第八章 维纳滤波
- 格式:ppt
- 大小:613.00 KB
- 文档页数:17
维纳滤波滤波器概念常用的滤波器是采用电感、电容等分立元件构成,如RC低通滤波器、LC谐振回路等。
但对于混在随机信号中的噪声滤波,这些简单的电路就不是最佳滤波器,这是因为信号与噪声均可能具有连续的功率谱。
不管滤波器具有什么样的频率响应,均不可能做到噪声完全滤掉,信号波形的不失真。
因此,滤波器研究的一个基本课题就是:如何设计和制造最佳的或最优的滤波器。
所谓最佳滤波器是指能够根据某一最佳准则进行滤波的滤波器。
维纳滤波定义及发展维纳滤波滤除背景噪声20世纪40年代,维纳奠定了关于最佳滤波器研究的基础。
即假定线性滤波器的输入为有用信号和噪声之和,两者均为广义平稳过程且知它们的二阶统计特性,维纳根据最小均方误差准则(滤波器的输出信号与需要信号之差的均方值最小),求得了最佳线性滤波器的参数,这种滤波器被称为维纳滤波器。
在维纳研究的基础上,人们还根据最大输出信噪比准则、统计检测准则以及其他最佳准则求得的最佳线性滤波器。
实际上,在一定条件下,这些最佳滤波器与维纳滤波器是等价的。
因而,讨论线性滤波器时,一般均以维纳滤波器作为参考。
维纳滤波是40年代在线性滤波理论方面所取得的最重要的成果。
利用平稳随机过程的相关特性和频谱特性对混有噪声的信号进行滤波的方法,1942年美国科学家N.维纳为解决对空射击的控制问题所建立。
维纳滤波基本概念从噪声中提取信号波形的各种估计方法中,维纳(Wiener)滤波是一种最基本的方法,适用于需要从噪声中分离出的有用信号是整个信号(波形),而不只是它的几个参量。
设维纳滤波器的输入为含噪声的随机信号。
期望输出与实际输出之间的差值为误差,对该误差求均方,即为均方误差。
因此均方误差越小,噪声滤除效果就越好。
为使均方误差最小,关键在于求冲激响应。
如果能够满足维纳-霍夫方程,就可使维纳滤波器达到最佳。
根据维纳-霍夫方程,最佳维纳滤波器的冲激响应,完全由输入自相关函数以及输入与期望输出的互相关函数所决定。
基于维纳滤波的应用综述一、维纳滤波概述维纳(wiener)滤波是用来解决从噪声中提取信号问题的一种过滤(或滤波)的方法。
实际上这种线性滤波问题,可以看成是一种估计问题或一种线性估计问题。
一个线性系统,如果它的单位样本响应为h (n ),当输入一个随机信号x (n ),且x (n )=s (n )+v (n ) (1.1)其中s(n)表示信号,v(n)表示噪声,则输出y(n)为()=()()my n h m x n m -∑ (1.2)我们希望x (n )通过线性系统h (n )后得到的y (n )尽量接近于s (n ),因此称y (n )为s (n )的估计值,用^s 表示,即 ^()()y n s n = (1.3)实际上,式(1.2)的卷积形式可以理解为从当前和过去的观察值x (n ),x (n -1),x (n -2)…x (n -m ),来估计信号的当前值^()s n 。
因此,用h (n )进行过滤的问题可以看成是一个估计问题。
由于现在涉及的信号是随机信号,所以这样一种过滤问题实际上是一种统计估计问题。
维纳滤波器的优点是适应面较广,无论平稳随机过程是连续的还是离散的,是标量的还是向量的,都可应用。
对某些问题,还可求出滤波器传递函数的显式解,并进而采用由简单的物理元件组成的网络构成维纳滤波器。
维纳滤波器的缺点是,要求得到半无限时间区间内的全部观察数据的条件很难满足,同时它也不能用于噪声为非平稳的随机过程的情况,对于向量情况应用也不方便。
因此,维纳滤波在实际问题中应用不多,更多的是基于维纳滤波器发展而来的滤波方式。
二、基于维纳滤波的应用2.1在飞机盲降着陆系统中的应用盲降着陆系统(ILS)又译为仪表着陆系统。
它的作用是由地面发射的两束无线电信号实现航向道和下滑道指引,建立一条由跑道指向空中的虚拟路径。
飞机通过机载接收设备确定自身与该路径的相对位置,使飞机沿正确方向飞向跑道并且平稳下降高度。
维纳滤波原理维纳滤波是一种信号处理中常用的滤波方法,它的原理是基于最小均方误差准则,通过对信号和噪声的统计特性进行分析,设计一种能够最小化系统输出与期望输出之间均方误差的滤波器。
维纳滤波在图像处理、语音处理、雷达信号处理等领域都有广泛的应用,下面我们来详细了解一下维纳滤波的原理和应用。
首先,我们需要了解维纳滤波的基本模型。
维纳滤波的输入信号可以表示为s(n),噪声信号表示为v(n),系统输出信号表示为x(n),那么维纳滤波器的输出可以表示为:x(n) = w(n) s(n) + v(n)。
其中,表示卷积操作,w(n)表示滤波器的权值。
维纳滤波的目标是设计一个滤波器,使得系统输出信号x(n)与期望输出信号d(n)之间的均方误差最小,即最小化误差信号e(n)的均方值E[e^2(n)]。
根据最小均方误差准则,我们可以得到维纳滤波器的最优解为:w(n) = R_ss^(-1) p_s。
其中,R_ss表示输入信号s(n)的自相关矩阵,p_s表示输入信号s(n)与期望输出信号d(n)的互相关向量。
这个公式描述了维纳滤波器的权值与输入信号和期望输出信号的统计特性之间的关系。
维纳滤波器的设计需要对输入信号和噪声信号的统计特性有一定的了解。
通常情况下,输入信号和噪声信号被假设为高斯分布,因此可以通过它们的均值和方差来描述它们的统计特性。
在实际应用中,我们可以通过对信号和噪声的样本进行统计分析,估计它们的均值和方差,进而设计维纳滤波器。
除了基本的维纳滤波器设计原理,维纳滤波还有一些扩展应用。
例如,当输入信号和噪声信号的统计特性未知或难以估计时,我们可以通过自适应滤波的方法来实现维纳滤波。
自适应滤波器可以根据系统的实时输入信号和输出信号来动态地调整滤波器的权值,以适应信号和噪声的变化特性,从而实现更好的滤波效果。
维纳滤波在图像处理中有着广泛的应用。
在数字图像处理中,图像通常会受到噪声的影响,例如加性高斯噪声、椒盐噪声等。
Wiener 滤波概述Wiener 滤波器是从统计意义上的最优滤波,它要求输入信号是宽平稳随机序列,本章主要集中在FIR 结构的Wiener 滤波器的讨论。
由信号当前值与它的各阶延迟({n x )n ,§3.1从估计理论观点导出Wiener 滤波FIR 结构(也称为横向)的Wiener 滤波器的核心结构如图4所示. 图4.横向Wiener 滤波器FIR 结构的Wiener 是一个线性Beyesian 估计问题.为了与第2讲中估计理论一致,假设信号,滤波器权值均为实数由输入)(n x 和它的1至(M-1)阶延迟,估计期望信号)(n d ,确定权系数}1,0,{-=M i w i 使估计误差均方值最小,均方误差定义为:xx R 这里线性0w或a1) 波可能会达到更好结果。
2) 在联合高斯条件下,Wiener 滤波也是总体最优的(①从Bayesian 估计意义上讲是这样,②要满足平稳条件) 3) 从线性贝叶斯估计推导过程知,在滤波器系数取非最优的w 时,其误差性能表示:它是w 的二次曲面,只有一个最小点,0w w =时,m in )(J w J =§3.2维纳滤波:从正交原理和线性滤波观点分析Wiener 滤波器 Wiener 滤波器是一个最优线性滤波器,滤波器核是IIR 或FIR 的。
导出最优滤波器的正交原理,并从正交原理出发重新导出一般IIR 。
=∑∞=--0*)(][k kk n x w n d均方误差是:{}][*][n e n e E J ={}2|][|n e E = 设权系数:k k k jb a w +=定义递度算子Tk ],,[10 ∇∇∇=∇.其中k k k k b ja w ∂∂+∂∂=∂∂=∇符号J ∇是递度算子作用于J ,其中第k 项为:k k k b Jja J J ∂∂+∂∂=∇要求由J 得∇[nje J k由[e a k∂k 代入J k ∇表达式整理得:]][*][[2n e k n x E J k --=∇当0=∇Jk ,1,0=k 时,J 达到最小。
维纳滤波1. 简介维纳滤波(Wiener filtering)是一种经典的信号处理技术,用于消除信号中的噪声并恢复原始信号。
它是由诺贝尔奖获得者诺里斯·伯特·维纳(Norbert Wiener)于1949年提出的。
维纳滤波基于统计信号处理理论,通过在频域对信号和噪声进行建模,利用最小均方误差准则来估计信号。
它可以应用于许多领域,例如图像处理、语音信号处理、雷达信号处理等。
2. 维纳滤波的原理维纳滤波的目标是根据信号和噪声的统计特性,对接收到的被噪声污染的信号进行优化处理,以尽可能地恢复原始信号。
其基本原理可以分为以下几个步骤:2.1 信号与噪声建模首先,需要对信号和噪声进行建模。
假设接收到的信号为s(s),噪声为s(s),那么接收到的被噪声污染的信号可以表示为:s(s)=s(s)+s(s)2.2 计算信号和噪声的统计特性通过观测和采样,可以估计信号和噪声的统计特性,例如均值、方差、功率谱密度等。
以图像处理为例,可以通过对图像的样本进行统计分析来估计信号和噪声的统计特性。
2.3 估计滤波器函数利用信号和噪声的统计特性,可以估计滤波器函数s(s),其中s为频率。
滤波器函数描述了在不同频率上应该对信号进行的滤波程度。
通过估计滤波器函数,可以为不同频率的信号分配适当的增益。
2.4 滤波过程在维纳滤波中,滤波器函数s(s)是根据信号和噪声的功率谱密度来估计的。
通过将接收到的信号进行频谱变换,将频谱域中的信号与滤波器函数相乘,然后再进行逆向频谱变换,即可得到滤波后的信号。
3. 维纳滤波的应用维纳滤波在信号处理领域有广泛的应用,下面以图像处理为例说明其应用场景。
3.1 噪声去除在图像处理中,噪声往往是由于图像的采集、传输等过程中产生的。
维纳滤波可以根据图像的统计特性,将噪声进行估计,并对图像进行滤波,从而实现去噪的效果。
3.2 图像恢复图像的失真往往是由于拍摄条件、传输等因素引起的。
维纳滤波可以通过估计图像的信号特性,去除噪声和失真,从而恢复图像的细节和清晰度。
维纳滤波(最⼩均⽅滤波)维纳滤波(最⼩均⽅滤波)避免逆滤波固有的弊端的另⼀种⽅法就是寻找图像的⼀种估值,使得和之间的均⽅误差最⼩。
均⽅误差最⼩准则是由维纳(Wiener)在1949年⾸先提出并⽤来对⼀维平稳时间序列进⾏估值。
因此这种⽅法被称为维纳滤波,也被称为最⼩均⽅误差滤波。
设、、分别为退化图像、原始图像和噪声,并设他们都是均匀随机的,且噪声的均值为零,并与图像不相关。
可以得到(3-6)式中,为维纳滤波器的点扩散函数。
按照均⽅误差最⼩准则,应该满⾜(3-7)为最⼩。
我们把称为已知时的线性最⼩均⽅估计。
将(2.2)带⼈(2.1)式,得到(3-8)可以证明当(3-9)时,式(3-7)取最⼩值。
经过证明可以得到维纳滤波的转移函数为(3-10)其中为噪声功率谱,为图像功率谱。
由式(2.5)可以看出,当没有噪声时,有,维纳滤波器就可以简化的看成是逆滤波器。
在有噪声的情况下,维纳滤波也⽤信噪功率⽐作为修正函数对逆滤波器进⾏了修正,但它在均⽅误差最⼩的意义上提供最佳恢复。
通常将噪声假设为⽩噪声,即噪声功率谱为常数,若在频谱空间上⾼频区下降⽐快得多,这种假设就近似正确。
于是可以认为常数(3-11)如果噪声时各态历经的,可以⽤⼀幅噪声图像进⾏计算从⽽求得,图像功率谱则可利⽤与原始图像统计性质相同的⼀类图像来确定。
如果不知道有关随机场的统计性质,也常⽤下式近似计算转移函数:(3-12)K是根据信噪⽐的某种先验知识来确定的常数。
下⾯是维纳滤波的复原效果:(a)原图(b)退化(c)复原图3-3 维纳滤波复原实验。