1.3简单的逻辑联结词
- 格式:ppt
- 大小:174.50 KB
- 文档页数:18
1.3 简单的逻辑连结词第一课时 1.3.1且(and )---1.3.2或(or )教学要求:通过教学实例,了解逻辑联结词“且”、“或”的含义,使学生能正确地表述相关数学内容.教学重点:正确理解逻辑联结词“且”、“或”的含义,并能正确表述这“p q ∧”、“p q ∨”、这些新命题.教学难点:简洁、准确地表述新命题“p q ∧”、“p q ∨”.教学过程:一、复习准备:1. 讨论:下列三个命题间有什么关系?(1)12能被3整除;(2)12能被4整除;(3)12能被3整除且12能被4整除.2. 发现:命题(3)是由命题(1)(2)使用联结词“且”联结得到的新命题.二、讲授新课:1. 教学命题p q ∧:①一般地,用联结词“且”把命题p 和命题q 联结起来,就得到一个新命题,记作p q ∧,读作“p 且q ”.②规定:当p ,q 都是真命题时,p q ∧是真命题;当p ,q 两个命题中有一个命题是假命题时,p q ∧是假命题.③例1:将下列命题用“且”联结成新命题,并判断它们的真假:(1)p :平行四边形的对角线互相平分,q :平行四边形的对角线相等;(2)p :菱形的对角线互相垂直,q :菱形的对角线互相平分;(3)p :35是15的倍数,q :35是7的倍数.(学生自练→个别回答→教师点评)④例2:用逻辑联结词“且”改写下列命题,并判断它们的真假:(1)12是48与60的公约数;(2)1既是奇数,又是素数;(3)2和3都是素数.(学生自练→个别回答→学生点评)2. 教学命题p q ∨:讨论:下列三个命题间有什么关系?⑴27是7的倍数;⑵27是9的倍数;⑶27是7的倍数或是9的倍数.发现:命题(3)是由命题(1)(2)使用联结词“或”联结得到的新命题.①一般地,用联结词“或”把命题p 和命题q 联结起来,就得到一个新命题,记作p q ∨,读作“p 或q ”.②规定:当p ,q 两个命题中有一个命题是真命题时,p q ∨是真命题;当p ,q 两个命题都是假命题时,p q ∨是假命题.例如:“22≤”、“27是7或9的倍数”等命题都是p q ∨的命题.③例3:判断下列命题的真假:⑴22≤;⑵集合A 是A B 的子集或是A B 的子集;⑶周长相等的两个三角形全等或面积相等的两个三角形全等.(学生自练→个别回答→教师点评)3. 思考:如果p q ∧为真命题,那么p q ∨一定是真命题吗?反之,如果p q ∨为真命题,那么p q ∧一定是真命题吗?注:逻辑联结词中的“或”相当于集合中的“并集”,它与日常用语中的“或”的含义不同.日常用语中的“或”是两个中任选一个,不能都选,而逻辑联结词中的“或”,可以是两个都选,但又不是两个都选,而是两个中至少选一个,因此,有三种可能的情况.逻辑联结词中的“且”相当于集合中的“并集”即两个必须都选.第二课时 1.3.3非(not )教学要求:通过教学实例,了解逻辑联结词“且”、“或”、“非”的含义,使学生能正确地表述相关数学内容.教学重点:正确理解逻辑联结词“且”、“或”、“非”的含义,并能正确表述这“p q ∧”、“p q ∨”、“p ⌝”这些新命题.教学难点:简洁、准确地表述新命题“p q ∧”、“p q ∨”、“p ⌝”.教学过程:一、复习准备:1. 分别用“p q ∧”、“p q ∨”填空:(1)命题“6是自然数且是偶数”是 的形式;(2)命题“3大于或等于2”是 的形式;(3)命题“正数或0的平方根是实数”是 的形式.2. 下列两个命题间有什么关系?⑴35能被5整除;⑵35不能被5整除.二、讲授新课:1. 教学命题p ⌝:①一般地,对一个命题p 全盘否定,就得到一个新命题,记作p ⌝,读作“非p ”或“p 的否定.②规定:若p 是真命题,则p ⌝必是假命题;若p 是假命题,则p ⌝必是真命题.“非”命题最常见的几个正面词语的否定:③例1:写出下列命题的否定,并判断它们的真假:⑴p :sin y x =是周期函数;⑵p :32<;⑶p :空集是集合A 的子集;(学生自练→个别回答→学生点评)④练习:(1)p :tan y x =是周期函数;(2)p :32<;(3)p :空集是集合A 的子集;(4)p :若220a b +=,则,a b 全为0;(5)p :若,a b 都是偶数,则a b +是偶数.⑤例2:分别指出由下列各组命题构成的“p q ∧”、“p q ∨”、“p ⌝”形式的复合命题的真假:(1)p :9是质数,q :8是12的约数;(2)p :1{1,2}∈,q :{1}{1,2}⊂;(3)p :{0}∅⊂,q :{0}∅=;(4)p :平行线不相交.2. 小结:逻辑联结词的理解及“p q ∧”、“p q ∨”、“p ⌝”这些新命题的正确表述和应用.三、巩固练习:1. 练习:判断下列命题的真假:(1)23≤;(2)22≤;(3)78≥.2. 分别指出由下列命题构成的“p q ∧”、“p q ∨”、“p ⌝”形式的新命题的真假:(1)p :π是无理数,q :π是实数;(2)p :23>,q :8715+≠;(3)p :李强是短跑运动员,q :李强是篮球运动员.3. 作业:教材。
_1.3 简单的逻辑联结词1.3简单的逻辑联结词如图所示,有三种电路图.问题1:甲图中,什么情况下灯亮?提示:开关p闭合且q闭合.问题2:乙图中,什么情况下灯亮?提示:开关p闭合或q闭合.问题3:丙图中,什么情况下灯不亮?提示:开关p不闭合时.如知识点一中的图,若开关p,q的闭合与断开分别对应命题p、q的真与假,则灯亮与不亮分别对应着p∧q,p∨q,綈p的真与假.问题1:什么情况下,p∧q为真?提示:当p真,q真时.问题2:什么情况下,p∨q为假?提示:当p假,q假时.问题3:什么情况下,綈p为真?提示:当p假时.“p∧q”“p∨q”“綈p”的真假判断:1.对“或”的理解,可联想集合中并集的概念.A∪B={x|x∈A,或x∈B}中的“或”,是指“x∈A”“x∈B”其中至少一个是成立的,即可以是x∈A,且x∉B,也可以是x∉A,且x∈B,还可以是x∈A,且x∈B.逻辑联结词中的“或”的含义与“并集”中的“或”的含义是一致的,它们都不同于生活用语中的“或”的含义.生活用语中的“或”表示“不兼有”,而我们在数学中所研究的“或”则表示“可兼有但不必兼有”.由“或”联结两个命题p 和q构成的复合命题“p或q”,当“p真q假”“p假q真”“p真q真”时,都为真.2.对“且”的理解,可联想集合中“交集”的概念.A∩B={x|x∈A,且x∈B}中的“且”,是指“x∈A”“x∈B”同时满足,即x既属于集合A,同时又属于集合B.用“且”联结两个命题p与q构成的复合命题“p且q”,当且仅当“p真q真”时,为真.3.对“非”的理解,可联想集合中“补集”的概念.“非”有否定的意思,一个命题p经过使用逻辑联结词“非”而构成一个复合命题“非p”.当p真时,则“非p”为假;当p假时,则“非p”为真.若将命题p对应集合P,则命题非p就对应着集合P在全集U 中的补集∁U P.[例1](1)24既是8的倍数,也是6的倍数;(2)菱形是圆的内接四边形或是圆的外切四边形;(3)矩形不是平行四边形.[思路点拨]解答本题先进行命题结构分析,再写出每个简单命题.[精解详析](1)这个命题是“p∧q”的形式,其中p:24是8的倍数,q:24是6的倍数.(2)这个命题是“p∨q”的形式,其中p:菱形是圆的内接四边形,q:菱形是圆的外切四边形.(3)这个命题是“綈p”的形式,其中p:矩形是平行四边形.[一点通](1)不含逻辑联结词“且”“或”“非”的命题是简单命题,由简单命题与逻辑联结词构成的命题是复合命题,因此就有“p∨q”“p∧q”“綈p”形式的复合命题,其中p,q 为简单命题.(2)在“p∨q”“p∧q”“綈p”中,p,q都是命题,但在“若p,则q”中,p,q可以是命题,也可以是含有变量的陈述句.(3)正确理解逻辑联结词“或”“且”“非”是解题的关键,有些命题并不一定包含“或”“且”“非”这些逻辑联结词,要结合命题的具体含义正确进行命题构成的判定.1.命题“平行四边形的对边平行且相等”是()A.简单命题B.“(綈p)∧(綈q)”的形式C.“p∧q”的形式D.“p∨q”的形式解析:含有逻辑联结词“且”,故为“p∧q”的形式.答案:C2.分别指出下列各命题的形式及构成它的简单命题.(1)方程x2+x+1=0无实根;(2)他是运动员兼教练;(3)这些文学作品不仅艺术上有缺点,而且逻辑上有错误;(4)3≥1.解:(1)这个命题是“綈p”的形式,其中p:方程x2+x+1=0有实根.(2)这个命题是“p∧q”的形式,其中p:他是运动员,q:他是教练.(3)这个命题是“p∧q”的形式,其中p:这些文学作品艺术上有缺点,q:这些文学作品逻辑上有错误.(4)此命题为“p∨q”的形式,其中p:3>1,q:3=1.[例2](1)p:6<6,q:6=6.(2)p:梯形的对角线相等,q:梯形的对角线互相平分.(3)p:函数y=x2+x+2的图象与x轴没有公共点,q:不等式x2+x+2<0无解.(4)p:函数y=cos x是周期函数,q:函数y=cos x是奇函数.[思路点拨]先判断p,q的真假,再利用真值表判断“p∧q”“p∨q”“綈p”的真假.[精解详析](1)∵p为假命题,q为真命题,∴p∧q为假命题,p∨q为真命题,綈p为真命题.(2)∵p为假命题,q为假命题,∴p∧q为假命题,p∨q为假命题,綈p为真命题.(3)∵p为真命题,q为真命题,∴p∧q为真命题,p∨q为真命题,綈p为假命题.(4)∵p为真命题,q为假命题,∴p∧q为假命题,p∨q为真命题,綈p为假命题.[一点通]判断复合命题的真假可以总结为三句话,即(1)对“p∨q”命题:一真必真.也就是p,q中只要有一个是真命题,则“p∨q”一定是真命题.(2)对“p∧q”命题:一假必假.也就是p,q中只要有一个是假命题,则“p∧q”一定是假命题.(3)对“綈p”命题:真假相反,也就是p与非p的真假不同,p真,非p就假;p假,非p就真.3.由下列各组命题构成的“p或q”“p且q”“非p”形式的新命题中,“p或q”为真,“p且q”为假,“非p”为真的是()A.p:3是偶数,q:4是奇数B.p:3+2=6,q:5>3C.p:a∈{a,b},q:{a} {a,b}D.p:Q R,q:N=N*解析:“p或q”为真,“p且q”为假,“非p”为真,所以可知:p假、q真.对照分析四个选项,只有B符合.答案:B4.判断下列命题的真假:(1)等腰三角形顶角的平分线平分底边并且垂直于底边;(2)x=1是方程x2+3x+2=0的根或x=-1是方程x2+3x+2=0的根;(3)A ⃘(A ∪B ).解:(1)这个命题是“p 且q ”的形式,其中p :等腰三角形顶角的平分线平分底边,q :等腰三角形顶角的平分线垂直于底边.因为p 真q 真,则“p 且q ”真,所以该命题是真命题.(2)这个命题是“p 或q ”的形式,其中p :1是方程x 2+3x +2=0的根,q :-1是方程x 2+3x +2=0的根.因为p 假q 真,则“p 或q ”真,所以该命题是真命题.(3)这个命题是“非p ”的形式,其中p :A ⊆(A ∪B ).因为p 真,则“非p ”假,所以该命题是假命题.[例3] 函数f (x )=-(5-2a )x 是减函数.若p 或q 为真,p 且q 为假,求实数a 的取值范围.[思路点拨] 解答本题可先求p ,q 中a 的范围,再利用p ∨q 为真,p ∧q 为假,构造关于a 的不等式组,求出a 的范围.[精解详析] 设g (x )=x 2+2ax +4.因为关于x 的不等式x 2+2ax +4>0对一切x ∈R 恒成立,所以函数g (x )的图象开口向上且与x 轴没有交点,故Δ=4a 2-16<0,∴-2<a <2, ∴命题p :-2<a <2.函数f (x )=-(5-2a )x 是减函数, 则有5-2a >1,即a <2.∴命题q :a <2.由p 或q 为真,p 且q 为假,可知p 和q 一真一假.(1) 若p 真q 假,则⎩⎪⎨⎪⎧-2<a <2,a ≥2,此不等式组无解.(2)若p 假q 真,则⎩⎪⎨⎪⎧a ≤-2,或a ≥2,a <2,∴a ≤-2.综上,实数a 的取值范围是(-∞,-2]. [一点通](1)根据p ,q 的真假可判断命题p ∧q ,p ∨q 的真假;反之根据命题p ∧q ,p ∨q 的真假也可以判断命题p ,q 的真假.(2)解答这类问题的一般步骤: ①求出命题p ,q 为真时参数的条件;②根据命题p ∧q ,p ∨q 的真假判定命题p ,q 的真假; ③根据p ,q 的真假建立不等式(组),求出参数的取值范围.5.已知p :1x -3<0,q :x 2-4x -5<0,若p 且q 为假命题,则x 的取值范围是________.解析:p :x <3;q :-1<x <5.∵p 且q 为假命题, ∴p ,q 中至少有一个为假,∴x ≥3或x ≤-1. 答案:(-∞,-1]∪[3,+∞)6.已知p :方程x 2+mx +1=0有两个不等的负根;q :方程4x 2+4(m -2)x +1=0无实根.若p 或q 为真,p 且q 为假,求m 的取值范围.解:p :⎩⎪⎨⎪⎧Δ=m 2-4>0,m >0.解得m >2.q :Δ=16(m -2)2-16=16(m 2-4m +3)<0. 解得1<m <3.∵p 或q 为真,p 且q 为假, ∴p 为真,q 为假,或p 为假,q 为真.故⎩⎪⎨⎪⎧ m >2,m ≤1,或m ≥3,或⎩⎪⎨⎪⎧m ≤2,1<m <3.解得m ≥3,或1<m ≤2.所以m 的取值范围是(1,2]∪[3,+∞).1.一个复合命题,从字面上看不一定含“或”、“且”字样.这就需要我们掌握一些词语、符号或式子与逻辑联结词的关系,如“或者”“x =±3”“≤”的含义为“或”;“并且”“綊”的含义为“且”.2.判断复合命题真假的步骤:①确定复合命题的构成形式,是“p ∧q ”“p ∨q ”,还是“綈p ”的形式; ②判断其中简单命题p ,q 的真假; ③根据真值表判断复合命题的真假.3.已知命题的真假求参数的取值范围,可以先求出构成命题的p 和q 为真时参数的范围,然后根据条件判断出p 和q 的真假,建立不等式(组)求参数的范围.1.命题“p 或q 为真”是命题“q 且p 为真”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:当p 或q 为真时,可以得到p 和q 中至少有一个为真,这时q 且p 不一定为真;反之当q 且p 为真时,必有p 和q 都为真,一定可得p 或q 为真.答案:B2.给出命题p :3≥3;q :函数f (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0在R 上的值域为[-1,1].在下列三个命题:“p ∧q ”“p ∨q ”“非p ”中,真命题的个数为( )A .0B .1C .2D .3解析:p 为真命题.对于q ,∵f (x )对应的函数值只有两个,即1或-1,所以f (x )的值域为{1,-1},∴q 为假命题,∴p ∧q 假,p ∨q 真,非p 假. 答案:B3.已知p :函数y =2|x-1|的图象关于直线x =1对称;q :函数y =x +1x在(0,+∞)上是增函数.由它们组成的新命题“p 且q ”“p 或q ”“綈p ”中,真命题有( )A .0个B .1个C .2个D .3个解析:命题p 是真命题.y =x +1x 在(0,1)上为减函数,在(1,+∞)上为增函数,故q 为假命题.∴p 且q 为假,p 或q 为真,綈p 为假. 答案:B4.已知命题p 1:函数y =2x -2-x 在R 上为增函数,p 2:函数y =2x +2-x 在R 上为减函数.在命题q 1:p 1∨p 2,q 2:p 1∧p 2,q 3:(綈p 1)∨p 2和q 4:p 1∧(綈p 2)中,真命题是( ) A .q 1,q 3 B .q 2,q 3 C .q 1,q 4D .q 2,q 4解析:∵y =2x 在R 上为增函数,y =2-x =(12)x 在R 上为减函数,∴y =-2-x =-(12)x 在R 上为增函数,∴y =2x -2-x 在R 上为增函数,故p 1是真命题.y =2x +2-x 在R 上为减函数是错误的,故p 2是假命题.∴q 1:p 1∨p 2是真命题,因此排除B 和D. q 2:p 1∧p 2是假命题,q 3:綈p 1是假命题,(綈p 1)∨p 2是假命题,故q 3是假命题,排除A. 答案:C5.已知p :不等式ax +b >0的解集为{x |x >-ba },q :关于x 的不等式(x -a )(x -b )<0的解集为{x |a <x <b }.若“p ∨q ”是假命题,则a ,b 满足的条件是________.解析:∵p ∨q 为假命题,∴p ,q 均为假命题.p 假⇔a ≤0,q 假⇔a ≥b ,则b ≤a ≤0. 答案:b ≤a ≤06.已知p :x 2-x ≥6,q :x ∈Z.若“p ∧q ”“綈q ”都是假命题,则x 的值组成的集合为________.解析:因为“p ∧q ”为假,“綈q ”为假,所以q 为真,p 为假.故⎩⎪⎨⎪⎧ x 2-x <6,x ∈Z ,即⎩⎪⎨⎪⎧-2<x <3,x ∈Z.因此,x 的值可以是-1,0,1,2. 答案:{-1,0,1,2}7.分别写出由下列各组命题构成的“p ∨q ”“p ∧q ”“綈p ”形式的新命题,并判断其真假:(1)p :6是自然数;q :6是偶数. (2)p :∅⊆{0};q :∅={0}.解:(1)p ∧q :6是自然数且是偶数.它是真命题. p ∨q :6是自然数或是偶数.它是真命题. 綈p :6不是自然数.它是假命题. (2)p ∧q :∅⊆{0}且∅={0}.它是假命题. p ∨q :∅⊆{0}或∅={0}.它是真命题. 綈p :∅⃘{0}.它是假命题.8.已知a >0,a ≠1.设p :函数y =log a (x +1)在(0,+∞)内单调递减;q :曲线y =x 2+(2a -3)x +1与x 轴交于不同的两点.若p 或q 为真,p 且q 为假,求a 的取值范围.解:当0<a <1时,函数y =log a (x +1)在(0,+∞)内单调递减.当a >1时,y =log a (x +1)在(0,+∞)内不是单调递减函数,故p 真时0<a <1. q 真等价于(2a -3)2-4>0,即a <12或a >52.又a >0,∴0<a <12或a >52.∵p 或q 为真,p 且q 为假, ∴p ,q 中必定是一个为真一个为假.(1)若p 真,q 假, 则⎩⎪⎨⎪⎧0<a <1,12≤a <1或1<a ≤52⇒12≤a <1, 即a ∈[12,1).(2)若p 假,且q 真, 则⎩⎪⎨⎪⎧a >1,0<a <12或a >52⇒a >52,即a ∈(52,+∞).综上可知,a 的取值范围为[12,1)∪(52,+∞).。
§1.3简单的逻辑联结词学习目标1.理解逻辑联结词“且”“或”“非”的含义.(重点)2.会判断命题“p∧q”“p∨q”“﹁p”的真假.(难点)3.掌握命题的否定与否命题的区别.(易混点)基础·初探教材整理1“且”“或”“非”的含义1.用联结词“且”把命题p和命题q联结起来,就得到一个新命题,记作,读作“”.2.用联结词“或”把命题p和命题q联结起来,就得到一个新命题,记作,读作“”.3.对一个命题p全盘否定,就得到一个新命题,记作,读作“ ”或“”.预习自测1.命题:“菱形的对角线互相垂直平分”,使用的逻辑联结词的情况是()A.没有使用逻辑联结词B.使用了逻辑联结词“且”C.使用了逻辑联结词“或”D.使用了逻辑联结词“非”2.若p:正数的平方大于0,q:负数的平方大于0,则p∨q:________.(用文字语言表述)教材整理2含有逻辑联结词的命题的真假判断阅读教材P14第7,8段,P15最后两行,P17第3,4段,完成下列问题.预习自测1.已知命题p:5≤5,q:5>6,则下列说法正确的是()A.p∧q为真,p∨q为真,﹁p为真B.p∧q为假,p∨q为假,﹁p为假C.p∧q为假,p∨q为真,﹁p为假D.p∧q为真,p∨q为真,﹁p为假2.若命题p:常数列是等差数列,则﹁p:________.合作探究类型1 含逻辑联结词的命题的构成形式例1(1)用适当的逻辑联结词填空(填“且”“或”“非”):①若a2+b2=0,则a=0________b=0;②若ab=0,则a=0________b=0;③平行四边形的一组对边平行________相等.(2)将下列命题写成“p∧q”“p∨q”和“﹁p”的形式:①p:6是自然数,q:6是偶数;②p:∅⊆{0},q:∅={0};③p:甲是运动员,q:甲是教练员.名师指导1.判断一个命题的构成形式时,不能仅从命题的字面上找逻辑联结词,而应当从命题的结构特征进行分析判断.2.用逻辑联结词构造新命题的两个步骤3.常见词语的否定形式:跟踪训练1.(1)判断下列命题的形式(从“p∨q”“p∧q”和“﹁p”中选填一种):①π不是整数:________;②6≤8:________;③2是偶数且2是素数:________.(2)分别写出由下列命题构成的“p∨q”“p∧q”“﹁p”形式的命题:①p:方程x2+2x+1=0有两个相等的实数根,q:方程x2+2x+1=0的两根的绝对值相等;②p:三角形的外角等于与它不相邻的两个内角的和,q:三角形的外角大于与它不相邻的任何一个内角.类型2 含有逻辑联结词的命题真假的判断例2指出下列命题的真假:(1)命题:“不等式|x+2|≤0没有实数解”;(2)命题:“-1是偶数或奇数”;(3)命题:“2属于集合Q,也属于集合R”.名师指导判断含逻辑联结词的命题的真假时,首先确定该命题的构成,再确定其中简单命题的真假,最后由真值表进行判断.跟踪训练2.分别写出由下列各组命题构成的“p∧q”“p∨q”“﹁p”形式的命题,并判断其真假.(1)p:等腰梯形的对角线相等,q:等腰梯形的对角线互相平分;(2)p:函数y=x2-2x+2没有零点,q:不等式x2-2x+1>0恒成立.探究共研型探究点由含逻辑联结词的命题的真假求参数的取值范围探究对涉及命题的真假且含参数的问题,参数范围怎样确定?例3已知命题p:方程x2+2ax+1=0有两个大于-1的实数根,命题q:关于x的不等式ax2-ax+1>0的解集为R,若“p或q”与“﹁q”同时为真命题,求实数a的取值范围.名师指导应用逻辑联结词求参数范围的四个步骤1.分别求出命题p,q为真时对应的参数集合A,B.2.由“p且q”“p或q”的真假讨论p,q的真假.3.由p,q的真假转化为相应的集合的运算.4.求解不等式或不等式组得到参数的取值范围.跟踪训练3.已知命题p:方程2x2+ax-a2=0在[-1,1]上有解;命题q:只有一个实数x0满足不等式x20+2ax0+2a≤0.若命题“p或q”是假命题,求a的取值范围.课堂检测1.已知命题p:3≥3,q:3>4,则下列判断正确的是()A.p∨q为真,p∧q为真,﹁p为假B.p∨q为真,p∧q为假,﹁p为真C.p∨q为假,p∧q为假,﹁p为假D.p∨q为真,p∧q为假,﹁p为假2.已知命题p:对任意x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件.则下列命题为真命题的是()A.p∧qB.﹁p∧﹁qC.﹁p∧qD.p∧﹁q3.命题“若x>0,则x2>0”的否定是________.4.命题p:x=π是y=|sin x|的一条对称轴;q:2π是y=|sin x|的最小正周期.下列命题:①p∨q;②p∧q;③﹁p;④﹁q.其中真命题的序号是________.5.判断下列命题的真假:(1)函数y=cos x是周期函数并且是单调函数;(2)x=2或x=-2是方程x2-4=0的解.参考答案基础·初探教材整理1“且”“或”“非”的含义1. p∧q p且q2.p∨q p或q3.﹁p 非p p的否定预习自测1.【答案】B【解析】菱形的对角线互相垂直且互相平分.∴使用逻辑联结词“且”.2.【答案】正数或负数的平方大于0预习自测1.【答案】C【解析】易知p为真命题,q为假命题,由真值表可得:p∧q为假,p∨q为真,﹁p为假.2.【答案】常数列不是等差数列【解析】只否定命题的结论:常数列不是等差数列.合作探究类型1 含逻辑联结词的命题的构成形式例1(1) 【答案】①且②或③且【解析】①若a2+b2=0,则a=0且b=0,故填且.②若ab=0,则a=0或b=0,故填或.③平行四边形的一组对边平行且相等,故填且.(2)解:①p∧q:6是自然数且6是偶数.p∨q:6是自然数或6是偶数.﹁p:6不是自然数.②p∧q:∅⊆{0}且∅={0}.p∨q:∅⊆{0}或∅={0}.﹁p:∅⃘{0}.③p∧q:甲是运动员且甲是教练员.p∨q:甲是运动员或甲是教练员.﹁p:甲不是运动员.跟踪训练1. (1)【答案】①﹁p②p∨q③p∧q(2)解:①“p∨q”:方程x2+2x+1=0有两个相等的实数根或两根的绝对值相等;“p∧q”:方程x2+2x+1=0有两个相等的实数根且两根的绝对值相等;“﹁p”:方程x2+2x+1=0没有两个相等的实数根.②“p∨q”:三角形的外角等于与它不相邻的两个内角的和或大于与它不相邻的任何一个内角;“p∧q”:三角形的外角等于与它不相邻的两个内角的和且大于与它不相邻的任何一个内角;“﹁p”:三角形的外角不等于与它不相邻的两个内角的和.类型2 含有逻辑联结词的命题真假的判断例2解:(1)此命题是“﹁p”的形式,其中p:不等式|x+2|≤0有实数解.∵x=-2是该不等式的一个解,∴命题p为真命题,即﹁p为假命题,故原命题为假命题.(2)此命题是“p或q”的形式,其中p:-1是偶数,q:-1是奇数.∵命题p为假命题,命题q为真命题,∴“p∨q”为真命题,故原命题为真命题.(3)此命题为“p∧q”的形式,其中p:2∈Q,q:2∈R.∵命题p为假命题,命题q为真命题.∴命题“p∧q”为假命题,故原命题为假命题.跟踪训练2.解:(1)p∧q:等腰梯形的对角线相等且互相平分,假命题.p∨q:等腰梯形的对角线相等或互相平分,真命题.﹁p:等腰梯形的对角线不相等,假命题.(2)p∧q:函数y=x2-2x+2没有零点且不等式x2-2x+1>0恒成立,假命题.p∨q:函数y=x2-2x+2没有零点或不等式x2-2x+1>0恒成立,真命题.﹁p:函数y=x2-2x+2有零点,假命题.探究共研型探究点由含逻辑联结词的命题的真假求参数的取值范围探究【提示】已知命题p∧q、p∨q、﹁p的真假,可以通过真值表判断命题p、q的真假,然后将命题间的关系转化为集合间的关系,利用解不等式求参数的范围,要注意分各种情况进行讨论.例3解:命题p:方程x2+2ax+1=0有两个大于-1的实数根,等价于⎩⎪⎨⎪⎧Δ=4a 2-4≥0,x 1+x 2>-2,(x 1+1)(x 2+1)>0⇔⎩⎪⎨⎪⎧a 2-1≥0,-2a >-2,2-2a >0,解得a ≤-1.命题q :关于x 的不等式ax 2-ax +1>0的解集为R ,等价于a =0或⎩⎪⎨⎪⎧a >0,Δ<0,由于⎩⎪⎨⎪⎧ a >0,Δ<0⇔⎩⎪⎨⎪⎧a >0,a 2-4a <0,解得0<a <4,∴0≤a <4.因为“p 或q ”与“﹁q ”同时为真命题,即p 真且q 假,所以⎩⎪⎨⎪⎧a ≤-1,a <0或a ≥4,解得a ≤-1.故实数a 的取值范围是(-∞,-1]. 跟踪训练3.解:由 2x 2+ax -a 2=0,得(2x -a )(x +a )=0, ∴x =a2或x =-a ,∴当命题p 为真命题时,⎪⎪⎪⎪a 2≤1或|-a |≤1, ∴|a |≤2.又“只有一个实数x 0满足不等式x 20+2ax 0+2a ≤0”, 即抛物线y =x 2+2ax +2a 与x 轴只有一个交点, ∴Δ=4a 2-8a =0,∴a =0或a =2, ∴当命题q 为真命题时,a =0或a =2, ∴命题“p 或q ”为真命题时,|a |≤2. ∵命题“p 或q ”为假命题, ∴a >2或a <-2.即a 的取值范围为(-∞,-2)∪(2,+∞). 课堂检测 1.【答案】 D【解析】 p 为真,q 为假,故选D. 2.【答案】 D【解析】因为指数函数的值域为(0,+∞),所以对任意x∈R,y=2x>0恒成立,故p为真命题;因为当x>1时,x>2不一定成立,反之当x>2时,一定有x>1成立,故“x>1”是“x>2”的必要不充分条件,故q为假命题,则p∧q、﹁p为假命题,﹁q为真命题,﹁p∧﹁q、﹁p∧q为假命题,p∧﹁q为真命题,故选D.3.【答案】若x>0,则x2≤04.【答案】①④【解析】∵π是y=|sin x|的最小正周期,∴q为假.又∵p为真,∴p∨q为真,p∧q为假,﹁p为假,﹁q为真.5.解:(1)由p:“函数y=cos x是周期函数”,q:“函数y=cos x是单调函数”,用联结词“且”联结后构成命题p∧q.因为p是真命题,q是假命题,所以p∧q是假命题.(2)由p:“x=2是方程x2-4=0的解”,q:“x=-2是方程x2-4=0的解”,用“或”联结后构成命题p∨q.因为p,q都是真命题,所以p∨q是真命题.。