电磁干扰以及抗干扰措施的研究
- 格式:doc
- 大小:25.50 KB
- 文档页数:3
电气工程中的电力系统电磁干扰与抗干扰技术在当今高度电气化的时代,电力系统的稳定运行对于社会的正常运转至关重要。
然而,电磁干扰现象却如同一颗隐藏在电力系统中的“定时炸弹”,时刻威胁着电力设备的可靠运行和电力系统的安全稳定。
了解电力系统中的电磁干扰及其抗干扰技术,对于保障电力系统的正常运行具有重要意义。
电磁干扰,简单来说,就是指无用的电磁信号对有用的电磁信号造成了不良影响。
在电力系统中,电磁干扰的来源多种多样。
首先,自然现象如雷电就是一个强大的电磁干扰源。
雷电产生的瞬间强大电流和电磁场,可能会通过输电线路、杆塔等传导进入电力系统,对电力设备造成冲击和损坏。
其次,电力系统中的开关操作也会引发电磁干扰。
当开关闭合或断开时,电流的急剧变化会产生瞬间的高电压和电磁场,从而影响周边的设备。
再者,电力系统中的非线性负载,如变频器、整流器等,在工作过程中会产生谐波电流,这些谐波电流也会形成电磁干扰。
此外,还有外部的电磁辐射源,如无线电发射台、通信基站等,其发射的电磁波可能会耦合到电力系统的线路中,对电力设备产生干扰。
电磁干扰对电力系统的影响不容忽视。
它可能导致电力设备的误动作,例如继电保护装置的误跳闸,影响电力系统的供电可靠性。
电磁干扰还可能降低电力设备的性能,缩短其使用寿命。
例如,干扰信号可能会影响电力变压器的绝缘性能,导致局部放电增加,进而降低变压器的使用寿命。
在通信系统方面,电磁干扰可能会使电力通信信号失真、误码率增加,影响通信质量和数据传输的准确性。
为了应对电力系统中的电磁干扰问题,人们研发了一系列的抗干扰技术。
屏蔽技术是其中常见且有效的一种。
通过使用金属材料制作的屏蔽罩或屏蔽线,可以将电力设备或线路包裹起来,阻止外部的电磁干扰信号进入,同时也能防止内部的电磁信号向外辐射。
滤波技术则是通过滤波器对电源或信号线路中的干扰信号进行滤除。
滤波器可以根据干扰信号的频率特性进行设计,从而有效地去除不需要的频率成分,保证电力设备的正常工作。
无人机电磁干扰分析及抗干扰技术研究无人机作为一种新兴的飞行器,目前已经被广泛应用于军事、民用、科研等多个领域。
然而,在无人机飞行的过程中,很可能会遇到电磁干扰的问题,导致无人机的稳定性和安全性受到影响。
因此,对无人机电磁干扰进行分析和探究,探索抗干扰技术,具有重要的现实意义和应用价值。
一、无人机电磁干扰的来源及特点1.1 无线电发射干扰无线电发射干扰是无人机电磁干扰的主要来源之一,主要包括雷达干扰、通信干扰、电子对抗干扰等。
这些干扰源具有很强的发射功率和电磁辐射能力,容易对无人机造成的电磁波干扰。
1.2 电力设备干扰在无人机附近,存在大量的电力设备,如变电站、高压电线等,这些设备也会产生强电磁场,对无人机造成干扰。
同时,各种电子设备的开关过程中,也会产生快速变化的电磁场,可能对无人机造成干扰。
1.3 大气层干扰大气层中存在着各种类别的电离体和电荷,在无人机高速飞行时,会对飞行器产生影响,如爆炸性电离和大气辐射等干扰。
二、无人机电磁干扰的影响2.1 对飞控系统的干扰由于无人机所采用的飞控系统大多为电子控制系统,而电子控制系统对于电磁场的敏感度很高,因此当其他电磁场干扰无人机时,会造成飞行器的稳定性和控制性能受到影响,甚至导致飞行器失控或坠毁。
2.2 对导航系统的干扰无人机的导航系统包括GPS系统、惯性导航系统等,而这些系统也同样具有电子控制部件,在电磁干扰的情况下,会出现导航定位偏移、导航数据丢失等问题,影响无人机的飞行效果和导航精度。
2.3 对传输数据的干扰无人机的云台摄像、图传等设备,采用的主要是无线传输技术,而在电子干扰的情况下,会导致数据传输不畅,图像模糊和丢失等问题,影响无人机的监测和控制效果。
三、抗干扰防御技术研究3.1 电磁屏蔽技术电磁屏蔽技术是一种稳定、可靠的无人机干扰防御手段之一。
它通常采用一定的金属材料来隔离无人机与外界电磁场的接触,保证飞行器的稳定性。
同时,还可以采用一些特殊材料进行隔离,通过光学折射和化学变化等方式抑制电磁辐射。
单相电动机的电磁干扰和抗干扰技术单相电动机广泛应用于家用电器、工业设备、农业机械等领域,为我们的生产生活提供了很大的便利。
然而,单相电动机在运行过程中常常伴随着电磁干扰问题。
电磁干扰对其他电子设备的正常工作产生不利影响,严重时甚至可能导致设备故障。
因此,为了提高单相电动机的可靠性和稳定性,抗干扰技术显得尤为重要。
一、单相电动机电磁干扰的原因1. 电磁辐射干扰单相电动机在运行过程中会产生电磁辐射,包括功率频率、高次谐波和脉动磁场等。
这些电磁辐射会传播到周围的电子设备中,干扰其正常工作。
尤其是功率频率电磁辐射,其频谱分布在几百赫兹至几千赫兹之间,与许多通信、显示等设备的工作频率范围存在重叠,因此容易引起干扰。
2. 电源线干扰单相电动机的运行过程中会产生脉动电流,这会导致电源线上出现电压和电流的不稳定。
这种电源线干扰可通过传导和辐射方式传播到其他设备中,引起它们的故障或操作不稳定。
3. 地线干扰单相电动机的地线通常与其他设备的地线共享。
因此,当电动机产生地线干扰时,可能会通过公共地线传播到其他设备中,干扰它们的正常工作。
二、抑制单相电动机电磁干扰的技术手段为了减小或消除单相电动机的电磁干扰,需要采取一些技术手段,如下所述:1. 滤波器的应用安装滤波器是抑制电磁干扰的常用措施之一。
滤波器可以将电动机产生的高频噪声滤掉,从而减小辐射干扰。
常见的滤波器包括差模滤波器和共模滤波器。
差模滤波器是通过串联电感和电容的方式,将差模信号滤出,减小干扰传播。
共模滤波器则是通过并联电感和电容的方式,将共模信号滤出。
2. 软启动技术单相电动机在启动时会产生较大的起动电流,这会引起电源线电压波动,进而影响其他设备的正常工作。
采用软启动技术可以逐渐增加电机的电源电压,使电机起动时电流逐渐升高,从而减小电网的波动。
3. 接地和屏蔽在单相电动机的设计中,合理的接地和屏蔽措施可以有效地减少电动机产生的电磁干扰。
通过保持电动机和其他设备之间的地线独立,并采取适当的屏蔽材料和结构,可以阻止干扰信号的传播。
电力系统中的电磁干扰及其抑制方法随着科技的不断发展,电力系统已成为现代社会不可或缺的基础设施之一。
但是,电力设备带来的电磁干扰问题却一直影响着电力系统的稳定运行和电子设备的正常工作。
本文将探讨电力系统中的电磁干扰问题以及抑制方法。
一、电磁干扰的原因和种类电磁干扰(Electromagnetic Interference, EMI)是指电子设备在运行过程中被外界电磁场所干扰,从而导致设备发生异常甚至失效。
电磁干扰的主要原因是电力设备所产生的电磁辐射。
电力设备可产生较高频率的电磁辐射,这些辐射可分为两种类型:辐射电磁场和导电干扰。
前者是指电设备辐射出的电磁场通过空气介质扩散到其它设备上,从而引起电路内部电流产生变化;后者是指电设备内部的电流通过其接地线路或设备外壳接触物体时,引起电流流动所产生的电磁场感应到其它设备上。
根据电磁辐射频率的不同,EMI可分为两大类:低频EMI和高频EMI。
低频EMI主要集中在50/60 Hz电网频率和其倍频上,多产生于电力设备的开关或者变压器的磁场。
高频EMI则主要涉及射频电磁辐射,产生于电力设备的开关处理电路、电子电路以及现代化自动化控制系统的信号传输路径上。
二、电磁干扰所产生的影响电磁干扰所产生的影响范围很广,主要包括以下三个方面:1、对电子设备的正常工作产生影响。
如计算机、显示器、传感器等电子设备容易受到电磁干扰的影响,导致设备异常运行、数据丢失等问题。
2、对电力系统的稳定运行产生影响。
电力系统的稳定运行受到许多因素的影响,如受电系统质量、接地、绝缘、天气等。
电磁干扰带来的负面影响也占据了一席之地。
它可能会导致电网中的频率、电压、电流波动过大,从而影响到接入的电子设备的稳定工作,甚至引发整个电力系统的停运。
3、对人体健康带来影响。
电磁辐射在一定剂量及频率下,会对人的中枢神经、内分泌及免疫系统等造成不良影响,引起疾病和生理变化。
三、电磁干扰抑制方法为了减轻电磁干扰带来的影响,我们不仅要提高电子设备的抗干扰能力,还要从源头上降低电磁干扰的水平。
•电磁干扰概述•电磁干扰的传播途径和机制•抗干扰方法措施目录•案例分析与实践•总结与展望01电磁干扰属于电磁兼容性(Electromagnetic Compatibility,简称EMC)范畴,是研究电子设备在电磁环境中正常工作的能力。
范畴定义自然源人为源传导干扰辐射干扰02总结词通过导线传播的电磁干扰。
描述传导干扰是指电磁干扰信号通过导线或电路板上的传导路径,从干扰源传播到受害电路的现象。
这种干扰主要通过电路中的导线、电源线和信号线等路径传播,可以在电路的各个部分之间产生不利影响。
传导干扰的强度取决于干扰源的幅度、频率以及传输路径的特性。
总结词描述总结词通过电磁感应和电容耦合传播的干扰。
描述耦合干扰是指电磁干扰信号通过电磁感应和电容耦合的方式,从干扰源传播到受害电路的现象。
这种干扰主要发生在相近的电路之间,如相邻的电路板、导线等。
电磁感应是由于磁场变化引起的电动势,而电容耦合则是由于电场变化引起的电流。
耦合干扰的强度取决于干扰源与受害电路之间的距离、耦合面积以及电磁场强度等因素。
降低耦合干扰的方法包括增加间距、减小耦合面积、采用差分信号等。
03静电屏蔽采用高导磁材料制成的屏蔽体,将干扰磁场导向屏蔽体内部并消散,从而防止干扰磁场向外扩散。
电磁屏蔽射频屏蔽屏蔽技术电源滤波信号滤波线路板滤波030201安全接地信号接地功率接地04谐波干扰谐波干扰是指非线性电子设备产生的谐波对其他设备产生的干扰。
可以通过滤波器、谐波抑制技术等手段进行消除。
同频干扰同频干扰是指两个或多个信号使用相同的频率,导致信号互相干扰的现象。
解决方法包括采用频率复用技术、信号同步技术等。
传导干扰传导干扰是指通过电源线、信号线等导体传播的电磁干扰。
可以采用屏蔽、滤波、接地等方法进行抑制。
常见电磁干扰问题解析无人机通信抗干扰工业控制系统抗干扰蓝牙耳机抗干扰抗干扰方法措施应用案例对于关键设备和电路,可以采用屏蔽罩、屏蔽盒等结构进行电磁屏蔽,减少外部干扰。
电磁辐射干扰对电子设备的影响与抗干扰措施研究近年来,由于电子设备的广泛应用,电磁辐射干扰问题越来越成为人们关注的焦点。
电磁辐射干扰是指在一定空间范围内,电磁波对周围其他电子设备产生的影响。
电磁辐射干扰的程度受到电磁波频率、发射功率、距离等多种因素的影响。
在不同的应用场景下,电磁辐射干扰会对电子设备的工作效率、可靠性和安全性产生影响,因此需要重视并采取相应的抗干扰措施。
一、电磁辐射干扰对电子设备的影响1. 工作效率降低电磁辐射干扰会对电子设备的工作效率产生很大的影响。
辐射干扰会引起设备的误差和失真,影响设备的运行速度、传输带宽等性能指标。
例如,在数字信号处理器中,电磁辐射干扰会引起模拟部分的精度降低,进而导致数字化效果降低,对最终的输出质量产生影响。
2. 可靠性降低电磁辐射干扰会导致设备的可靠性下降。
在一些高度依赖电子设备的应用场景下,单点失效甚至可能导致整个系统的崩溃。
例如,在飞行器或核电站等应用场景中,电磁辐射干扰对设备稳定性的影响可能会导致系统运行出现失误,从而导致事故发生。
3. 安全性降低电磁辐射干扰还会对一些高度敏感的设备产生安全性的威胁。
例如,在信号侦听、加密解密等应用场景中,电磁辐射干扰可能会泄露设备的机密信息,威胁信息的安全性。
二、抗电磁辐射干扰措施研究为了解决电磁辐射干扰问题,我们需要采取一定的抗干扰措施。
常见的措施如下:1. 电磁屏蔽电磁屏蔽是指通过使用屏蔽材料或电磁屏蔽结构来削弱电磁波对设备的影响。
屏蔽材料可以是金属材料或其他形式的吸波材料。
电磁屏蔽技术可以在不改变设备性能的前提下,有效降低电磁辐射干扰。
2. 灵敏度设计灵敏度设计是指在电子设备设计时,从硬件和软件两个方面对设备的灵敏度进行优化设计。
例如,可以增加可调节零偏值的防干扰电路、采用抗干扰处理算法等方式。
3. 技术改进技术改进是指通过加强制造工艺和施加治理措施来降低电磁辐射干扰。
例如,减少设备的工作频率、增大设备的工作距离、加大隔离间距等等。
防电磁干扰的措施引言在当今高科技发达的社会中,电子产品的普及已经无处不在。
然而,随之而来的电磁干扰问题也成为了一个严重的难题。
电磁干扰可以对电子设备的正常运行产生很大的影响,甚至导致设备故障。
因此,我们有必要采取一些措施来防止电磁干扰的发生。
本文将介绍一些常见的防电磁干扰的措施。
措施一:良好的电磁屏蔽电磁屏蔽是一种有效防止电磁干扰的手段,通过使用屏蔽材料来隔离电磁场的影响。
以下是一些常见的电磁屏蔽材料:•金属护罩:对于较小的设备,可以使用金属护罩来屏蔽电磁信号。
金属护罩可以将电磁信号导引到地面,从而防止其对设备的干扰。
•电磁屏蔽涂料:电磁屏蔽涂料可以在设备表面形成一层保护膜,阻止电磁信号的进入。
这种涂料通常使用铜或铝粉末作为主要成分。
•镀金屏蔽:将设备的外部表面镀上一层金属,可以有效地屏蔽电磁信号。
金属的良好导电性可以阻止电磁信号的进入。
良好的电磁屏蔽可以大大减少电磁干扰的发生,提高设备的可靠性和稳定性。
措施二:地线连接地线连接是防止电磁干扰的另一种重要手段。
良好的地线连接可以将电磁信号导引到地面,从而减少信号对设备的干扰。
以下是一些地线连接的重要注意事项:•地线长度:地线应尽可能短,以减少电流在地线上的阻抗。
长的地线会增加电流在地线上的损耗,降低地线的效果。
•地线材料:地线通常使用导电性能良好的材料,如铜或铝。
这些材料具有低电阻和良好的导电性能,有助于提高地线的效果。
•地线接地:地线应连接到地面的可靠的接地点。
接地点应选择在地下水位以下,以确保地线能够有效地导引电磁信号到地面。
良好的地线连接可以有效地减少电磁干扰的产生,提高设备的抗干扰能力。
措施三:滤波器的使用滤波器是另一种有效防止电磁干扰的措施。
它通过滤除电源线上的高频干扰信号,提供稳定的供电环境,从而减少电磁干扰的发生。
以下是一些常见的滤波器类型:•EMI滤波器:EMI滤波器主要用于滤除电磁干扰信号。
它可以安装在电源线入口处,提供良好的抗干扰能力。
电磁干扰分析与抗干扰设计一、电磁干扰基本概念电磁干扰(Electromagnetic Interference,EMI)是指在电子装置周围的电气或电磁环境中,出现的一种电子干扰现象。
产生的主要原因是电子装置本身产生电磁波,从而干扰其他电子设备的正常工作。
一般分为辐射干扰和传导干扰两类。
1. 辐射干扰:指电子设备发射出的电磁波,对周围电子设备产生的干扰。
主要体现为电磁波辐射到其它线路上,并导致线路滤波、耦合和干扰等。
2. 传导干扰:指电子设备内部的电磁波,通过传导途径如导线、电源等渠道干扰其它电子设备的正常工作。
主要体现为开关接触闪烁,过流、过压等问题。
二、电磁干扰的危害电磁干扰一旦发生,往往会对电子设备的波形、信号质量、抗干扰能力和电磁兼容性产生很大的影响,往往表现为:1. 信号失真:由于电磁干扰会对信号的传输通道产生影响,导致信号质量下降,削弱指令信号的抗干扰能力,影响系统的准确性和稳定性。
2. 性能下降:由于电磁波的辐射会产生附加噪声,导致整个系统的性能下降,对精密测量、观测控制型设备同样有很大的影响。
3. 设备故障:设备在工作时,会根据一定的程序运行指令,但是电磁干扰会干扰其工作,导致设备故障,造成不良后果。
4. 安全风险:对于航空航天等高要求设备,电磁干扰会直接影响系统的安全性能,会产生重大的安全隐患。
三、电磁兼容性设计思路基于以上电磁干扰的危害,设计工程师们需要在产品设计的过程中,充分考虑到电磁兼容性问题。
常见的兼容性设计思路如下:1. 布局设计:在设计产品布局时,需要将电源、信号及控制线路分开布置,以减少信号的耦合和相互干扰。
2. 接地设计:接地是解决电磁干扰的一个重要手段,正确的接地方法可以减小抗干扰能力的变异度,并使必要的抗干扰措施有效。
3. 屏蔽设计:对容易产生电磁干扰的区域进行必要的屏蔽处理,设计合理的屏蔽结构及材料,以降低电磁波辐射。
4. 过滤设计:对于电磁波辐射和干扰较大的场合,可以考虑通过安装滤波器等设备进行过滤,以减弱电磁干扰的影响。
电磁干扰以及抗干扰措施的研究
摘要抗干扰是一个非常复杂、实践性很强的问题。
文章介绍了出现电磁干扰的常见原因、传播途径和干扰对象,针对经常出现的电磁干扰问题,提出了相应的抗干扰措施,并对这些方法的原理及应用环境进行了分析和研究。
关键词抗干扰;电磁干扰;原因;措施
1 电磁干扰产生的原因
电磁干扰问题不仅影响到电子仪器工作的质量,有时更是破坏整个系统正常运行的祸害。
一种干扰现象可能是由若干个因素引起的。
在系统调试过程中,很大部分工作是在处理电磁干扰问题。
可以说,电磁干扰问题处理的好坏直接关系到整个系统能否稳定、可靠的运行,是系统需要解决的关键问题。
步进电机在工作过程中,不断接受控制器产生的脉冲信号,信号的频率和个数控制着步进电机的转速和进给步数。
由于信号是方波,同时电机各相绕组需按指定顺序轮流导通,对单片机控制回路会产生较大的电磁干扰,引起步进电机工作状态不稳定甚至损坏电器元件,直接影响到系统的可靠性[1]。
系统中主要的干扰源有:
(1)供电干扰。
工作时,交流电网负载突变,产生瞬变电压波动,其幅值较大,可以经过直流稳压电源进入电子控制回路。
(2)控制器与步进电机驱动回路之间存在电磁干扰。
驱动回路产生的干扰信号通过线路串入控制器,使控制器产生错误指令,从而导致步进电机“多步”或“丢步”。
(3)步进电机的电枢绕组通断频繁,当通电时,会产生较大的du/dt、di/dt 值,导致磁场耦合,形成严重的电磁干扰。
当电枢绕组断电时,线圈中的磁场突然消失会产生很高的瞬变电压窜入控制回路,对系统中其他电子装置产生相当大的电能冲击,甚至损坏元件。
(4)布线不合理。
同一回路或不同回路布线不合理,容易产生感生电动势,引起电磁干扰现象。
2 传播途径和干扰对象
干扰信号可以通过公共导线、电容、相邻导线的互感以及空间辐射等途径从干扰源耦合到敏感元件上[2]。
系统电磁干扰的传播途径和干扰对象如图1所示。
图1 系统电磁干扰示意图
3 抗干扰的措施
3.1 信号传输通道的抗干扰设计
(1)光电隔离措施。
采用光电耦合器可以切断控制系统与步进电机驱动器之间的电路联系。
如果在电路中不采用光电隔离,外部的尖峰干扰信号会进入控制系统,引起控制器误动作,使控制系统发生混乱。
系统采用6N137作为光电隔离芯片,它是一款用于单通道的高速光耦合器。
当电信号送入光电耦合器的输入端时,发光二极管通过电流而发光,光敏元件受到光照后产生电流,CE(5-4)两端导通;当输入端无信号时,发光二极管不亮,光敏三极管截止,CE不通。
对于数字量,当输入为低电平“0”时,光敏三极管截止,输出为高电平“1”;当输入为高电平“1”时,光敏三极管饱和导通,输出为低电平“0”。
光电耦合器能够有效抑制尖峰脉冲及各种噪声干扰的原因是:干扰噪声虽然有较大的电压幅度,但能量小,只能形成微弱电流,而光电耦合器输入部分的发光二极管是在电流状态下工作,一般导通电流为10—15mA,所以即使有很大幅度的干扰,由于不能提供足够的电流而被抑制掉[3]。
(2)整形电路设计。
光栅尺输出信号为两路TTL方波,然而在系统工作过程中,由于电机及其驱动器会产生强烈的电磁干扰,致使两路方波上面叠加了大量的噪声信号,幅值大约为1V,频率为几千赫兹。
如果对这两路信号不做任何处理,直接送入控制器,会引起控制器计数错误,原因是这些噪声的边沿足以触发控制器的外部中断,从而进入中断服务程序产生误计数。
所以光栅信号在进入控制器之前有必要进行整形,从而将噪声信号消除掉。
系统采用LM393作为整形电路的核心器件,它是一款双比较器电路芯片,由两个独立、精确的电压比较器组成,失调电压不超过 2.0mV。
两比较器是专门设计在电压范围较宽的单电源下工作,但在双电源下也能工作,并且其电源电流大小不受电源电压幅度大小影响。
这些比较器有一个独特的性能,就是即使在单电源下工作,其输入共模电压范围也保持零电平[4]。
3.2 抗干扰其他措施
(1)合理布线。
控制干扰源与被干扰元件的距离和相对方向,使敏感元件远离干扰源。
系统中,光栅输出信号、控制器要远离步进电机及其驱动器。
不同用途的联结线要分开,不走平行线。
一个回路的布线在中间位置相互交叉且回路左右两半的面积要大致相等,减少感生电动势。
导线宜选用屏蔽线。
(2)合理接地。
各单元回路的接地必须按照一定顺序连接。
地线中电流必须是从小信号单元流向大信号单元,避免形成大环形接地回路,降低相互之间电磁干扰的强度[5]。
4 结束语
在系统设计过程中不可避免地会遇到各种电磁干扰问题。
如何找出其中的原因并能有效地排除现象是设计工作的重中之重。
论文总结了电路中常见的电磁干扰以及产生的原因,并阐述了传播途径和干扰对象。
最后给出了相应的抑制电磁干扰的措施,并在实验中得到了很好的验证,对其他工程设计人员具有一定的借鉴意义。
参考文献
[1] MCS51单片机系统电磁干扰测试研究[J].装备环境工程,2008,(04):81-83.
[2] 马伟明.电力电子系统中的电磁兼容[M]. 武汉:武汉水利电力大学出版社,2000:31.
[3] 路宏敏.工程电磁兼容[M]. 西安:西安电子科技大学出版社,2003:117.
[4] 王威,徐抒岩,杨絮.抑制电磁干扰屏蔽技术的研究[J].制造业自动化,2011,33(10):71-74.
[5] 邵涛,沈文光.电子电路中抗EMI设计[J].电子元件與材料,2002,21(10):29-31.
郑振华(1984-),男,山东日照人;学历:硕士研究生,现就职单位:陕西航空职业技术学院,研究方向:机电一体化与工业机器人。