XXGX第8章 空间滤波
- 格式:pdf
- 大小:757.15 KB
- 文档页数:8
Chapter 3強度轉換與空間濾波空間濾波的基本原理與各式濾波器Chapter 3強度轉換與空間濾波(S ti l filt i )遮罩mask空間濾波(Spatial filtering)將濾波遮罩在影像中移動,在每一點(x,y)計算濾波係數及遮罩所涵蓋的影像區域的像素乘積和mask 濾波器filter 核心kernel template 模板template 窗windowmaskimage++++++−−+−−−−=y x f w y x f w y x f w y x f w y x g )1,1()1,1(...),()0,0(...),1()0,1()1,1()1,1(),(∑∑−=−=++=aa s bbs t y s x f t s w y x g ),(),(),(Chapter 3強度轉換與空間濾波相關性(correlation)迴旋積(convolution)相關性¾迴旋積Chapter 3強度轉換與空間濾波相關性迴旋積相關性∑++=a bt s x t s w y x f y x w ,,),(),(o ∑−=−=a s bt y f )()(•y x f y x w ),(),(迴旋積∑∑−=−=−−=a a s bbt t y s x f t s w ),(),(Chapter 3強度轉換與空間濾波Chapter 3強度轉換與空間濾波z w z w z w R mn mn +++= (221)1h (-1,-1)h (-1,0)h (-1,1)-1z w mni k k =∑=1h (0,1)h (0,0)h (0,1)h (1,-1)h (1,0)h (1,1)zw T =產生空間濾波器遮罩h (x ,y )1.平均濾波器z w z w z w R +++=...對於3*3的遮罩2.101 and 101 1),(,,-y ,,-x y x h ===z w kk =∑9992211 2.高斯濾波器101and 101 2222−=−==+x ex h y x σzw Tk ==1,,,,,),(y yChapter 3強度轉換與空間濾波平滑空間濾波器Smoothing spatial filters•∑a bGeneral form用於模糊化跟減少雜訊•以濾波器所定義的平均值取代原灰階值•對於銳利的邊緣也有模糊的負效果∑∑−=−=++=aba s bt t s w t y s x f t s w y x g ),(),(),(Box filterWeighted average∑−=−=a s bt ),(1(所有係數都相等)g g (每個像素有不同的重要性)∑==919i izRChapter 3強度轉換與空間濾波3使用方形濾波器的結果N=3N9N=5N=9N 15N35N=15N=35Chapter 3強度轉換與空間濾波Threshing with a threshold value equal to 影像平均遮罩的大小建立了會被融入背景的物體的相對大小,可用於標示較大較亮的物體Threshing with a threshold value equal to 25% of the highest intensity in the blurredimage, the small objects are eliminated.After averaging, the small objectsblend with backgroundChapter 3強度轉換與空間濾波排序統計濾波器(Order-statistics filters)非線性的濾波器,其響應建立在由濾波器所包圍的影像區域中所含的像素順序上•中值濾波器Median filterM di filt•將像素值用該鄰近區域像素的“中間值"代替•適用於胡椒鹽式雜訊(salt and pepper noise)M filt Mi filt•Max filter, Min filter平均濾波中間值濾波Chapter 3強度轉換與空間濾波•中值濾波器1818191919202021155將九宮格中的灰階值重新排序1819182021中值19155202121 20192120191819182021 191920212119202116018 17192220192019212019 19202116018 1719222019胡椒鹽式雜訊Chapter 3強度轉換與空間濾波•中值濾波器—水彩畫特效Chapter 3強度轉換與空間濾波S li銳化空間濾波器(Sharpening spatial filters)突顯影像中細微的部分或增強模糊的細節,藉由微分來達成Scan line •微分運算子的響應強度正比於所在影像處的不連續程度•微分增強邊緣和不連續處fderivative order -First −∂()()x fx f xderivative order -Second 12∂+=∂()()()x f x f x f xf2112−−++=∂Chapter 3強度轉換與空間濾波銳化空間濾波器(Sharpening spatial filters)微分運算子的響應強度正比於運算子在其運用點處影像強度不連續的程度一階導數first derivative•在常數強度區域中為零•在強度步階斜面起始處不為零•沿著斜面不為零二次導數Second-order derivatives•在常數強度區域中為零•在強度步階或斜面起始處以及尾端不為零沿著有常數斜率的斜面為零•Chapter 3強度轉換與空間濾波二次導數濾波器圖3.37(a)用來實現(3.6-6) 式的濾波器遮罩;Laplacian22∂(b)實現此式之延伸所用的遮罩,其中包括對角項;(c)和(d) 兩個實際上常見之拉普拉斯的其它實現。
空间滤波技术的应用摘要空间滤波技术是一种采用滤波处理的影响增强方法,目的是改善影像质量,包括去除高频噪声与干扰,及影像边缘增强、线性增强以及去模糊等。
本文主要介绍了空间滤波技术在如下二个方向的应用:遥感图像和条带噪声去除。
关键词空间滤波;遥感图像;条带噪声The application of spatial filtering technologyAbstract The spatial filtering technique is a filtering process enhancement method,the purpose is to improve the image quality,including removing high frequency noise and interference,and the image edge enhancement,linear enhancement,and deblurring. This paper describes the spatial filtering with noise removal technology in the application of the following three directions: quality testing,remote sensing image,as well as Article.Key words spatial filtering; remote sensing image; striping noise1.引言空间滤波技术的理论基础是空间卷积,分为低通滤波(平滑化)、高通滤波(锐化)和带通滤波。
空间滤波能够应用在很多方面,在对影像的增强作用上效果明显,还可以配合其它的图像处理技术在图像处理方面发挥更大作用。
2.空间滤波在遥感图像中的应用近些年,随着人们生活素质的提高,对信息的需求越来越多,遥感信息的需求量更是日益增加,为此,快速地发展遥感图像处理技术具有很深刻的现实意义。
空间域滤波空间域滤波基础 某些邻域处理⼯作是操作邻域的图像像素值以及相应的与邻域有相同维数的⼦图像的值。
这些⼦图像可以被称为滤波器、掩模、核、模板或窗⼝,其中前三个词是更为普遍的术语。
在滤波器⼦图像中的值是系数值,⽽不是像素值。
空间滤波就是在待处理图像中逐点地移动掩模。
在每⼀点 (x, y) 处,滤波器在该点的响应通过事先定义的关系来计算。
对于线性空间滤波,其响应由滤波器系数与滤波掩模扫过区域的相应像素值的乘积之和给出。
对于⼀个尺⼨为 m×n 的掩模,我们假设 m=2a+1 且 n=2b+1,这⾥的 a、b 为⾮负整数。
在后续的讨论中,处理的掩模的长与宽都为奇数。
⼀般来说,在 M×N 的图像 f 上,⽤ m×n ⼤⼩的滤波器掩模进⾏线性滤波由下式给出: 这⾥,a=(m-1)/2 且 b=(n-1)/2。
为了得到⼀幅完整的经过滤波处理的图像,必须对 x=0, 1, 2, …, M-1 和 y=0, 1, 2, …, N-1 依次应⽤公式。
这样,就保证了对图像中的所有像素进⾏了处理。
式中的线性滤波处理与频率域中卷积处理的概念很相似。
因此,线性空间滤波处理经常被称为“掩模与图像的卷积”。
类似地,滤波掩模有时也可以称为“卷积模板”或“卷积核”。
当滤波中⼼靠近图像轮廓时发⽣的情况 考虑⼀个简单的⼤⼩为 n×n 的⽅形掩模,当掩模中⼼距离图像边缘为 (n-1)/2 个像素时,该掩模⾄少有⼀条边与图像轮廓相重合。
如果掩模的中⼼继续向图像边缘靠近,那么掩模的⾏或列就会处于图像平⾯之外。
⽅法⼀:最简单的⽅法就是将掩模中⼼点的移动范围限制在距离图像边缘不⼩于 (n-1)/2 个像素处。
如果要保持与原图像⼀样⼤⼩,可以直接将未处理的图像边缘像素直接复制到结果图像,或者⽤全部包含于图像中的掩模部分滤波所有像素。
通过这种⽅法,图像靠近边缘部分的像素带将⽤部分滤波掩模来处理。
⽅法⼆:在图像边缘以外再补上 (n-1)/2 ⾏和 (n-1)/2 列灰度值为0(也可为其它常值)的像素点,或者将边缘复制补在图像之外。
空间频谱与空间滤波一, 实验背景:阿贝成像原理认为:透镜成像过程可分为两步,第一步是通过物体衍射的光在系统的频谱面上形成空间频谱,这是衍射引起的“分频”作用;第二步是代表不同空间频率的各光束在像平面上相互叠加而形成物体的像,这是干涉引起的“合成”作用。
这两步从本质上对应着两次傅里叶变换。
如果这两次傅里叶变换完全理想,则像和物应完全一样。
如果在频谱面上设置各种空间滤波器,当去频谱中某一频率的成分,则将明显地影响图像,此即为空间滤波。
二, 实验目的:1, 掌握光具座上光学调整技术;2, 掌握空间滤波的基本原理,理解成像过程中“分频” 与“合成”作用。
3, 掌握方向滤波,高通滤波,低通滤波等滤波技术,观察各种滤波器产生的滤波效果,加深对光学信息处理实质的认识。
三, 实验原理:1, 傅立叶变换近代光学中,对光的传播和成像过程用傅立叶变换来表达,形成了傅立叶光学,可以处理一些无法用经典光学理论解决的问题。
傅立叶变换时处理振荡和波这类问题的有力工具。
对振动和波的傅立叶分析一般在时域和频域中进行,而对光的传播与成像分析是在空间和倒数空间中进行的。
不考虑时域,单色平面光波的表达式如下:0()[()]f r Aexp i k r ϕ=⋅+ (1)直角坐标系中,k 的方向余弦为(cos ,cos ,cos )αβγ,r 为(x ,y ,z )2(cos cos ,cos )k r x y z παβγλ⋅=+ (2) 波矢量的物理意义可以理解为平面波的空间频率,在x ,y ,z 方向上三个分量分别为222cos , cos , cos x y z f f f πππαβγλλλ=== (3)在傅立叶光学中,将物光作为一个输入函数(物函数),研究其经过具有傅立叶变换作用的光学元件后在接收面上得到的输出函数(像函数)。
以物是平面图像为例,物函数g (x ,y )可以表示成一系列不同空间频率的单色平面波的线性叠加,即(,)(,)exp[2()]x y x y x y g x y G f f i xf yf df df π∞-∞=+⎰⎰ (4)其中(,)x y G f f 被称为物函数的空间频谱函数。
空间频率滤波空间频率滤波是在光学系统的空间频谱面上放置适当的滤波器,去掉(或有选择地通过)某些空间频率或改变它们的振幅和位相,使物体的图像按照人们的希望得到改善。
它是信息光学中最基本、最典型的基础实验,是相干光学信息处理中的一种最简单的情况。
早在1873年,德国人阿贝(E.Abbe,1840~1905)在蔡司光学公司任职期间研究如何提高显微镜的分辨本领时,首次提出了二次衍射成像的理论。
阿贝和波特(A.B.Porter )分别于1893年和1906年以一系列实验证实了这一理论。
1935年泽尼可(Zernike )提出了相衬显微镜的原理。
这些早期的理论和实验其本质上都是一种空间滤波技术,是傅里叶光学的萌芽,为近代光学信息处理提供了深刻的启示。
但由于它属于相干光学的范畴,在激光出现以前很难将它在实际中推广使用。
1960年激光问世后,它才重新振兴起来,其相应的基础理论——“傅里叶光学”形成了一个新的光学分支。
目前光信息处理技术已广泛应用到实际生产和生活各个领域中。
一、实验目的1. 了解傅里叶光学基本理论的物理意义,加深对光学空间频率、空间频谱和空间频率滤波等概念的理解;2. 验证阿贝成像原理,理解成像过程的物理实质——“分频”与“合成”过程,了解透镜孔径对显微镜分辨率的影响;二、实验原理1. 傅里叶光学变换设有一个空间二维函数),(y x g ,其二维傅里叶变换为dxdy y x i y x g G )](2exp[),(),(ηξπηξ+-=⎰⎰∝∝- (1) 式中ηξ,分别为x,y 方向的空间频率,而),(y x g 则为),(ηξG 的傅里叶逆变换,即ηξηξπηξd d y x i G y x g ⎰⎰+=∝∝-)](2exp[),(),( (2)式(2)表示,任意一个空间函数),(y x g 可表示为无穷多个基元函数)](2exp[y x i ηξπ+的线性迭加,),(ηξG 是相应于空间频率为ηξ,的基元函数的权重,),(ηξG 称为),(y x g 的空间频谱。
空间滤波系统的基本原理
空间滤波系统的基本原理是根据空间域中的像素点与其周围像素点的灰度值关系,对图像进行滤波处理,以改善图像的质量或提取感兴趣的图像特征。
空间滤波系统通常包括以下步骤:
1. 图像采样:将连续的图像转换为离散的像素点表示。
2. 图像卷积:对每个像素点,用其周围像素点的灰度值与一组滤波器进行卷积运算。
滤波器通常是一组权重矩阵,用于对像素点进行加权平均或加权求和。
3. 灰度变换:对卷积结果进行灰度变换操作,以调整图像的对比度或亮度等特征。
4. 图像重建:根据卷积和灰度变换的结果,重建图像并进行显示或进一步处理。
空间滤波系统的关键是设计和选择合适的滤波器。
常用的滤波器有平滑滤波器、边缘检测滤波器和锐化滤波器等。
平滑滤波器用于去除图像中的噪声,边缘检测滤波器用于检测图像中的边缘,锐化滤波器用于增强图像的细节。
空间滤波系统的性能可以通过滤波器的大小、权重矩阵以及滤波器的数量等参数进行调整。
不同的滤波器参数可以产生不同的滤波效果,以满足不同的应用需求。
空间滤波实验0引言《光信息技术》是光信息科学与技术、测控技术与仪器、电子信息工程专业的一门专业课。
光学信息处理技术是近20多年来发展起来的新的研究领域,在现代光学中占有重要的位置。
光学信息处理可完成对二维图像的识别、增强、恢复、传输、变换、频谱分析等。
从物理光学的角度,光学信息处理是基于傅里叶变换和光学频谱分析的综合技术,通过在空域对图像的调制或在频域对傅里叶频谱的调制,借助空间滤波的技术对光学信息(图像)进行处理。
即通过有意识地改变像的频谱,使像实现所希望的变化。
在阿贝成像理论的教学中,单纯依靠数学推演来讲解,效果不好,特别是空间频率、空间滤波等概念的形成有一定的困难。
虽然可以通过空间滤波实验来加强教学效果,但由于受仪器、场地等方面的限制,实验现象不太理想。
为此,我们在原有的实验基础上设计出空间滤波实验与计算机模拟实验相结合, 可以获得较好的教学效果。
1.设计原理及思想1)设计原理光学信息处理的理论基础是阿贝(Abbe)二次衍射成像理论和著名的阿贝-波特(Abbe-Porter)实验。
根据阿贝成像原理,相干光学成像过程可分为两步:第一步称为分频过程,即从物平面到光源的共轭像平面或称频谱面,由输入的物作为衍射屏对照射光波产生夫琅和费衍射;第二步称为合频或频谱综合过程,即从频谱面到输入物的共轭像平面,被分解的频谱成分经进一步的衍射后再次叠加形成输入物的共轭像。
按照傅里叶变换理论,两步成像过程实际上是光学系统对携带输入物信息的二维光场的复振幅分布进行的两次傅里叶变换过程。
典型的光学信息处理系统为如图1所示的4f傅里叶变换系统:输入平面P1(即物平面)位于透镜L1的前焦平面,输出平面P3(即像平面)位于透镜L2的后焦平面。
透镜L1 和L2分别起分频(傅里叶变换)和合频(逆傅里叶变换)作用。
P2为频谱面,在频谱面上作的光学处理就是空间滤波。
最简单的方法是用各种滤波器对衍射斑进行取舍,达到改造图像的目的。