与牛腿8.1.3 钢—混凝土组合梁的形成(1)工字钢(2)箱形钢梁(3)轻钢桁架梁及普通钢桁架梁等8.2 钢与混凝土的共同工作8.2.1 叠合梁和组合梁采用剪力件连接形成组合梁后,其强度和刚度比叠合梁显著增大。
8.2.2 掀起作用组合梁中,这种上下层分离的趋势称为掀起作用。
8.2.3 剪力连接件(1)栓钉连接件(2)槽钢连接件(3)方钢连接件(4)T 形钢连接件T形钢0.50.60.40.2极限剪力 1.00.8剪力 2.0滑移(mm)1.01.52.5槽钢栓钉弯筋连接件8.3 组合梁的承载力计算8.3.1 钢-混凝土组合梁的受力性能组合梁从受力到破坏,可分为弹性、弹塑性和塑性三个阶段。
8.3.2 计算方法及计算假定早期钢-混凝土组合梁的设计,一直沿用弹性理论为基础的容许应力计算方法。
按塑性理论计算组合梁的计算假定如下:(1)混凝土板与钢梁为完全剪力连接组合;(2)塑性中和轴以上的混凝土达到抗压设计强度;(3)忽略塑性中和轴以下混凝土的抗拉强度;(4)塑性中和轴以下钢截面的拉应力和塑性中和轴以上钢截面的压应力分别达到0.9fsy ;fsy为钢材强度设计值,0.9是按塑性设计时钢材强度折减系数。
1cf8.3.3 受弯承载力计算根据塑性中和轴的位置,钢-混凝土组合梁塑性受弯承载力分以下二种情况计算,在计算中,有混凝土板托时,忽略混凝土板托部分混凝土的作用。
钢混凝土组合梁的概念钢混凝土组合梁是一种由钢材和混凝土组合构成的梁体。
它将钢材和混凝土的优点结合起来,既有钢材的高强度和延性特点,又有混凝土的耐久性和抗火性能。
这种梁体在建筑和桥梁工程中广泛应用,能够满足各种结构设计要求,提高结构的承载能力和使用性能。
钢混凝土组合梁的结构形式是在混凝土梁上焊接或连接钢材构件,形成钢混凝土组合梁。
常见的结构形式有悬臂梁、连续梁和刚构桥梁等。
悬臂梁是将一段钢材悬挂在混凝土梁下方,增加了梁体的强度和刚度;连续梁是将钢材与混凝土梁通过焊接或螺栓连接形成连续的梁体,提高了梁体的整体性能;刚构桥梁是通过混凝土梁和钢材柱、桁架等构件组成的刚性结构,能够承受较大的荷载和水平力。
钢混凝土组合梁的优点主要体现在以下几个方面:1. 强度和刚度高:钢材的高强度和延性特点能够提高梁体的承载能力和刚度,使结构更加稳定和坚固。
2. 耐久性好:混凝土具有良好的耐久性,能够有效地防止腐蚀和氧化,延长梁体的使用寿命。
3. 施工便利:钢材具有较高的可塑性和可焊性,可以方便地进行加工和连接,减少施工时间和成本。
4. 抗火性能好:混凝土的低热导率和高于室温下剥落速度的外表层能够有效地防止梁体的火灾蔓延,提高结构的安全性。
5. 设计灵活性大:钢混凝土组合梁能够根据结构需求进行自由组合和调整,满足各种建筑和桥梁工程的设计要求。
然而,钢混凝土组合梁也存在一些问题和注意事项:1. 界面连接强度:钢材与混凝土的界面连接是组合梁的关键,如果界面连接不牢固,会影响梁体的整体性能。
2. 腐蚀问题:在潮湿和腐蚀环境下,钢材可能出现腐蚀现象,导致梁体的损坏和减弱。
3. 温度变形:钢材和混凝土具有不同的线膨胀系数,受到温度变化影响时,可能会导致梁体发生变形和裂缝。
综上所述,钢混凝土组合梁是一种集钢材和混凝土优点于一体的结构形式,具有高强度、耐久性好、抗火性能好等特点。
然而在实际运用中需要注意界面连接强度、腐蚀问题和温度变形等因素。
钢结构与混凝土结构组合时的施工技术分析发布时间:2023-03-02T00:54:34.828Z 来源:《工程建设标准化》2022年20期作者:王震[导读] 在具体施工中要把握两种结构所呈现出的个性化特征和应用优势,掌握相关施工技术要点,落实相关施工规范,以此在更大程度上提升整体工程的质量和水准,进而为建筑工程施工行业取得良好的发展而提供必要的技术支持。
王震山东锦城钢结构有限责任公司山东淄博 255100摘要:在当前时代背景下,随着我国建筑事业的不断发展,着重做好混凝土与钢结构过程中的施工技术应用工作是关键所在,在具体施工中要把握两种结构所呈现出的个性化特征和应用优势,掌握相关施工技术要点,落实相关施工规范,以此在更大程度上提升整体工程的质量和水准,进而为建筑工程施工行业取得良好的发展而提供必要的技术支持。
本文以此展开技术分析,首先阐述了钢结构与混凝土结构组合施工的优势,在此基础上分析探讨了钢结构和混凝土结构组合施工时需要注意问题及技术措施,以供参考。
关键词:钢结构;混凝土;建筑工程;组合施工;技术措施引言随着社会主义现代化建设步伐的不断推进,越来越多的高层建筑拔地而起,为我国的城市发展节省了大量空间,提升了空间资源的利用效率。
不过在高层建筑的施工作业方面,怎样做好具体的施工工作,是每一个建筑企业都必须要思考面对的重大问题。
1 钢结构与混凝土结构组合的施工优势1.1 为整体工程的承载力提升奠定基础在当前的建筑工程施工过程中,越来越广泛地应用混凝土结构和钢结构等等,两类工程建设有着巨大的作用和效能,在受力能力和承载力等相关方面都有着十分优异的表现和性能,为整体工程质量的提升和综合效能的体现奠定基础,特别是在承载力方面有更为明显的优势。
1.2 更经济适用,降低施工成本在混凝土和钢结构工程的施工建设过程中,因为施工过程中所应用的施工材料中,占据比较大比例的是石料和砂土等相关内容,而此类材料有着十分显著的可用性特征,取材特别方便,更经济实用,可以切实落实就地取材的原则,因而能够在更大程度上有效减少整体工程的施工成本。
安徽建筑中图分类号:TU398+.9文献标识码:A文章编号:1007-7359(2023)11-0163-03DOI:10.16330/ki.1007-7359.2023.11.0590引言近年来,钢-混组合梁在目前桥梁建设中的应用逐渐增加,其结构形式主要是通过抗剪构建将混凝土桥面板和下部的钢主梁连接起来,使混凝土和钢共同受力的结构形式[1]。
这种组合结构梁的形式,充分发挥了各种材料自身的优良性能,在结构抗拉和抗压方面具有更优良的性能。
在《钢-混组合桥梁设计规范》(GB 50917-2013)[2]应用之后,对于钢混组合梁桥结构形式的研究逐渐变多,不少学者对钢-混组合梁桥的受力性能以及施工形式进行了研究。
陈朝慰[3]针对钢-混组合桥梁结构的新型连接构件进行了受力分析,采用有限元分析了新型连接构建在施工和运营阶段的受力和变形情况;王建超等[4]开展了钢-混凝土组合梁桥的受力可靠度分析,主要采用最大熵函数构造的凝聚函数对抗弯、纵向抗剪和竖向抗剪承载力进行了可靠度分析;常英飞[5]对钢-混组合梁桥的新技术进行了阐述和总结,并提出未来组合桥梁发展的新思路;陈宝春等[6]对我国钢-混凝土组合梁桥的研究进展和工程应用进行了系统归纳总结,介绍了传统的组合梁桥以及近年提出的新型组合梁桥结构形式,并对其工程应用进行了总结;王岭军[7]采用有限元分析法,首先建立钢-混组合梁斜拉桥模型,再次分析了不同施工阶段下桥梁结构的受力特性,获得桥梁整体失稳状态,最后根据分析得出相应的结论;李德等[8]对新型钢-混组合桁架梁铁路桥的力学特征进行了研究分析,研究结果表明,桥梁的自振特性分析结果满足规范要求;王元清等[9]采用ANSYS 有限元分析了曲线钢-混组合梁桥的跨度与整体刚度及跨高比之间的关系;蒋丽忠等[10]针对钢-混组合梁桥的动力响应和安全指标进行了试验研究,研究结果显示各项指标均满足规范要求。
由上述可知,对于钢-混组合梁结构的研究已经较为成熟,本文在上述研究的基础上,以主河槽桥为依托,开展了平原区钢-混凝土组合梁桥的受力性能分析,主要研究静载和汽车荷载作用下组合梁的位移和变形情况,为平原区钢-混组合梁桥的设计提供参考。
钢-混组合结构在各种桥梁应用分析引言最近的二十余年,全球发生了许多次大地震,造成了非常惨重的生命财产损失,地震灾害的共同特点是:由于桥梁工程遭到严重破坏,切断了震区交通生命线,造成救灾工作的巨大困难,使次生灾害加重,导致了巨大的经济损失。
据统计,在世界上发生7级以上毁灭性大地震灾害中,以热轧H型钢为主的钢结构建筑受害程度最小,因此若用于设计桥梁上部结构弹塑性减震限位阻尼器,具有很大的潜力和广阔的应用前景。
一、钢-混组合结构梁桥优势钢-混凝土组合梁,通过较为简单的处理方式综合了混凝土梁和钢梁的优势。
组合梁保留受压区的混凝土翼板,受拉区则只配置钢梁,二者之间通过抗剪连接件组合成整体。
这样,既不会产生混凝土受拉开裂的问题,也不会因钢梁受压侧刚度较弱而发生失稳,同时还具备较高的刚度和较轻的自重。
钢-混凝土结合梁桥在中等跨度(20~90m)桥梁中已在世界各地广泛应用。
它的主要优点是:组合结构桥梁可以充分合理地发挥钢与混凝土两种材料的各自优势,可以最大程度地实现工厂化制造,减少现场操作,场地清洁较有保证,钢材部分可回收利用,有利于环保、节能,且具有整体受力的经济性与工程质量的可靠性。
与钢桥相比有:节省钢材;降低建筑高度;减少冲击,耐疲劳;减少钢梁腐蚀;减少噪音;维修养护工作量较少等。
与混凝土桥相比有:重量较轻;制造安装较为容易;施工速度快、工期短等。
二、钢-混组合结构在各种桥梁中的应用钢混组合结构桥梁种类繁多,但总的来说可以分为两类:第一类是在同一截面内采用钢与混凝土两种材料,通过剪力连接件来实现钢与混凝土的共同作用,称为组合梁,也有学者称之为结合梁:另一类是在桥梁的各个部位分别采用混凝土梁、钢梁以及组合梁的两种或三种形式,通过结合段来连接不同材料的部位,一般称之为混合梁。
具体到各种桥型,则可以大致分为以下几种:1、组合钢板梁桥。
通过连接件把工字形钢板梁与混凝土桥面板组合起来,使钢板梁的抗弯刚度大幅度提高,从而能减小梁高,增大跨径。
钢管混凝土桁梁—格构墩轻型桥梁车振性能分析黄育凡;吴庆雄;袁辉辉【摘要】为研究钢管混凝土组合桁梁—格构墩轻型桥梁在车辆荷载作用下的响应特性,以干海子特大桥为研究对象,采用考虑路面不平整的桥梁与车辆相互作用力学模型,对轻型桥梁的恒活载作用比例、基本动力特性以及移动车辆作用下的动力性能进行分析,并对冲击系数和行车舒适性进行讨论.研究结果表明,采用双轴车辆模型可较保守地评价轻型桥梁的动力特性,其动力响应随着车速增大而增加;移动车辆作用下,干海子特大桥主要产生竖向与横向振动,其卓越频率分别为2.501 Hz与0.275 Hz,多车作用下的动力响应远大于单车作用;干海子特大桥活载作用比例较常规钢筋混凝土桥梁有较大幅度增加;数值计算得到的干海子特大桥冲击系数略低于按规范计算得到的结果;建议采用Sperling指标和小堀·梶川指标进行干海子特大桥的行车舒适度评价.【期刊名称】《广西大学学报(自然科学版)》【年(卷),期】2018(043)004【总页数】11页(P1640-1650)【关键词】钢管混凝土;桁梁;格构式高墩;车桥相互作用;行车舒适度【作者】黄育凡;吴庆雄;袁辉辉【作者单位】福州大学土木工程学院,福建福州 350116;福州大学土木工程学院,福建福州 350116;福建省土木工程多灾害防治重点实验室,福建福州 350116;福州大学土木工程学院,福建福州 350116;工程结构福建省高校重点实验室,福建福州350116【正文语种】中文【中图分类】U440 引言钢管混凝土桁架组合梁是由混凝土桥面板、腹杆和钢管混凝土下弦杆组成的组合结构,能够充分发挥钢材和混凝土的材料性能,同时有效地减轻桥梁的自重,实现结构轻型化[1]。
在高墩和超高墩桥梁中,钢管混凝土柱式桥墩凭借其截面尺寸小、承载能力和结构刚度大、抗震性能强等优点,已成为颇有发展潜力的理想桥墩形式之一[2-3]。
将两种结构通过合理、科学地组合得到一种新型桥梁——钢管混凝土组合桁梁—格构墩轻型桥梁。