压水堆核电站反应堆压力容器金属材料概述
- 格式:doc
- 大小:34.00 KB
- 文档页数:3
核反应堆材料压水堆核电站结构●核电站原理:核裂变释放出的核能,被载热剂一回路水带出,并经过蒸汽发生器使二回路水变成蒸汽,蒸汽再驱动汽轮发电机组进行发电。
●反应堆所用的各种材料在成份、工艺、组织和性能上,都比常规电站材料要求严格第一章绪论●一、. 堆材料在核电站中的作用●反应堆材料在核电站运行中影响反应堆的安全性和机组寿命;●反应堆材料对核电站的建设速度、质量、数量和水平都起到重要的作用。
●在核电站的发展和新堆型的开发中,需要材料科学的发展,以大量材料数据作为基础,开发新材料。
●首先各国反应堆运行经验表明,运行上出现的问题或故障抢修,追究其原因,多半都与材料有关。
●其次,反应堆材料的工况比较复杂,除受温度、压力和腐蚀介质作用外,还受到中子辐照,由此而引起的性能恶化,对安全存在威胁。
●第三,如果堆材料的使用性能与工况要求不相匹配或者余量不足,将会使零、部件失去预定服役效能而引起失效或损坏。
这表明,在设计和建造反应堆过程中,每个部件、每个环节都离不开材料问题。
●第四,从降低成本、延长寿命和改进堆型考虑,必然涉及到合理选材、改进工艺和开发新材料的问题。
●第五,在核电站的定型化、标准化、系列化和商品化的各阶段中,都需要有大量材料数据作基础●二、材料结构●材料结构是指组成材料的原子(或离子、分子)相互结合的方式或构成的形式以及结构要素按一定次序的组合、排列及相互间的各种联系。
●三、材料结构的具体内容● 1.组成材料的原子(或离子、分子)的构造● 2.组成材料的原子(或离子、分子)间的结合● 3.组成材料的原子(或离子、分子)的排列● 4.材料结构内存在的缺陷●四、材料的性能● 1.材料的性能是材料结构反作用于环境的能力● 2.材料的性能是由材料结构所决定的● 3.材料性能具有多面性● 4.材料性能是可以改变的原子——晶格——晶粒——相——组织——金属材料。
1.燃料(核裂变材料)✓压水堆核电站燃料用的是UO2陶瓷材料。
核电金属材料手册引言:核能作为清洁、高效的能源形式,在国际上被广泛应用和发展。
核电站作为核能的主要利用形式,其结构及材料的安全和可靠性显得尤为重要。
本手册将详细介绍核电站中常用的金属材料,包括钢材、铜材以及其他多种辅助材料,以期为核电工程师提供参考。
一、钢材1.不锈钢:不锈钢是一种重要的结构材料,其具有良好的耐腐蚀性和机械性能,同时还有较好的加工性能。
在核电站中,不锈钢常用于制作反应堆容器、反应堆压力容器等关键部件。
2.碳钢:碳钢是一种常用的结构材料,由于其较低的成本和较好的机械性能,在核电站中也得到广泛应用。
碳钢适用于制作建筑结构、泵和风机设备等。
3.低合金钢:低合金钢是一种优质的结构钢材,在核电站中也被广泛使用。
低合金钢具有较高的强度和韧性,能够满足核电站在高温和高压环境下的使用要求。
二、铜材铜是一种重要的导电材料,在核电站中常用于制作输电线路、电缆和电气设备等。
铜具有优良的导电性和热传导性,能够满足核电站对电气设备的高要求。
三、其他辅助材料1.铝合金:铝合金是一种轻质高强度的金属材料,广泛应用于核电站中的非结构部件。
铝合金具有良好的耐腐蚀性和机械性能,在核电站中用于制作散热器、管道以及其他辅助设备。
2.镍基合金:镍基合金是一种耐高温、耐腐蚀的材料,具有超强的抗氧化和耐热性能,被广泛应用于核电站的高温部件中,如燃料管、燃料棒和燃气环等。
3.铝材料:铝是一种常用的结构材料,具有良好的机械性能和抗腐蚀性能。
在核电站中,铝材料常用于制作反应堆的外壳、密封部件和其他结构件。
总结:核电站中的金属材料在保证反应堆的安全和可靠运行方面起到了重要作用。
本手册介绍了核电站中常用的金属材料,包括钢材、铜材以及其他辅助材料。
这些材料具有一定的特点和适用范围,在核电工程师进行材料选择和设计时提供了重要参考。
在未来的核电发展中,还需要不断研发新型的金属材料,以满足核能的不断创新和发展需求。
核电铝合金挤压管材
核电铝合金挤压管材是一种应用于核电站冷却系统的铝合金材料,执行的国家标准为GB/T 37579-2019。
该标准规定了非核级核电冷却用铝合金挤压管材的要求、试验方法、检验规则和标志、包装、运输、贮存及质量证明书与订货单(或合同)内容等。
核电铝合金挤压管材的适用范围包括压水堆核电站常规岛的二回路及三回路系统管道中的辅助冷却水系统、闭式冷却水系统等。
起草单位包括辽宁忠旺集团有限公司、有色金属技术经济研究院、国合通用测试评价认证股份公司、山东南山铝业股份有限公司、广东永利坚铝业有限公司、广东高登铝业有限公司、广东华昌铝厂有限公司、西南铝业(集团)有限责任公司、山东兖矿轻合金有限公司、东北轻合金有限责任公司等。
核电铝合金挤压管材具有较高的安全性能和可靠性,在核电站建设和运营过程中发挥着重要作用。
压水堆核电站压水堆核电站用铀制成的核燃料在一种叫“反应堆”的设备内发生裂变而产生大量热能,再用处于高压力下的水把热能带出,在蒸汽发生器内产生蒸汽,蒸汽推动气轮机带着发电机一起旋转,电就源源不断地产生出来,并通过电网送到四面八方。
这就是最普通的压水反应堆核电站的工作原理。
压水堆核电站由反应堆、一回路系统、二回路系统以及电站的配套设施等主要部分组成。
压水堆燃料是高温烧结的圆柱形二氧化铀陶瓷块,直径约8毫米,高13毫米,称之为燃料芯块。
其中铀-235的浓缩度约3%。
燃料芯块-个一个地重叠着放在外径约9.5毫米,厚约0.57毫米的锆合金管内,锆管两端有端塞。
燃料芯块完全封闭在锆合金管内,构成燃料元件。
这种锆合金管称为燃料元件包壳。
这些燃料元件用定位格架定位,组成横截面是正方形的燃料组件(见图4-2)。
每一个燃料组件包括两百多根燃料元件。
一般是将燃料元件排列成横十七排、纵十七行的17×17的组件,中间有些位置空出来放控制棒。
控制棒的上部连成-体成为棒束。
每一个棒束都在相应的燃料组件内上下运动。
控制棒在堆内布置得很分散,以便堆内造成平坦的中子通量分布。
燃料组件外面不加装方形盒,以利于冷却剂的横向流动。
加上端部构件,整个组件长约四米,横截面为边长约20厘米的正方形。
图4-3是典型压水堆压力容器与堆芯结构原理图;图4-4为压力容器的结构布置图。
由燃料组件组成的堆芯放在一个很大的压力容器内。
控制棒由上部插入堆芯。
在压力容器顶部有控制棒的驱动机构。
作为慢化剂和冷却剂的水,由压力容器侧面进来后,经过吊篮和压力容器之间的环形间隙,再从下部进入堆芯。
冷却水通过堆芯后,温度升高,密度降低,再从堆芯上部流出压力容器。
一般入口水温300C ο,出口水温332C ο,堆内压力15.5Mpa 。
一座100万千瓦的压水堆,堆芯每小时冷却水的流量约6万吨。
这些冷却水并不排出堆外,而是在封闭的-回路内往复循环。
堆芯放了一百多个燃料组件,这些组件总共包括四万多根三米多长、比铅笔略粗的燃料元件。
核反应堆材料压水堆核电站结构●核电站原理:核裂变释放出的核能,被载热剂一回路水带出,并经过蒸汽发生器使二回路水变成蒸汽,蒸汽再驱动汽轮发电机组进行发电。
●反应堆所用的各种材料在成份、工艺、组织和性能上,都比常规电站材料要求严格第一章绪论●一、. 堆材料在核电站中的作用●反应堆材料在核电站运行中影响反应堆的安全性和机组寿命;●反应堆材料对核电站的建设速度、质量、数量和水平都起到重要的作用。
●在核电站的发展和新堆型的开发中,需要材料科学的发展,以大量材料数据作为基础,开发新材料。
●首先各国反应堆运行经验表明,运行上出现的问题或故障抢修,追究其原因,多半都与材料有关。
●其次,反应堆材料的工况比较复杂,除受温度、压力和腐蚀介质作用外,还受到中子辐照,由此而引起的性能恶化,对安全存在威胁。
●第三,如果堆材料的使用性能与工况要求不相匹配或者余量不足,将会使零、部件失去预定服役效能而引起失效或损坏。
这表明,在设计和建造反应堆过程中,每个部件、每个环节都离不开材料问题。
●第四,从降低成本、延长寿命和改进堆型考虑,必然涉及到合理选材、改进工艺和开发新材料的问题。
●第五,在核电站的定型化、标准化、系列化和商品化的各阶段中,都需要有大量材料数据作基础●二、材料结构●材料结构是指组成材料的原子(或离子、分子)相互结合的方式或构成的形式以及结构要素按一定次序的组合、排列及相互间的各种联系。
●三、材料结构的具体内容● 1.组成材料的原子(或离子、分子)的构造● 2.组成材料的原子(或离子、分子)间的结合● 3.组成材料的原子(或离子、分子)的排列● 4.材料结构内存在的缺陷●四、材料的性能● 1.材料的性能是材料结构反作用于环境的能力● 2.材料的性能是由材料结构所决定的● 3.材料性能具有多面性● 4.材料性能是可以改变的原子——晶格——晶粒——相——组织——金属材料。
1.燃料(核裂变材料)✓压水堆核电站燃料用的是UO2陶瓷材料。
压水堆核电站反应堆压力容器金属材料概述压水堆核电站反应堆压力容器是在高温、高压流体冲刷和腐蚀,以及强烈的中子辐照等恶劣条件下运行的,因此ASME规范第Ⅺ卷要求,反应堆压力容器应采用优质材料、严格制造工艺、完善的试验和检查技术,且在服役期间必须定期进行检查。
1.反应堆压力容器结构和作用
功率在1000MW及以上的普通压水堆核电站反应堆压力容器设计压力高达17MPa,设计温度在350℃左右,直径近5m,厚度超过20cm,有的单件铸锭毛重达500多吨,设计寿命至少要求40年。
因为其体积庞大,不可更换,所以压力容器的寿命决定了核电站的服役年限。
压水堆压力容器是由反应堆容器和顶盖组成,前者由下法兰(含接管段)、简体和半球形下封头组焊而成,顶盖由半球形上封头和上法兰焊接组成(或者为一体化顶盖)。
上下法兰面之间用两道自紧式空心金属(高镍耐蚀合金Im718或18—8钢)“0”形环密封。
为了避免容器内表面和密封面腐蚀,在压力容器内壁堆焊有大于5mm厚的不锈钢衬里。
为防止外表面腐蚀,压力容器外表面通常涂漆保护。
2.反应堆压力容器材料的发展史
压水堆反应堆压力容器材料一般都是在工程上成熟的材料基础上改进而成的。
美国第一代压水堆核电站反应堆压力容器材料用的是具有优良工艺稳定性、焊接性和强度较好的锅炉钢A212B(法兰锻件为A350LFs),由于A212B钢淬透性和高温性能较差,第二代改用Mn-Mo 钢A302B (锻材为A336),该钢中的Mn是强化基体和提高淬透性的元素,它能提高钢的高温性能及降低回火脆性。
随着核电站向大型化发展,压力容器也随之增大和增厚,A302B钢缺口韧性差的不足就逐渐显露出来,为保证厚截面钢的淬透性,使强度与韧性有良好的配合,20世纪60年代中期又对A302B钢添加Ni,改用淬透性和韧性比较好的Mn-M-Ni钢A533B (锻材为A508一Ⅱ钢)。
并以钢包精炼、真空浇铸等先进炼钢技术提高钢的纯净度、减少杂质偏析,同时将热处理由正火+回火处理改为淬火+回火的调质处理,使组织细化,以获得强度、塑性和韧性配合良好的综合性能。
与此同时,由于壁厚增加和面对活性区的纵向焊缝辐照性能差,所以将压力容器由板焊接结构改为环锻容器,材料采用A508一Ⅱ钢。
它曾盛行一时,但自1970年西欧发现A508一Ⅱ钢堆焊层下有再热裂纹之后,又发展了A508一Ⅲ钢。
A508一Ⅲ钢是在A508一Ⅱ钢基础上,通过减少碳化物元素C、Cr、Mo、V的含量,以减少再热裂纹敏感性,使基体堆焊不锈钢衬里后,降低产生再热裂纹的倾向。
为弥补因减少淬透性元素而降低的强度和淬透性,特增加了A508一Ⅲ钢中的Mn含量。
因锰易增大钢中偏析,故又降低了磷、硫含量。
硅在上述钢中是非合金化元素。
有增加偏析、降低钢的塑、韧性的倾向,其残存量以偏低为好。
厚截面的A508-Ⅲ钢淬火后,基体组织是贝氏体,当冷却速度不足时,将出现铁素体和珠光体,这种组织较贝氏体粗大,对提高强度和韧性不利,所以反应堆压力容器用钢要求采用优化的调制热处理工艺。
俄罗斯的反应堆应力容器用的材料不是Mn-Mo-Ni钢而是Cr-M0-V以及Cr-Ni-Mo-V钢。
该钢已分别用在俄罗斯及东欧的VVER-440和VVER-l000压水堆上以及我国的田湾核电站
VVERl000。
Cr-Ni-Mo-V钢的优点是高温性能和耐蚀性好,辐照效应小,缺点是回火脆性倾向大,焊接性不理想。
尽管如此,俄罗斯仍用Cr-Ni-Mo-V钢,这是因为对该钢缺点已有相应的改进措施,如降低磷、硫及杂质含量和改进热处理工艺等。
3.反应堆压力容器材料的安全
反应堆压力容器是保证核电站安全和寿命的重要部件,故被定为规范一级、安全一级、质保核级(H级)、抗震类I级的设备,即在正常、异常、紧急和事故工况下都能保证其可靠性和结构完整性,杜绝发生容器无延性断裂破损和放射性物质泄漏等事故。
对于压水堆核电站压力容器材料,引起“失效”或“事故”的原因虽然很多,但归结是脆性断裂、腐蚀、蠕变、疲劳或强度破坏等原因。
因为压力容器内壁堆焊有不锈钢衬里和钢的蠕变温度(O.4TK(熔点))远高于运行温度(320℃),故能防止腐蚀和蠕变的危害。
对于屈服变形、疲劳开裂和强度破坏,因为有严格的设计要求,并且规定必须进行应力分析、应力测试以及疲劳试验,通过计算可以防止这类破坏。
脆性断裂具有断裂前没有塑性变形、无任何预兆、在断裂应力低于屈服强度时裂纹失稳后即迅速扩展而断裂等特点,所以脆性断裂常是难以预料的爆发性突然破坏,而辐照脆化又增大了这种危险。
所以压力容器的脆性断裂成为对反应堆安全最大的威胁。
从冶金学角度考虑,脆性断裂的根源在于钢的低温脆性、氢脆、蓝脆、延迟脆性和高温脆性等。
其中除低温脆性外,它们都可以通过热处理或合金化的方法避免,而低温脆性(又称冷脆)较难克服,因为它是体心结构钢固有特征。
反应堆压力容器防脆断的检测方法目前主要有两种:转变温度法和断裂力学法,转变温度法常用于辐照后即在役期间判断压力容器的安危,断裂力学法仅在确定运行限制曲线和寿命末期或遇到异常情况及缺陷尺寸超过标准时用作评定分析。
防止脆性断裂的根本途径在于提高材料的韧性,即提高材料抗裂纹扩展的能力。
4.反应堆压力容器未来发展对材料的要求
随着电力需要的不断增加以及能源结构的优化,我国大部分省市均计划建造新的核电站,未来反应堆压力容器发展呈现以下特征:
(1)为提高发电效率而不断提高单堆机组输出功率。
欧洲先进压水堆EPR核电技术的单堆电功率达1550MW,促使反应堆压力容器向大型化(压力容器直径和壁厚增大)方向发展。
(2)为提高反应堆压力容器的安全性而尽量减少组焊数量、连接部位的焊缝长度。
西屋公司的先进非能动APl000核电技术的反应堆压力容器采用上封头与上法兰联体铸造技术,从而要求反应堆压力容器向一体化方向发展。
(3)为提高核电站的经济性而要求反应堆压力容器寿命向60年迈进。
美国的URD、欧洲的EUR等均要求反应堆压力容器寿命达到60年,从而对压力容器材料的性能提出了更高要求。
上述因素促使反应堆压力容器制造商在材料选择、冶炼、铸造、锻造、热处理、无损检测、在役辐照监督等方面加强研究攻关,以适应未来反应堆压力容器发展的要求。
5.反应堆压力容器的制造现状
国际上反应堆压力容器材料大型锻件制造商主要有日本制钢所(JSW)、法国克鲁索、韩国斗山重工等。
其中JSW整体技术水平处于领先位置,2007年产锻件8.7万吨,它拥有600t 级钢锭制造能力,装备有2台300t炼钢天车、100t电渣重熔炉。
法国克鲁索公司拥有空心钢锭制造技术,在筒形锻件制造上独占鳌头。
斗山重工的生产能力世界最大,2007年生产锻件12万吨。
我国有三大重型机械厂,都拥有12000t自由锻造水压机,可供生产核电压力容器大锻件之用,一重有生产船用小型反应堆设备的经验,二重有生产高压容器条件,上重曾为秦山一期核电站生产过压力容器锻件,他们在劳动生产率和技术水平上与国外先进水平之间差距正在缩小。
6.反应堆压力容器材料国内外研究热点与存在的问题
目前国内外反应堆压力容器研究热点主要集中在以下几个方面:
(1)由美国能源部倡导发起,在第四代核能系统国际论坛组织下,第四代先进核能系统正朝着既定方向发展,反应堆压力容器的材料选择、设计、制造等一直都是研究热点。
(2)随着二十世纪六七十年代建造的核电站运行时间已接近设计寿命,急需反应堆压力容器寿期评估与延寿分析论证,国际上有美国核管会、美国西屋公司等,国内主要有核工业728设计院、核动力设计院等机构已经开展了这方面工作,并已取得阶段性研究成果。
目前,国内反应堆压力容器材料存在的主要问题就是材料的制造国产化,特别是大型铸锻件的冶炼、机械加工方面的国产化,其中中国第一重型机械集团近年来在国家的大力支持下,实施铸锻钢基地及大型铸锻件自主化改造项目,项目建成后,一重将具备年产钢水50万吨、锻件24万吨、铸钢件6万吨的生产能力,可完成最大双真空钢锭600t的浇注、最大铸件500t、最大锻件400t。
但完全自主化完成反应堆压力容器大锻件的制造尚有很多技术难点需要攻关。
根据国家核电的中长期发展规划,至2020年我国将建成45台压水堆核电机组,反应堆压力容器将向国产化、标准化、批量化制造的方向发展。
参考文献:
[1] 李承亮,张明乾.压水堆核电站反应堆压力容器概述.材料导报,2008,22(9):65-68
[2] 李时磊,王艳丽,程路,等.Z3CN20-09M铸造奥氏体不锈钢的热老化机理.北京科技大学学
报,2008,30(10):1117
[3] 丁训慎.不锈钢管材蒸汽发生器的腐蚀与防护.清洗世界,2009,25(7):8-13。