表面等离激元-2013.11.25
- 格式:pptx
- 大小:2.85 MB
- 文档页数:35
光学中的表面等离激元方程在物理学中,表面等离激元(surface plasmon)是指金属表面上被激发出来的电磁波,它们与电子和光子之间的相互作用导致了一系列神奇的物理现象,如透射光谱、增强荧光、表面增强拉曼散射(SERS)等等。
这些现象在科学研究和实际应用中具有重要的意义,因此表面等离激元的研究成为了热点领域之一。
在光学中,表面等离激元可以通过麦克斯韦方程组的求解得到,其中最基本的方程即是麦克斯韦方程的波动方程(wave equation)。
这个方程描述了电磁波的传播过程,并且可以用来计算表面等离激元的频率和波矢。
然而,在金属表面的情况下,电磁波的传播行为并不像在空气或真空中那样简单。
这是因为金属表面存在自由电子,它们可以吸收入射光子的能量并发生共振激发,从而形成表面等离激元。
这种自由电子的行为需要用到泊松方程(poisson equation)和电流连续性方程(current continuity equation)来描述。
泊松方程描述了金属内部的电势分布,其形式为:∇²Φ = -ρ/ε其中,Φ表示电势,ε表示介电常数,ρ表示电荷密度。
这个方程描述了自由电子的电荷分布对金属内部电势的影响。
电流连续性方程描述了自由电子的运动行为,其形式为:∇·J + ∂ρ/∂t=0其中,J表示电流密度。
这个方程描述了自由电子在金属内部的流动行为,以及它们的电荷密度随时间的变化。
利用波动方程、泊松方程和电流连续性方程,可以得到关于表面等离激元频率(ω)和波矢(k)的方程,称为等离子体色散方程(plasma dispersion equation):ω² = ωp² + c²k²/ε(m)其中,ωp表示等离子体频率,它与自由电子的振荡频率有关,c表示光在介质中的传播速度,ε(m)表示介质的相对介电常数。
这个方程描述了表面等离激元的频率与波矢之间的关系。
当光传播到金属表面时,如果满足这个方程的条件,就可以激发出表面等离激元。
“表面等离激元”是一种光学现象,它发生在反射界面上,表明光线可以在反射界面上维持相对平衡的态势。
表面等离激元这一物理现象是由法国物理学家埃里克·斯托克尔于1817年发现的。
他在研究光线在反射界面上的行为时发现,光线在反射界面上可以形成一个等离激元,即反射界面上的一个小小区域,其中光线不会穿过反射界面,而是在反射界面上穿行,使得光线在反射界面上维持相对平衡的态势。
此外,表面等离激元还可以用于诊断表面的状态。
它可以用来检测表面的摩擦系数、弹性系数以及表面的疏水性。
它还可以在几种材料之间的界面上进行检测,以确定这些界面的性质。
另外,表面等离激元也可以用于建设光学滤波器,例如分离颜色光谱的滤波器,以及用于分离多种类型的光谱。
表面等离激元也可以用于生物和化学分析,以及分离光纤中的信号。
总之,表面等离激元是一种重要的物理现象,可以用于诊断表面状态、构建光学滤波器和用于生物和化学分析等多种用途。
表面等离激元1.表面等离激元(SPP)的定义、性质及激发方式。
表面等离激元(SPPs)定义为自由电子与电磁场相互作用产生的沿金属表面传播的电子疏密波。
性质1. 在垂直于界面的方向场强呈指数衰减2.能够突破衍射极限;3.具有很强的局域场增强效应;4.只能发生在介电参数(实部)符号相反(即金属和介质)的界面两侧。
激发方式:1.棱镜耦合Kretschamann与Otto结构2.光栅(金属表面缺陷)耦合k//=k0sinq±Nkg= kspp 3.波导模耦合4.强聚焦光束(SNOM)2.理解并掌握金属电介质SPP色散关系的物理意义。
3.选择一种SPP的应用简述原理。
4.光子晶体的基本概念、定义、特性、带隙成因及其与电子材料的区别。
光子晶体是指具有光子带隙(PhotonicBand-Gap,简称为PBG)特性的人造周期性电介质结构。
由于介电常数存在空间上的周期性,进而引起空间折射率的周期变化。
当介电系数的变化足够大且变化周期与光波长相当时,光波的色散关系会出现带状结构,介电常数周期性排列的方向并不等同于带隙出现的方向,在一维光子晶体和二维光子晶体中,也有可能出现全方位的三维带隙结构。
特性:1.抑制自发辐射,带隙中态密度为零,自发辐射几率也就为零,这也就抑制了自发辐射。
2.光子局域化,当光子晶体原有的对称性遭到破坏时,即有了缺陷,在光子晶体中禁带中就可能出现频宽极窄的缺陷态或局域态,与缺陷态频率符合的光子会被局限在缺陷位置,而不能向空间传播。
带隙成因:电磁波在周期性电介质材料中传播时,由于受到调制而形成光子能带结构,频率落在带隙内的电磁波不能通过介质而被全部反射,即形成光子带隙。
电子材料:电子在周期场中传播时,由于会受到周期势场的布拉格散射,会形成能带结构,带与带之间可能存在带隙。
电子波的能量如果落在带隙中,传播是禁止的。
电子材料是通过周期性的晶体结构从而产生周期性势垒,按照薛定谔方程形成带隙。
电磁波是通过周期性的介电常数,按照麦克斯韦方程形成光子带隙。
表面等离激元介绍定义及原理:当光波(电磁波)入射到金属与介质分界面时,金属表面的自由电子发生集体振荡,电磁波与金属表面自由电子耦合而形成的一种沿着金属表面传播的近场电磁波,如果电子的振荡频率与入射光波的频率一致就会产生共振,在共振状态下电磁场的能量被有效地转变为金属表面自由电子的集体振动能,这时就形成的一种特殊的电磁模式:电磁场被局限在金属表面很小的范围内并发生增强,这种现象就被称为表面等离激元现象。
性质:表面等离激元是外界光场与金属中自由电子相互作用的电磁模,在这种相互作用下外界光场被集体振荡的电子俘获,构成了具有独特性质的SPPs 。
在平坦的金属/介质界面,SPPs 沿着表面传播,由于金属中欧姆热效应,它们将逐渐耗尽能量,只能传播到有限的距离,大约是纳米或微米数量级。
只有当结构尺寸可以与SPPs 传播距离相比拟时,SPPs 特性和效应才会显露出来。
随着工艺技术的不断进步,现今已经可以制作特征尺寸为微米和纳米级的电子元件和回路,在这个领域的研究也迅速开展起来。
表面等离激元主要具有如下的的基本性质:1. 在垂直于界面的方向场强呈指数衰减;2. 能够突破衍射极限;3. 具有很强的局域场增强效应;4. 只能发生在介电参数(实部)符号相反(即金属和介质)的界面两侧。
表面等离激元的激发:由于表面等离激元在界面附近的电场方向与界面垂直,要激发表面等离激元,光波必须具有与界面垂直的电场分量。
此外,在激发表面等离激元的过程中,还需要满足波矢匹配条件。
相同频率下,金属与介质界面的表面等离激元与光波的波矢关系可以表示为:2/121210)(εεεε+=k k spp ,其中spp k 是表面等离激元波矢,0k 是光波波矢。
一般来说,对于介质01>ε;而对于金属,212;0εεε<<且。
相同频率时,表面等离激元的波矢大于光波波矢,所以用平面光波无法直接激发出表面等离激元。
要想实现光激发,就必须通过特殊方法来补偿光波损失,使波矢匹配条件成立。
表面等离激元技术研究及其应用表面等离激元技术是一种基于表面等离激元的物理过程和现象,利用银、金、铜等可导电金属表面的自由电子与电磁波相互作用形成的激元波,从而实现高灵敏的信号检测、传输和转换。
近年来,该技术在传感、生物医学、光电通信等领域得到了广泛的研究和应用。
一、表面等离激元技术的原理表面等离激元是一种集体激发行为,即在可导电表面上,自由电子在外加电场作用下与入射光场发生共振耦合,形成一种电磁波和电子的复合粒子,称为表面等离激元。
表面等离激元具有极强的场增强效应和易于激发、调控的特点,其电磁波和电子相互作用的强度和尺度均在纳米级别,因此具有高灵敏度和局域性。
二、表面等离激元技术的研究进展表面等离激元技术是一种新兴的研究领域,在传感、生物医学、光电通信等领域具有广泛的应用前景。
近年来,国内外的研究机构和企业纷纷涉足表面等离激元技术的研究和应用,不断推动着该技术的发展。
在传感领域,表面等离激元技术已被广泛应用于化学、生物、环境等各类传感器中。
利用表面等离激元传感器可以实现对微量分子、细胞和微生物的高灵敏检测,具有检测速度快、选择性高、灵敏度高等优点。
例如,利用表面等离激元技术开发的呼吸道病原体检测系统,可以在短时间内对呼吸道病原体进行检测,具有高效、准确的特点。
在生物医学领域,表面等离激元技术已被应用于分子诊断、细胞成像、药物筛选等方面。
其高灵敏度和局域性可以实现对生物分子和细胞的高分辨率成像,在癌症早期诊断和治疗、细胞生物学研究等方面具有广阔的应用前景。
在光电通信领域,表面等离激元技术正在被广泛应用于光通信器件和系统中。
利用表面等离激元波导、光学调制器等器件,可以实现高速、高带宽的光通信传输。
同时,表面等离激元技术还可以实现光信号的调制、放大和转换,为光通信系统的发展提供了新的方向和思路。
三、表面等离激元技术的应用前景表面等离激元技术具有广泛的应用前景,在未来的传感、生物医学、光电通信等领域将继续发挥重要作用。
表面等离激元纳米光子学理论说明以及概述1. 引言1.1 概述表面等离激元纳米光子学是一门新兴的领域,涉及到表面等离激元的概念、起源与发展以及在纳米光子学中的应用。
随着科技的进步,人们对于光子学的研究也越来越深入,而表面等离激元作为一种特殊性质和行为的媒介,引起了广泛关注和研究。
本文旨在通过理论说明和综述的方式,全面介绍表面等离激元纳米光子学的相关理论和应用,并对其未来发展进行展望。
1.2 文章结构本文主要分为五个部分:引言、表面等离激元纳米光子学理论说明、表面等离激元纳米光子学的主要要点一、表面等离激元纳米光子学的主要要点二以及结论与展望。
其中,引言部分对文章进行整体介绍,并阐述了文章的结构安排。
1.3 目的本文旨在对表面等离激元纳米光子学进行深入探讨和全面概述,明确表面等离激元的概念以及其在纳米光子学中的应用。
同时,通过对主要要点一和主要要点二的介绍,展示表面等离激元纳米光子学领域内的重要研究方向,并在结论部分总结目前的研究成果并对未来发展趋势进行展望和提出建议。
通过本文,读者可以了解到表面等离激元纳米光子学领域的最新进展,为相关领域的研究者提供有益参考。
2. 表面等离激元纳米光子学理论说明:2.1 等离激元概念介绍表面等离激元是一种集体震荡模式,发生在介质表面和金属之间。
它是由光场与电子自由电子气相互作用所导致的电磁波和电荷密度共振耦合效应。
在这个过程中,表面电子和光场之间的耦合引起了具有特定能量和动量的新粒子态的产生。
2.2 表面等离激元的起源与发展历程表面等离激元最初于1957年由斯托拉尼率先提出,但直到20世纪70年代末和80年代初,随着先进的实验技术的发展与纳米材料制备技术的突破,对其物理性质及应用前景的深入研究得以进行。
人们开始认识到等离激元在光学、化学、生物医学等领域中具有广泛的应用价值。
2.3 表面等离激元在纳米光子学中的应用表面等离激元在纳米光子学中具有丰富的应用前景。
首先,它能够在纳米尺度上实现超分辨率成像,从而有效突破传统光学的分辨极限。
表面等离激元介绍定义及原理:当光波(电磁波)入射到金属与介质分界面时,金属表面的自由电子发生集体振荡,电磁波与金属表面自由电子耦合而形成的一种沿着金属表面传播的近场电磁波,如果电子的振荡频率与入射光波的频率一致就会产生共振,在共振状态下电磁场的能量被有效地转变为金属表面自由电子的集体振动能,这时就形成的一种特殊的电磁模式:电磁场被局限在金属表面很小的范围内并发生增强,这种现象就被称为表面等离激元现象。
性质:表面等离激元是外界光场与金属中自由电子相互作用的电磁模,在这种相互作用下外界光场被集体振荡的电子俘获,构成了具有独特性质的SPPs。
在平坦的金属/介质界面,SPPs沿着表面传播,由于金属中欧姆热效应,它们将逐渐耗尽能量,只能传播到有限的距离,大约是纳米或微米数量级。
只有当结构尺寸可以与SPPs传播距离相比拟时,SPPs特性和效应才会显露出来。
随着工艺技术的不断进步,现今已经可以制作特征尺寸为微米和纳米级的电子元件和回路,在这个领域的研究也迅速开展起来。
表面等离激元主要具有如下的的基本性质:在垂直于界面的方向场强呈指数衰减;能够突破衍射极限;具有很强的局域场增强效应;只能发生在介电参数(实部)符号相反(即金属和介质)的界面两侧。
表面等离激元的激发:由于表面等离激元在界面附近的电场方向与界面垂直,要激发表面等离激元,光波必须具有与界面垂直的电场分量。
此外,在激发表面等离激元的过程中,还需要满足波矢匹配条件。
相同频率下,金属与介质界面的表面等离激元与光波的波矢关系可以表示为:,其中是表面等离激元波矢,是光波波矢。
一般来说,对于介质;而对于金属,。
相同频率时,表面等离激元的波矢大于光波波矢,所以用平面光波无法直接激发出表面等离激元。
要想实现光激发,就必须通过特殊方法来补偿光波损失,使波矢匹配条件成立。
目前主要通过全反射和散射波矢补偿两种方法。
应用:随着表面等离激元理论研究的深入以及各种结构的器件的成功制作,其在光学各领域应用具有巨大的潜力,尤其在解决了一些以往光学长期不能解决的问题,其中包括金属亚波长结构的增透效应在超分辨率纳米光刻、高密度数据存储、近场光学等领域的应用。
表面等离激元
表面等离激元是一种物质表面上生成的量子现象,它是由电子或
其它粒子的表面辐射而产生的。
表面等离激元也被称为薛定谔光子,又或通常称为表面等离激元散射或表面等离激元发射,它是
当电子和其它粒子受到较高能量条件的冲击,高能粒子释放出的
物质表面上的微小散射现象。
表面等离激元的发现可追溯到二十世纪的晚期,当时物理学家薛
定谔假设了一种解释辐射的力学模型,可用来解释电子在物质表
面受到辐射时、所产生的等离激元现象。
这样,当具有足够高能
量的电子或其它高能粒子(比如X射线等)击中某种物质表面时,将会产生表面等离激元现象,从而激发电子并使其跃迁到更高的
能量状态,从而排放出光子。
表面等离激元散射现象是这种现象
的特征表现。
表面等离激元的研究为物理和材料科学提供了丰富的研究方向。
它可以被运用于物质表面外延生长中的自体表面活化,以及电子学、材料学和光电子学等领域。
在生物学领域,表面等离激元还可用来研究细胞膜外层结构的形成和固态变化等。
此外,该现象还在应用物理、工程、医疗等领域不断拓展其研究面,也正在被用于先进的材料设计和表面增强等技术。
因此,表面等离激元是一种由物质表面受到高能量冲击而发出的量子现象,它具有广泛的应用前景
可用于物理、工程、生物学及其它领域等。
它不仅使科学家们获得更大的自由度去探索表面辐射现象,而且希望能为更多领域的研究带来重要信息,并有助于人们了解空间的辐射现象。
化学物理学中的新研究——表面等离激元随着科学技术的不断进步,各种新的研究领域也不断涌现。
在化学物理学中,表面等离激元就是一项新兴的研究领域。
它在实际应用中具有广泛的应用场景和重要的作用。
一、表面等离激元的概念表面等离激元是一种集体的、准粒子型的激发态,可以在介质表面上引起电磁波局部增强。
表面等离激元可以与外部电磁波相互作用,形成表面等离子共振,使电磁波在界面上产生强烈的局部场。
因此,表面等离激元通常被视为一种局部电场和静电场,同时也可以被看作是一种电磁波的束缚态。
表面等离激元在化学物理学中有许多重要的应用,比如可以用来增强荧光信号、增强光催化活性、提高表面增强拉曼散射等。
因此,表面等离激元在化学物理学中具有广泛的应用前景和深远的意义。
二、表面等离激元的产生机制表面等离激元的产生机制十分复杂,目前还没有一个完全统一的理论来解释它。
但是可以根据材料的性质和外部电磁场的特点来大致分为两类:金属基底和介电体基底。
对于金属基底,表面等离激元的形成主要是由于金属电子和外部电磁场之间的相互作用导致的。
金属表面的自由电子与光线中的电场发生相互作用,从而形成电荷排列模式,进而形成表面等离激元。
此时,表面等离激元的频率和强度主要由金属表面的形貌、金属的电子密度和光场的波长和偏振等因素所决定。
而对于非金属介电体基底,则表面等离激元的产生主要是由于表面极性分子和外部电磁场之间的相互作用导致的。
介电体表面上的分子团簇与光线中的电场发生相互作用,最终形成表面等离激元。
此时,激元的频率和强度主要由介电体的折射率、分子极性和分子间距以及辐射场的波长和偏振等因素所决定。
三、表面等离激元的应用表面等离激元在化学物理学中有着广泛的应用领域。
下面列举几个重要的应用案例。
1. 表面等离激元增强荧光信号利用表面等离激元可以增强荧光信号的强度和稳定性。
当一种荧光分子与一个金纳米颗粒结合时,表面等离激元会在纳米颗粒表面上产生强烈的电场,使荧光分子发生强烈的局部场增强效应,从而显著增强荧光信号的强度和稳定性。
表面等离子体激元简介一.表面等离子体激元表面等离子体(Surface Plasmons)的出现提供了一种在纳米尺度下处理光的方式。
表面等离子体通常可以分成两大类——局域表面等离子体共振(Localized Surface Plasmon Resonance)和表面等离子体激元(Surface Plasmon Polaritons)。
局域表面等离子体共振专指电磁波与尺寸远小于波长的金属纳米粒子中的自由电子的相互耦合,这种等离子体只有集体共振行为,不能传播,但可以向四周环境辐射电磁波。
局域表面等离子体共振可以通过光直接照射产生。
表面等离子体激元指的是在金属和电介质分界面上传播的一种元激发Excitations),这种元激发源自电磁波和金属表面自由电子集体共振的相互耦合。
表面等离子体激元以指数衰减的形式束缚在垂直于传播的方向,由于它的传播波矢要大于光在自由空间中的波矢,电磁波被束缚在金属和电介质的分界面而不会向外辐射,也正是因为这种独特的波矢特性,表面等离子体激元的激发需要满足一定的波矢匹配条件。
二.SPPs的激发和仿真方法由于SPSs的波矢量大于光波的波矢量,或者说SPPs的动量与入射光子的动量不匹配,所以不可能直接用光波激发出表面等离子体波。
为了激励表面等离子体波,需要引入一些特殊的结构达到波矢匹配,常用的结构有以下几种:(1)棱镜耦合:棱镜耦合的方式包括两种,一种是Kretschmannt方式;另一种是Otto 方式。
(2)采用波导结构(3)采用衍射光栅耦合(4)采用强聚焦光束(5)采用近场激发。
目前主要的仿真方法有以下三种(1)时域有限差分法(finite difference time domain,FDTD):FDTD方法是把Maxwell方程式在时间和空间领域上进行差分模拟,利用蛙跳式(leaf flogalgorithm)空间领域内的电场和磁场进行交替计算,电磁场的变化通过时间领域上更新来模仿。
表⾯等离激元效应⾦属材料表⾯的等离激元表⾯等离激元理论涉及到⾦属中电⼦的共谐振荡和麦克斯韦⽅程求解等较为复杂的物理和数学知识,其相关概念如下。
1. 表⾯等离激元 (SPPs)SPPs是光和⾦属表⾯的⾃由电⼦相互作⽤增强了电⼦集体振动所引起的⼀种电磁波模式,或者说是在局域⾦属表⾯的⼀种⾃由电⼦和光⼦相互作⽤形成的混合激发态。
当具有⾦属薄膜结构的电池器件受到⼊射光照射时,在⾦属膜与介质形成的界⾯上也会产⽣表⾯等离激元共振,形成表⾯等离激元模式。
2. 局域表⾯等离激元共振(LSPR)当电磁波与微纳尺⼨的⾦属粒⼦(包括纳⽶级颗粒、微结构、缺陷等)相互作⽤时,载流电⼦与电磁场耦合产⽣共振效应(表⾯等离激元共振),导致粒⼦内部和外部近场区域的场放⼤,⽽外场作⽤下产⽣的这种表⾯等离激元波会被局限在微纳⾦属结构附近的亚波长尺⼨范围之内,且不会发⽣SPPs似的传播,这样的表⾯等离激元叫做局域表⾯等离激元。
3. 表⾯等离激元和⼊射光的耦合⽅式如图是在太阳能电池结构中表⾯等离激元和⼊射光的耦合⽅式:a.多重散射主导的光俘获;b.局域表⾯等离激元共振主导的光俘获;c.吸收层/⾦属(光栅)薄膜界⾯表⾯等离激元主导的光获。
⾦属纳⽶颗粒发⽣表⾯等离激元共振时,其散射截⾯相对于其⼏何截⾯要⼤很多,散射截⾯⼤约是其⼏何截⾯的10倍(图a)。
这使得散射光在半导体中以⼀定⾓度进⾏传播,光程得到有效增加。
当⾦属纳⽶颗粒放置于电池电介质层(称减反层)的前后表⾯(称前位和背位)时,会产⽣散射作⽤。
表⾯等离激元共振会对⼊射光产⽣很强的吸收,在⾦属纳⽶颗粒附近产⽣很强的电场,这种电场会在⾦属纳⽶颗粒附近的半导体材料中激发产⽣激⼦。
这种⽅式称为近场增强(图b)。
如果将⾦属纳⽶颗粒置于太阳电池电介质层(减反层)和功能层中,就有可能同时实现散射增强和近场增强。
表⾯局域和近场增强是表⾯等离激元的两个特有性质:在⾦属和半导体中场分布呈指数形衰减,在界⾯处呈现⾼度局域,因此表⾯等离激元在太阳电池的吸收层中能有效的陷光和导光(图c)。