命题 2.2.1 Xn,n=1,2,,为独立同分布的均值为 1/的指数随机变量。
证明:P{X1>t}= P{ N(t)=0}=et P{ X2>t| X1=s}= P{在(s,s+t]内没有事件| X1=s}=P{在(s,s+t]内没有
事件}(由独立增量)= et (由平稳增量)
所以,从上可得,X2 也是一个具有均值 1/的指数随机变量,且 X2
证明: (1)对 y1 y2 yn,如果(Y1,Y2,, Yn)等于(y1,y2,,yn)的 n!个排 列中的任一个,Y(1),Y(2),, Y(n)将等于(y1,y2,,yn);(2)当( yi1 , yi2 , , yin )是 (y1,y2,,yn)的一个排列时,Y1,Y2,, Yn 等于( yi1 , yi2 , , yin )的概率密度是
2. 来到时刻的条件分布(conditional distribution of the arrival times)
假设已知到时间 t 泊松过程恰发生了一个事件,我们要确定这一事件
发生的时刻的分布。因为泊松过程有平稳独立增量,看来有理由认为
[0,t]内长度相等的区间包含这个事件的概率应该相同。换言之,这个
2.泊松过程第二个定义 为了确定一个任意的计数过程是一泊松过程,必须证明它满足条件
(1),(2)及(3)。条件(1)只是说明事件的计数是从时刻 0 开始的。条件(2) 通常可从我们对过程了解的情况去直接验证。然而全然不清楚如何去确 定条件(3) 是否满足。为此泊松过程的一个等价定义将是有用的。
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。