圆的知识点总结
- 格式:docx
- 大小:404.75 KB
- 文档页数:21
圆的知识点小学总结一、圆的定义圆是平面上距离一个指定点一定距离的点的集合。
这个指定点叫做圆心,到圆心的距离叫做半径。
二、圆的元素圆包括圆心、半径、直径、圆周、弧等元素。
圆的半径是从圆心到圆周上的任意一点的距离,直径是通过圆心并且两个端点在圆上的线段。
圆周是围绕圆心的一圈边缘,而弧是圆周的一部分。
三、圆的性质1. 圆周上任意两点与圆心的连线都是相等的。
2. 圆心到圆周上的任意一点的距离都相等。
3. 圆的直径是圆的半径的两倍。
4. 圆的直径可以分割圆为两个半圆,半圆的弧长是圆周长的一半。
5. 任意一个圆都可以由一个矩形绕着它的中心旋转而成。
四、圆的周长和面积圆的周长是圆周的长度,它等于直径乘以π。
周长=2 × π × 半径圆的面积是圆形区域的大小,它等于半径的平方乘以π。
面积=π × 半径²五、圆的应用1. 圆在日常生活中有着广泛的应用,比如钟表、轮胎、食品等。
2. 圆的性质和计算方法在工程、建筑、电子等行业有着广泛的应用。
3. 圆的计算方法和几何原理也在数学学科中有着重要的地位,它是数学基础知识的一部分。
六、圆与其他图形的关系1. 圆与正方形、矩形、三角形等多边形相互关系密切,它们之间有着很多有趣的数学关系和几何性质。
2. 圆与直线、曲线等也有着复杂的相互关系,有很多重要的数学定理和定律涉及到圆和其他几何图形的关系。
七、圆的发展历程1. 古希腊的数学家开始研究圆的性质和计算方法,提出了一些重要的圆的定理和公式。
2. 随着数学知识的不断积累和发展,圆的理论和实践应用得到了广泛的推广和应用。
3. 现代科学技术中的许多领域都需要对圆的性质和计算方法进行深入研究和应用,因此圆的研究具有重要的意义。
八、结语圆是一个非常重要的几何图形,它有着独特的性质和特点,对于我们的日常生活和学习有着重要的影响。
通过学习圆的知识,我们可以更好地理解和应用数学知识,提高自己的数学能力和解决实际问题的能力。
第二十四章圆第三章圆1、定义:圆是平面上到定点距离等于定长的点的集合。
其中定点叫做圆心,定长叫做圆的半径,圆心定圆的位置,半径定圆的大小,圆心和半径确定的圆叫做定圆。
对圆的定义的理解:①圆是一条封闭曲线,不是圆面;②圆由两个条件唯一确定:一是圆心〔即定点〕,二是半径〔即定长〕。
2、点与圆的位置关系及其数量特征:如果圆的半径为r,点到圆心的距离为d,那么:①点在圆上<===>d=r;②点在圆内<===>d<r;③点在圆外<===>d>r证明假设干个点共圆,就是证明这几个点与一个定点的距离相等。
3、圆是轴对称图形,其对称轴是任意一条过圆心的直线。
圆是中心对称图形,对称中心为圆心。
直径所在的直线是它的对称轴,圆有无数条对称轴。
4、与圆相关的概念:①弦和直径。
弦:连接圆上任意两点的线段叫做弦。
直径:经过圆心的弦叫做直径。
②圆弧、半圆、优弧、劣弧。
圆弧:圆上任意两点间的局部叫做圆弧,简称弧,用符号“⌒〞表示,半圆:直径的两个端点分圆成两条弧,每一条弧叫做半圆。
优弧:大于半圆的弧叫做优弧。
劣弧:小于半圆的弧叫做劣弧。
(为了区别优弧和劣弧,优弧用三个字母表示。
)③弓形:弦及所对的弧组成的图形叫做弓形。
④同心圆:圆心相同,半径不等的两个圆叫做同心圆。
⑤等圆:能够完全重合的两个圆叫做等圆,半径相等的两个圆是等圆。
⑥等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。
⑦圆心角:顶点在圆心的角叫做圆心角。
⑦弦心距:从圆心到弦的距离叫做弦心距。
5、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
推论:平分弦〔不是直径〕的直径垂直于弦,并且平分弦所对的两条弧。
说明:根据垂径定理与推论可知对于一个圆和一条直线来说,如果具备:①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧。
6、定理:在同圆或等圆中,相等的圆心角所对的弧相等、所对的弦相等、所对的弦心距相等。
圆的性质知识点总结圆是数学中一个非常重要的几何图形,它具有许多独特而有趣的性质。
下面我们就来详细总结一下圆的性质知识点。
一、圆的定义在平面内,到定点的距离等于定长的所有点组成的图形叫做圆。
定点称为圆心,定长称为半径。
二、圆的相关元素1、圆心圆心是圆的中心,用字母“O”表示。
2、半径连接圆心和圆上任意一点的线段叫做半径,用字母“r”表示。
在同一个圆中,半径都相等。
3、直径通过圆心并且两端都在圆上的线段叫做直径,用字母“d”表示。
直径是圆中最长的弦,且直径等于半径的 2 倍,即 d = 2r 。
4、弦连接圆上任意两点的线段叫做弦。
5、弧圆上任意两点间的部分叫做弧。
大于半圆的弧称为优弧,小于半圆的弧称为劣弧。
6、圆心角顶点在圆心的角叫做圆心角。
7、圆周角顶点在圆上,并且两边都与圆相交的角叫做圆周角。
三、圆的性质1、圆的对称性圆是轴对称图形,其对称轴是任意一条通过圆心的直线。
圆也是中心对称图形,其对称中心是圆心。
2、垂径定理垂直于弦的直径平分弦且平分弦所对的两条弧。
推论:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
3、圆心角、弧、弦之间的关系在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
推论:(1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等;(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧相等。
4、圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半。
推论:(1)同弧或等弧所对的圆周角相等;(2)半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。
5、圆内接四边形的性质圆内接四边形的对角互补。
四、圆的周长和面积1、圆的周长圆的周长 C =2πr 或 C =πd ,其中π是圆周率,约等于 314 。
数学圆的知识点总结圆是几何中的一种基本图形,具有许多独特的性质和特征。
在数学中,圆是一个非常重要的概念,它涉及到许多不同的数学领域,包括几何、代数和微积分。
本文将从各个方面总结圆的知识点,希望能够帮助读者更好地理解和应用圆的相关知识。
一、圆的定义圆是一个平面图形,其上所有点到一个固定点的距离相等。
这个固定点叫做圆心,而相等的距离叫做半径。
圆通常用大写字母“O”表示圆心,用小写字母“r”表示半径。
通常情况下,圆可以用圆心O和半径r来表示。
二、圆的基本性质1. 圆的直径圆的直径等于半径的两倍,即d = 2r。
2. 圆的周长圆的周长等于直径乘以π,即C = πd或者C = 2πr。
3. 圆的面积圆的面积等于半径的平方乘以π,即A = πr²。
4. 圆的圆周角圆的圆周角是指圆心所包含的角度,它s等于一定方向下两个相邻半径的夹角。
5. 圆的弧长圆的弧长等于半径乘以圆周角的弧度值,即L = rθ。
6. 圆心角圆心角是指圆心所包含的角度,它等于弧长所对应的弧度数。
圆心角的角度大小等于圆周角的角度大小。
7. 圆的内切角和外切角圆的内切角是指在圆的内部,通过切线和相交弧所形成的角;圆的外切角是指在圆的外部,通过切线和相交弧所形成的角。
9. 圆锥、圆台和圆柱圆锥、圆台和圆柱是由圆所产生的几何体形状,在工程和实际生活中都有重要应用。
三、圆的相关定理1. 圆的切线定理圆上的切线与半径的平行线平方和等于切线与圆心的连线的平方。
2. 圆的切线与圆之间的位置关系直径是圆的切线,而且直径等于两条相交切线的和。
3. 圆的切线和切点的性质切线与切线的切点之间的夹角等于切线与圆心之间的夹角。
4. 圆的切线和弦的性质切线与圆内的弦之间的夹角等于这条弦所对应的圆心角的一半。
5. 圆的两条交叉弦的性质两条交叉的弦所对应的弧是线段所在圆所包含的圆心角的一半。
6. 圆的内切接着角圆的内切角是指一条切线和它的两个相交半径形成的角,它等于所对应的弧的一半。
圆的知识点总结归纳圆是几何图形中的一种重要形状,它在数学、物理和工程学等领域中起着重要的作用。
本文将对圆的定义、性质及相关公式进行总结和归纳。
一、圆的定义圆是一个平面上的点距离某个固定点的距离始终相等的集合。
这个固定点称为圆心,相等的距离称为半径。
二、圆的性质1. 圆上任意两点与圆心的距离相等。
2. 圆的直径是通过圆心的一条线段,它的长度是圆的半径的两倍。
3. 圆的周长是圆上任意一点到圆心的距离乘以2π,也可表示为2πr,其中r为圆的半径。
4. 圆的面积是半径的平方乘以π,也可表示为πr^2。
5. 圆的内接正多边形的周长逐渐逼近圆的周长,而且边数越多逼近程度越高。
三、圆的相关公式1. 周长公式:C = 2πr,其中C表示圆的周长,r表示圆的半径。
2. 面积公式:A = πr^2,其中A表示圆的面积,r表示圆的半径。
3. 圆心角公式:圆心角的弧度等于弧长与半径的比值,即θ = l/r,其中θ表示圆心角的弧度,l表示弧长。
4. 弧长公式:l = θr,其中l表示弧长,θ表示圆心角的弧度,r表示半径。
四、圆的应用圆在生活和工作中有着广泛的应用。
以下是一些常见的应用场景:1. 圆形运动:圆轨道上的物体经常进行往复运动,如地球绕太阳的运动。
2. 圆锥:圆锥是一个重要的几何体,常见于工程设计和建筑结构中,如锥形山、喷泉和轮胎等。
3. 镜面反射:平面镜的形状是一个圆,利用圆的反射特性,我们可以在镜子中看到清晰的倒影。
4. 电子设备:许多电子设备的屏幕是圆形的,如手表、手机和电视等。
5. 城市规划:许多城市的规划和设计中以圆为基础,如圆形广场和喷泉等。
综上所述,圆作为几何图形中的重要形状,具有自身独特的定义、性质和公式,广泛应用于各个领域。
了解圆的知识对于深入理解几何学和解决实际问题具有重要意义。
六年级圆的知识点总结
一、圆的定义
圆是平面上离定点距离等于定长的点的集合。
这个定点叫做圆心,这个定长叫做半径。
以
O为圆心,以r为半径做出的圆记为Γ。
二、圆的性质
1. 圆的直径:圆的直径是过圆心,并且两端点在圆上的线段。
圆的直径恰好是其半径的两倍。
2. 圆周长:圆的周长等于圆的直径和π的乘积。
即C=2πr。
3. 圆的面积:圆的面积等于半径的平方乘π。
即A=πr²。
4. 弧长和扇形面积:圆的弧长和扇形的面积与圆的周长和面积有很密切的关系。
三、圆的相关定理
1. 钝角圆周定理:在同一个圆中,对于一个圆周上的三个点A、B、C,如果角ABC是钝角,那么对应于这个圆面积内的两条弧AB和AC所对的圆心角分别是直角和钝角。
2. 相交圆周定理:当两个不同圆的圆心不在一直线上,但它们却有一个公共点,则这两个
圆相交。
此时,两个不在一条直线上的圆的交点在圆周上形成四个交点。
两个圆的圆周在
它们两个交点之间有两个弧。
对应于任意这样的一个圆周上的交点P,到P的两条圆周所
对的圆心角是互补的。
3. 切线定理:切线是与圆的圆周相切的直线。
圆周上任意一点到相切点的切线所构成的角
恰好是直角。
切线与半径的关系紧密,在圆心的两边与切点相连的线段构成直角三角形。
以上是关于圆的一些基本知识点和相关定理,通过学习这些知识,我们可以更好地理解和
应用圆的几何特性。
希望同学们在学习中能够加深对圆的理解,更好地掌握圆的相关知识。
圆知识点总结公式圆的性质及公式1. 圆的周长C= 2πr,其中r是半径。
2. 圆的面积A= πr^2。
3. 圆的直径d= 2r。
4. 圆心角的弧度表示= 圆心角度数* π / 180。
5. 圆心角的弧长L = 圆心角度数* π / 180 * r。
6. 切线长度t = √(rs),其中s是切线和切点的距离。
7. 弧长L= θ/360 * 2πr,其中θ 是圆心角的度数。
8. 圆的扇形的面积= θ/360 * πr^2,其中θ 是圆心角的度数。
9. 圆环的面积A= π(R^2-r^2),其中R是外圆半径,r是内圆半径。
10. 圆锥的表面积S= πr(r+√(r^2+h^2)),其中r是底圆的半径,h是斜高。
11. 圆锥的体积V= 1/3* πr^2h,其中r是底圆的半径,h是高。
圆的相关定理1. 直径定理:在同一个圆内,如果两条弦之一经过圆心,则这条弦的长度等于另一条弦和直径的长度之和。
2. 弧长定理:圆心角的弧长等于半径与这个圆心角所对应的圆周的比例关系。
3. 切线定理:切线和半径的关系,切线的平方等于切点到圆心的距离和直径的乘积。
4. 同切圆定理:同一直线上的两个同切圆的半径的平方之于面积的比例也是相同的。
5. 切割角定理:圆周上的两个弧所对应的圆心角之和等于180°。
6. 弧角公式:圆的周长等于2πr,圆心角是360°时所对应的弧长也是2πr。
圆的应用:1. 圆形结构设计:在建筑、机械工程、制造业和其他领域,圆形结构的设计和制造应用广泛。
2. 圆形运动:在物理学中,圆形运动和转动是非常重要的研究领域,例如,行星围绕太阳的运转。
3. 圆形信号:在电子、通信、数学、物理等领域,圆形波形和信号的应用非常广泛。
4. 圆形统计:在统计学和概率论中,圆形统计和随机过程在分析数据和预测趋势方面非常重要。
总的来说,圆是几何学中的基本图形之一,圆的性质及公式、相关定理和应用非常广泛。
对圆的深入理解和应用可以帮助我们更好地理解和处理与圆有关的问题和情况。
小学数学中的圆知识点总结一、圆的定义和性质1. 圆的定义圆是平面上与给定点距离相等的点的集合。
给定点叫做圆心,距离叫做半径。
用圆形符号表示为⭕。
例如,在坐标系中,圆的方程可以表示为(x-a)² + (y-b)² = r²,其中(a,b)是圆心的坐标,r是半径的长度。
2. 圆的性质(1)圆的直径是经过圆心两点的线段,长度等于圆的半径的两倍。
(2)圆心到圆上任意一点的距离都是相等的,等于半径的长度。
(3)圆被分成的两部分叫做扇形,扇形的两边是圆的两条半径。
(4)圆的周长叫做圆的周长,通常用C表示,可以用公式C=2πr计算出来,其中r是半径的长度,π是圆周率,约等于3.14。
二、圆的相关图形1. 圆的切线给定一个圆和一点P在圆外,通过点P有且仅有一条与圆相交于P的直线,这条直线叫做圆的切线。
切线与半径的夹角是直角。
2. 圆的切点切线与圆相切的点叫做圆的切点。
圆的切点与圆心连线垂直于切线。
3. 圆内接四边形如果一个四边形的四个顶点都在同一个圆上,那么这个四边形叫做圆内接四边形。
圆内接四边形的两组对边和相等。
4. 圆外接四边形如果一个四边形的四个顶点都在同一个圆的圆周上,那么这个四边形叫做圆外接四边形。
圆外接四边形的对角线相交于一点,这个点叫做四边形的对角点。
三、圆的相关定理和公式1. 圆的面积圆的面积叫做圆的面积,一般用S表示,可以用公式S=πr²计算出来。
2. 圆心角的性质(1)圆心角的度数等于所对弧的中心角的角度。
(2)一个圆的圆心角的度数等于圆的周长除以半径的长度。
3. 圆的圆心角的度数和弧长的关系(1)圆心角的度数等于弧长的度数。
(2)圆心角的弧度数等于弧长除以半径的长度。
4. 弧长和扇形面积的计算(1)弧长的计算可用公式L=2πr计算,其中r是半径的长度。
(2)扇形面积的计算可用公式S=πr² × (θ/360)计算,其中r是半径的长度,θ是圆心角的度数。
数学圆知识点总结在学习中,大家对知识点应该都不陌生吧?知识点也可以通俗的理解为重要的内容。
掌握知识点有助于大家更好的学习。
下面是小编整理的数学圆知识点总结,欢迎大家借鉴与参考,希望对大家有所帮助。
数学圆知识点总结11、圆是定点的距离等于定长的点的集合2、圆的内部可以看作是圆心的距离小于半径的点的集合3、圆的外部可以看作是圆心的距离大于半径的点的集合4、同圆或等圆的半径相等5、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆6、和已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直平分线7、到已知角的两边距离相等的点的轨迹,是这个角的平分线8、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线9、定理不在同一直线上的三点确定一个圆。
10、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧11、推论1:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
12、推论2:圆的两条平行弦所夹的弧相等13、圆是以圆心为对称中心的中心对称图形14、定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等15、推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等16、定理:一条弧所对的圆周角等于它所对的圆心角的一半17、推论:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等18、推论:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径19、推论:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形20、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角21、①直线L和⊙O相交d﹤r②直线L和⊙O相切d=r③直线L和⊙O相离d﹥r22、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线23、切线的性质定理:圆的切线垂直于经过切点的半径24、推论:经过圆心且垂直于切线的直线必经过切点25、推论:经过切点且垂直于切线的直线必经过圆心26、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角27、圆的外切四边形的两组对边的和相等28、弦切角定理:弦切角等于它所夹的弧对的圆周角29、推论:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等30、相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等31、推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项32、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项33、推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等34、如果两个圆相切,那么切点一定在连心线上35、①两圆外离d﹥R+r②两圆外切d=R+r③两圆相交R-r﹤d﹤R+r(R﹥r)④两圆内切d=R-r(R﹥r)⑤两圆内含d﹤R-r(R﹥r)36、定理:相交两圆的连心线垂直平分两圆的公共弦37、定理:把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形38、定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆39、正n边形的每个内角都等于(n-2)×180°/n40、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形41、正n边形的面积Sn=pr/2p表示正n边形的周长,r为边心距42、正三角形面积√3a2/4a表示边长43、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k(n-2)180°/n=360°化为(n-2)(k-2)=444、弧长计算公式:L=n兀R/18045、扇形面积公式:S扇形=n兀R2/360=LR/2外公切线长=d-(R+r)数学学习中常见问题分析大部分学生在学习中或多或少的都会积累一些问题,这些问题平时我们可能不是很在意,那么到了初二后就会突显出来。
圆的知识点总结简洁圆是数学中的一个重要概念,它在几何学和代数学中都有广泛的应用。
在日常生活中,我们也经常会遇到圆的形状,比如食物的盘子、球体和钟表等。
下面是一些关于圆的知识点总结。
1. 圆的定义圆是一个平面上所有到圆心的距离都相等的点的集合。
在数学上,我们用一个中心点和一个固定的距离来定义圆。
这个中心点被称为圆心,这个固定的距离被称为半径。
2. 圆的性质圆有很多独特的性质,下面我们来总结一些重要的性质:- 圆的直径是通过圆心的两个点之间的线段,它的长度恰好是圆的半径的两倍。
- 圆的周长是它的边界的长度,它等于直径乘以π。
- 圆的面积是它的内部区域的大小,它等于半径的平方乘以π。
- 任意直径被分割成两个半径相等的半圆。
3. 圆的公式圆的周长和面积有一些常用的计算公式:- 周长:C = 2πr- 面积:A = πr²4. 圆与角度圆也与角度有一些重要的关系:- 一个完整的圆被划分成360度。
- 在圆周上的角度是由半径所形成的两条射线之间的夹角。
5. 圆的变换圆可以通过平移、旋转和缩放来变换:- 平移是指将圆整体沿着平面移动,且保持大小和形状不变。
- 旋转是指将圆整体绕着圆心旋转一定的角度,且保持大小和形状不变。
- 缩放是指将圆整体按一定比例进行放大或缩小。
6. 圆的应用圆在日常生活和科学研究中有着广泛的应用,比如:- 圆的形状被用于设计轮胎、飞盘、光盘等。
- 圆的性质被用于计算机图形学、地理学等领域的模拟和测量。
- 圆的变换被用于工程设计中的建模和仿真。
以上就是关于圆的知识点总结,希望对大家有所帮助。
圆是几何学和代数学中的基础概念之一,它的性质和应用在现实生活中有着重要的意义。
在学习和工作中,我们经常会遇到各种与圆相关的问题,因此掌握圆的知识是非常重要的。
高中圆知识点总结
一、圆的基本概念
定义:圆是平面上到一个定点距离等于定长的所有点的集合。
这个定点叫做圆心,定长叫做半径。
圆心:圆所在平面内到圆内任意点的距离都相等的点。
半径:圆心到圆上任意一点的距离。
直径:通过圆心且两端都在圆上的线段。
二、圆的基本性质
圆的对称性:圆是中心对称图形,也是轴对称图形,其对称轴是任意一条经过圆心的直线。
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
三、圆与直线的位置关系
相离:直线与圆没有公共点。
相切:直线与圆有且只有一个公共点,叫做切点。
相交:直线与圆有两个公共点,叫做交点。
四、圆的方程
标准方程:(x - a)^2 + (y - b)^2 = r^2,其中(a, b)为圆心坐标,r为半径。
一般方程:x^2 + y^2 + Dx + Ey + F = 0,其中D^2 + E^2 - 4F > 0。
五、与圆有关的计算
圆的周长:C = 2πr,其中r为圆的半径。
圆的面积:S =
πr^2,其中r为圆的半径。
六、与圆相关的定理和推论
切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。
割线长定理:从圆外一点引圆的两条割线,它们的割线长满足一定的比例关系。
以上是高中圆的主要知识点总结。
在学习圆的过程中,应注重理解概念、掌握性质、熟悉定理,并结合具体的题目进行练习,以加深对知识点的理解和应用。
圆的知识点归纳圆作为几何学中的重要概念之一,其知识点包括圆的定义、圆的特性、圆的元素以及圆的相关定理。
下面将对这些内容进行详细归纳。
一、圆的定义圆是由平面上距离一个确定点距离相等的所有点构成的集合。
这个确定点称为圆心,所有在圆心到圆上任意一点的线段都称为半径,而半径之间的距离称为圆的直径,圆的直径等于半径的两倍。
二、圆的特性1. 圆的所有点到圆心的距离相等,因此圆上的任意两点之间的距离也相等。
2. 圆是一个封闭的曲线,内部和外部分别称为圆的内部和圆的外部。
3. 圆的内部点与圆心的距离小于半径,外部点与圆心的距离大于半径。
三、圆的元素1. 圆心:圆心是圆的核心,标志着整个圆的位置。
2. 半径:半径是从圆心到圆上任意一点的线段,所有半径的长度相等。
3. 直径:直径是连接圆上两个点且通过圆心的线段,直径等于半径的两倍。
4. 圆周:圆上所有点组成的曲线称为圆周,并围绕着圆心。
5. 弧:圆周上的一段连续的曲线部分称为弧,两个端点分别为弦。
四、圆的相关定理1. 弧度与弧长的关系:弧度是角度的一种衡量方式,在圆内以半径长度作为圆心角所对应的弧长为1弧度。
2. 圆的面积:圆的面积公式为πr²,其中r为半径。
3. 圆周长:圆的周长公式为2πr,其中r为半径。
4. 切线定理:一个切线与半径所构成的角为直角。
5. 弧长定理:在同一圆周上的两个弧所对应的圆心角相等时,它们所对应的弧长也相等。
总结:圆是几何学中重要的基本概念之一,它具有独特的定义和特性。
除此之外,掌握圆的元素和相关定理对于解决与圆相关的问题具有重要意义。
因此,对于圆的知识点进行归纳总结,有助于我们更好地理解和应用圆的概念。
《圆》数学知识点归纳总结《圆》数学知识点归纳总结在我们平凡的学生生涯里,是不是经常追着老师要知识点?知识点就是学习的重点。
为了帮助大家掌握重要知识点,下面是小编为大家整理的《圆》数学知识点归纳总结,仅供参考,大家一起来看看吧。
《圆》数学知识点归纳总结篇1一、认识圆1、圆的定义:圆是由曲线围成的一种平面图形。
2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
一般用字母O表示。
它到圆上任意一点的距离都相等.3、半径:连接圆心到圆上任意一点的线段叫做半径。
一般用字母r表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4、直径:通过圆心并且两端都在圆上的线段叫做直径。
一般用字母d表示。
直径是一个圆内最长的线段。
5、圆心确定圆的位置,半径确定圆的大小。
6、在同圆或等圆内,有无数条半径,有无数条直径。
所有的半径都相等,所有的直径都相等。
7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的。
用字母表示为:d=2r或r=8、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。
折痕所在的这条直线叫做对称轴。
(经过圆心的任意一条直线或直径所在的直线)9、长方形、正方形和圆都是对称图形,都有对称轴。
这些图形都是轴对称图形。
10、只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。
只有2条对称轴的图形是:长方形只有3条对称轴的图形是:等边三角形只有4条对称轴的图形是:正方形;有无数条对称轴的图形是:圆、圆环。
二、圆的周长1、圆的周长:围成圆的曲线的长度叫做圆的周长。
用字母C表示。
2、圆周率实验:在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,求出圆的周长。
发现一般规律,就是圆周长与它直径的比值是一个固定数(π)。
3.圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。
用字母π(pai)表示。
(1)、一个圆的周长总是它直径的3倍多一些,这个比值是一个固定的数。
高中数学圆知识点总结一、圆的基本概念1. 圆的定义:圆是由平面上到一个定点的距离等于常数的所有点的集合所组成的图形。
这个定点叫做圆心,这个常数叫做圆的半径。
2. 圆的符号表示:我们通常用一个大写字母表示圆心,用小写字母 r 表示半径,从而表示某个圆为原点 O ,半径为 r 的圆为∠O(r) 。
3. 圆的元素:圆由圆心、半径以及圆上的所有点组成,这些点到圆心的距离都等于半径的长度。
二、圆的基本性质1. 圆的直径:圆上任意两点间的最长距离叫做圆的直径,圆的直径等于圆的半径的二倍。
2. 圆周率:圆周率是一个无理数,通常用符号π 来表示,它的近似值是3.14159 ,是圆周长和直径之比的数学常数。
3. 圆的周长:圆的周长等于圆的直径乘以π ,也可以用公式表示为:C=2πr 。
4. 圆的面积:圆的面积等于π 乘以圆的半径的平方,也可以用公式表示为:S=πr^2 。
5. 弧长和扇形面积:圆的一部分叫做圆弧,圆弧的长度叫做弧长,弧长和圆的周长的比值等于弧所对的圆心角的比值;圆的一部分叫做扇形,扇形的面积等于扇形所对的圆心角的比值。
三、圆的相关定理1. 圆心角的性质:圆心角是圆上的一个角,它的顶点在圆心上,它的两条边都是圆的弧。
圆心角的大小可以用角度或弧度表示,弧度是圆的一种度量单位,弧长等于半径乘以圆心角的弧度。
弧长和弧所对的圆心角的关系,用公式表示为:L=rθ 。
2. 弦的性质:弦是圆上的一段线段,它的两端都在圆上,弦也可以看做是圆上的一个弧。
弦的性质包括:两条相等的弧所对的弦也是相等的;圆的直径是圆的最长弦,且它恰好把圆分成两个相等的半圆。
3. 切线的性质:切线是指平面上的一条直线,它只与圆相交于一点,这个点叫做切点。
切线和半径的垂直平分线相交于圆上的切点处成直角,切线和圆心之间的连线是切线的切线长。
4. 正弦定理和余弦定理:这两个定理属于三角形和圆的结合性质,它们可以用来求解三角形和圆的面积。
四、圆的相关应用1. 圆和直线的位置关系:圆和直线的位置关系有着许多重要的定理和知识点,这些知识点在几何、代数和三角等领域都有着广泛的应用,学习和掌握它们对我们解题和理解圆的相关性质是非常重要的。
数学圆的知识点总结圆是数学中一个非常重要的几何形状,它在许多数学分支和实际应用中都起着重要作用。
圆的属性和公式有很多,下面是关于圆的一些重要知识点的总结。
一、基本概念:1. 圆的定义:圆是由平面上所有到一个固定点距离相等的点组成的集合。
2. 圆的元素:圆心是固定点,表示为O;半径是圆心到圆上任意一点的距离,表示为r。
圆的直径是通过圆心并且两端点在圆上的线段,长度为2r。
3. 弧和弦:圆上两点之间的弧是由这两点所确定的圆上的一段曲线。
圆上的弦是将圆分成两部分的线段。
4. 圆周角和弧长:圆周角是以圆心为顶点的角度。
弧长是弧所对应的圆周的长度。
5. 弦割定理和切线定理:弦割定理指出,一个割线和它所截的弦的长度的乘积等于该割线所截圆周的两个弧的长度的乘积。
切线定理指出,切线和它所截圆所对应的弧长相等。
二、关系式和公式:1. 圆的周长:圆的周长是圆周的长度,可以通过公式C = 2πr计算,其中π是一个数学常量,约等于3.14159。
2. 圆的面积:圆的面积是圆内部的区域,可以通过公式A =πr²计算。
3. 弧长和圆心角的关系:弧长和圆心角的关系由弧长公式给出,公式为L = rθ,其中L是弧长,r是半径,θ是对应的圆心角的度数(或弧度)。
4. 弧度制和角度制:圆的角度可以用角度制和弧度制来表示。
常用的角度单位是度,一个圆的角度为360度。
弧度是另一种表示角度的单位,一个圆的角度为2π弧度。
5. 圆的位置关系:两个圆的位置关系包括相交、外切、内切和相离。
相交指的是两个圆有公共的点;外切指的是两个圆的外切切点在一条直线上;内切指的是一个圆完全位于另一个圆内部;相离指的是两个圆没有公共的点。
三、圆的相关定理:1. 定理1:等腰直角三角形的斜边是一个半径,底边是半径的根号2倍。
即,等腰直角三角形的斜边长度等于半径的根号2倍。
2. 定理2:以一个直径为边的正方形可以内切于一个圆。
3. 定理3:切线与半径的关系。
中考数学圆知识点总结5篇篇1一、圆的定义圆是由所有到定点距离等于定长的点组成的封闭曲线,这个定点称为圆心,定长称为半径。
圆有无数条对称轴,对称轴经过圆心。
圆具有旋转对称性,任意绕圆心旋转一定的角度都可能与原来的圆重合。
二、圆的性质1. 圆心距性质:任意两个圆的圆心距离等于两圆半径之和的,两圆外离;任意两个圆的圆心距离等于两圆半径之差的,两圆内含;任意两个圆的圆心距离小于两圆半径之和但大于两圆半径之差的,两圆相交。
2. 切线性质:圆的切线垂直于经过切点的半径。
切线长定理:从圆外一点引圆的两条切线,它们的切线长相等。
3. 圆的幂性质:如果两条弦与同一条直径垂直,那么这两条弦所对的直径段相等。
4. 圆锥曲线性质:以圆锥的底面直径为长轴,以圆锥的高为短轴的椭圆,叫做圆锥椭圆。
圆锥椭圆的两焦点是圆锥的底面圆心和顶点。
双曲线类似。
三、圆的应用1. 在建筑设计中,可以利用圆的旋转对称性,设计出美观大方的建筑外观。
如圆形广场、圆形剧场等。
2. 在机械制造中,许多零部件都是圆形或环形的设计,如轴承、齿轮等。
这些零部件的精确制造和安装对于整个机械的性能和稳定性至关重要。
3. 在电子科技领域,许多电子元件和电路板都是基于圆形或环形的布局设计,如电容、电感等。
这些元件的形状和布局对于电子设备的功能和性能有着重要影响。
4. 在生物学和医学领域,许多生物体的结构和器官都是圆形或近似的圆形设计,如人体的大脑、心脏等。
对于这些结构和器官的研究和理解,有助于我们更好地认识生命的奥秘。
四、圆的解题技巧1. 圆的题目中,常常会出现一些隐含的条件,如切线的性质、圆的幂性质等。
我们需要认真分析题目中的条件,找出这些隐含的条件,并加以利用。
2. 对于一些复杂的题目,我们可以利用几何软件进行辅助分析,如使用CAD软件进行绘图分析,可以帮助我们更好地理解题意和解题思路。
3. 在解题过程中,我们需要注重几何语言的准确性和规范性,避免出现混淆概念、计算错误等问题。
表格式《圆》知识点总结归纳一、圆的基本概念1. 定义:平面上到定点的距离等于定长的所有点组成的图形叫做圆。
定点称为圆心,定长称为半径。
2. 组成:圆心、半径、直径、弦、优弧、劣弧、圆内接图形。
二、圆的性质1. 弦长性质:弦长与半径的关系:弦长的一半=内心到弦的距离;即:L/2=d-r;即:L=d-r或L=2r-d。
2. 垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
3. 圆周角性质:在同圆或等圆中,同弧(或等弧)所对的圆周角相等,都等于这条弧所对的圆心角的一半。
三、圆的画法1. 用铅笔和尺子画圆时,应先确定圆心的位置,再以任意长度为半径,画圆的过程要保持圆规的针脚与铅笔线重合,以免画出的圆不标准。
2. 用圆规画圆时要注意半径确定方法:以半径为边长画正方形,正方形的对角线即为圆的直径,再在直径上量取一段距离即为圆的半径。
四、圆的计算公式1. 圆的面积S=πr²;圆的周长C=2πr;半圆的周长C=πr+2r;半圆面积S=πr²/2。
2. 与圆有关的最值:圆的性质在解有关与距离、直线与圆、圆与圆相切等综合问题时,要充分运用其性质解题,尤其要利用圆心的性质解题,难度适中。
五、重点问题及方法1. 综合法:从已知条件出发,借助图形,利用定义、定理和公理,有时需要添加辅助线,推出一些结论并加以利用,从而得到题目的答案。
这种方法比较灵活,要求有较高的分析问题和解决问题的能力。
2. 面积法:利用圆的面积公式将一些涉及求线段长度的问题转化为解三角形的问题,从而利用勾股定理来解决。
这种方法需要学生熟练掌握解三角形的知识。
3. 参数法:通过建立平面直角坐标系,用参数方程表示图形,将一些涉及求点的坐标的问题转化为方程的问题来解决。
这种方法能够比较直观地表示图形的几何意义,简化运算过程。
六、例题分析【例1】如图,AB是⊙O的直径,AC是弦,∠BAC的平分线交⊙O 于点D,求证OD‖BC。
圆的知识点公式总结一、圆的定义和性质圆是平面上到一个固定点距离等于一个常数的所有点的集合。
这个固定点叫做圆心,这个常数叫做圆的半径。
圆的定义非常简单,但却涵盖了许多有趣的性质。
1. 圆心和半径:圆心是圆的中心点,通常表示为O。
圆的半径是指从圆心到圆上任意一点的距离,通常表示为r。
2. 直径:圆上任意两点连线的长度叫做直径,通常表示为d,直径的长度等于半径的两倍,即d=2r。
3. 弧长和圆心角:圆上的一段弧对应于圆心的一个角度,称为圆心角。
圆心角的度数等于弧长所占据的圆周角的度数。
圆周角是360度。
4. 切线和切点:与圆相切的直线称为切线,切点是切线和圆相交的点。
切线与半径的夹角等于90度。
5. 正割线、割线和弦:穿过圆的直线称为割线。
穿过圆的直线的延长线称为正割线。
圆上两点之间的线段称为弦。
6. 垂径定理:如果一个弦上的两个垂直平分线相交于圆心,则这两条垂直平分线互相垂直。
7. 直径定理:如果一个四边形的一条对角线是这个四边形所在的圆的直径,则这个四边形是一个直角四边形。
以上是圆的基本定义和性质,通过这些性质,我们可以推导出一些有用的定理和公式。
二、圆的相关定理1. 圆的面积公式:圆的面积等于π乘以半径的平方,即A=πr²。
2. 圆的周长公式:圆的周长等于直径乘以π,即C=πd=2πr。
3. 圆心角定理:同一个圆内的圆心角所对的弧长是相等的。
4. 正切定理:相切直线与同一条过圆心的直径相交的角相等。
5. 圆的切线定理:切线和半径的夹角是直角,切线的长度等于切点到圆心的距离。
6. 垂径定理:如果两条垂直平分线相交于圆心O,则这两条平行线的公共部分即为弦AB的中点。
这些定理和公式为解决圆相关问题提供了重要的依据和方法。
三、圆的参数方程圆的参数方程通常用来描述一个圆的轨迹。
当圆的圆心在坐标轴上时,圆的参数方程可以表示为:x = r·cosθy = r·sinθ其中r表示圆的半径,(x,y)表示圆上任意一点的坐标,θ表示这个点所在的角度。
圆的知识点总结(一)圆的有关性质[知识归纳]1.圆的有关概念:圆、圆心、半径、圆的内部、圆的外部、同心圆、等圆;弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧、弓形、弓形的高;圆的内接三角形、三角形的外接圆、三角形的外心、圆内接多边形、多边形的外接圆; 圆心角、圆周角、圆内接四边形的外角。
2.圆的对称性圆是轴对称图形,经过圆心的每一条直线都長它的对称轴,圆有无数条对称轴;圆是以圆心为对称中心的中心对称图形;圆具有族转不变性。
3.圆的确定不在同一条直线上的三点确定一个圆。
4.垂直于弦的直径垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧;推论1(1)平分弦(不長直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。
垂径定理及推论1可理解为一个圆和一条直线具备下面五个条件中的任意两个,就可推出另外三个:①过圆心;②垂直于弦;③平分弦(不長直径);④平分弦所对的优弧;⑤平分弦所对的劣弧。
推论2圆的两条平行弦所夹的弧相等。
5.圆心角、弧、弦.弦心距之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等;所对的弦的弦心距相等。
推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。
此定理和推论可以理解成:在同圆或等圆中,满足下面四个条件中的任何一个就能推出另外三个:①两个圆心角相等;②两个圆心角所对的弧相等;③两个圆心角或两条弧所对的弦相等;④两条弦的弦心距相等。
圆心角的度数等于它所对的弧的度数。
6.圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半;推论1同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等;推论2半圆(或直径)所对的圆周角是直角;90。
的圆周角所对的弦是直径;推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
圆周角的度数等于它所对的弧的度数的一半。
7.圆内接四边形的性质圆内接四边形的对角互补,并且任何一个外角都等于它的内对角。
探8・轨迹轨迹符合某一条件的所有的点组成的图形,叫做符合这个条件的点的轨迹。
(1)平面内,到一定点的距离等于定长的点的轨迹,是以这个定点为圆心,定长为半径的圆;(2)平面内,和d知线段两个端点的距离相等的点的轨迹,是这条线段的垂直平分线;(3)平面内,到巳知角两边的距离相等的点的轨迹,是这个角的平分线。
[例题分析]例1・已知:如图1,在中,半径0M丄弦AB于点N。
图1①若AB=2筋,ON=1,求MN的长;②若半径OM=R, ZAOB=120°,求MN的长。
解:①I AB= 2丽,半径0M1AB, ・•・AN=BN=厲•••0N二1,由勾股定理得0A=2/.MN=0M-0N=0A-0N=l②•••半径0M丄AB,且ZA0B=12 0° AZAOM=6 0 °VON=OA • cosZ AON=OM • c o s6 0 °MN 二OM-ON 二R 丄R 二• 2 2 • e 说明:如图 1, 一般地,若ZAOB= 2n° , OM 丄AB 于 N, A0=R,0N=h,则 AB= 2 2J 去2 —讣,MN=R-hi J M = —Rsin n° =2htan n° = 18°例2.已知:如图2,在厶ABC 中,ZACB=90° ,ZB=2 5° ,以点C 为圆心、AC 为半径 作©C,交AB 于点D,求显的度数。
图2分析:因为弧与垂径定理有关;与圆心角、圆周角有关;与弦、弦心距有关;弧与弧之间 还存在着和、差、倍、半的关系,因此这道题有很多解法,仅选几种供参考。
解法一:(用垂径定理求)如图2—1,过点C 作CE 丄AB 于点E,交卫Q 于点F 。
XVZACB=9 0° , ZB 二25° , A ZFCA=2 5 °:・AF 的度数为25° ,・••月。
的度数为5 0。
o解法二:(用圆周角求)如图2-2,延长AC 交。
C 于点E,连结ED n n.・.DF = AP图2-2TAE 是直径,-,.ZADE=90°VZACB=90° ,ZB=25° , .\ZE=ZB=25°・•・显的度数为50°。
解法三:(用圆心角求)如图2-3,连结CDVZACB=90° ,ZB=25° , AZA= 6 5°VCA= C D , :. ZADC=ZA=65°AZACD=5 0 ° ,・・.2 的度数为50 ° .例3.已知:如图3, A ABC内接于©0且AB=AC,O 0的半径等于6cm, O点到BC的距离0D 等于2cm,求AB的长。
析:因为不知道ZA是锐角还是钝角,因此圆心有可能在三角形内部,还可能在三角形外部,所以需分两种情况进行讨论。
略解:(1)假若ZA是锐角,ZUBC是锐角三角形。
如图3,由AB=AC,可知点A是优弧品的中点,因为0D丄BC且AB=AC,根据垂径定理推论可知,D0的延长线必过点A,连结B0 VB0= 6 , 0D=2.・.BD = J OB2-OD2 = - 22二4A/2在Rt AADB 中,AD=D0+A0=6+2=8... AB = J AD2 + BD1 =也2十(牛挖尸=4丽伽)⑵若ZA長钝角,则AABC長钝角三角形,如图3 — 1添加辅助线及求出汕=4血,在R tAADB 中,AD=AO-DO=6-2=4... Afi= 4AD2 + BD2 = J42 +(牛爲乎=牛石伽)综上所述AB=4叫辰滋或= * 民眈小结:凡是与三角形外接圆有关的问题,一定要首先判断三角形的形状,确定圆心与三角形的位置关系,防止丢解或多解。
例4.已知:如图4, AB是O0的直径,弦CD丄AB,F*CD延长线上一点,AF交©0 于E。
求证:AE・EF=EC・ED图4分析:求证的等积式AE・EF=EC・ED中,有两条线段EF. ED在AEDF中,另两条线段AE、EC没有在同一三角形中,欲将其置于三角形中,只要添加辅助线AC,设法证明AFED^ACEA即可。
证明:连结AC•・•四边形DEAC内接于圆:.ZFDE=ZCAE, Z FED =ZDCAn n丁直径AB丄CD, 二比・・・ Z D C A=Z C EA,・•・ ZF E D=ZCEA•\AFED^ACEADE _ EF:.AS EC ,A E ・ EF= EC ・ ED小结:四边形内接于圆这一条件,常常不是在已知条件中明确给出的,而是隐含在图形之中,在分析已知条件时,千万不要忽略这一重要条件。
例5 •已知:如图5, AM是00的直径,过00上一点B作BN丄AM,垂足为N,其延长线交00于点C,弦CD交AM于点E。
(1)如果CD丄AB,求证:EN=NM;(2)如果弦CD交AB于点F,且C D=AB,求证CE2=EF・ED;(3)如果弦CD绕点C旋转,并且与AB的延长线交于点F,且CD=AB,那么(2)的结论是否仍成立?若成立,请证明;若不成立,请说明理由。
证明:(1)连结BM(如图5-1)图5 -3证明:仿(2)可证△ ABE^AACE.\BE=CE,且ZABE=ZACE又VAB=CD, :.AS=CD:.ZACB=ZDBC, ・・・BD 〃ACAZBDE+ZACE=180°而 ZFBE+ZABE=18 0° ・・・ZBDE=ZFBE,而ZBED A 公共角AABED^AFEB A BE 2=EF ・ ED, ACE 2=EF ・ ED(二)直线与圆的关系1. 直线与圆的位置关系 图5—1TAM 是直径,A ZABM=90°TCD 丄AB, •••BM 〃CD・・.ZECN=ZMBN,又AM 丄BC, A CN=BN・•・ RtACEN^RtABMN, AEN=NM(2)连结 BD, BE,AC(如图 5-2)图5-2•••点E 是BC 垂直平分线AM 上一点,ABE=EC n n n nTCD=AB, =屈, A ZACD=ZBDC,又 AB=AC, AE=AE•\AABE^AACE, .•- ZABE=ZACD = ZBDC •・・ZBED 長公共角,•••△BED S A FE B ABE 2=EF・ ED, Z.CE 2=EF ・ ED(3)结论成立。
如图5-32.经过半径的外端并且垂直于这条半径的直线是圆的切线。
3.切线的性质(1)圆的切线垂直于经过切点的半径;(2)推论1经过圆心且垂直于切线的直线必经过切点;(3)推论2经过切点且垂直于切线的道线必经过圆心。
此定理及推论可理解为以下三个条件中任知其中两个就可推出第三个:①垂直于切线;②经过切点;③经过圆心。
4.切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。
5.弦切角定理(1)弦切角等于它所夹的弧对的圆周角;(2)推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等;(3)弦切角的度数等于它所夹的弧的度数的一半。
6.和圆有关的比例线段(1)相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等;(2)推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项;(3)切割线定理从圆外一点引圆的切线和割线■切线长長这点到割线与圆交点的两条线段长的比例中项;(4)推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。
7.三角形的内切圆(1)有关概念:三角形的内切圆、三角形的内心、圆的外切三角形、多边形的内切圆、圆的外切多边形;(2)作图:作一个圆,使它和巳知三角形的各边都相切。
[例题分析]例&巳知:如图6, AB是00的直径,C長AB延长线上一点,CG切00于D,DE丄AB于E。
求证:ZCDB=ZEDB。
(1)直径上的圆周角是直角。
若连结AD,则得RtAABD;C C C C(2)垂径定理。
如图6 - 2 ,若延长D E交©0于F,则可得DE=EF, , AD= AF;(3)过直径外端的切线与直径垂直。
如图6-3,若过B点作©0的切线BM,则AB丄BM。
由CD是©0的切线,联想到切线的三个性质:⑴过切点的半径垂直于切线。
如图6—1,若连结0D,则0D丄CD;(2)弦切角等于它所夹的弧对的圆周角。
若连结AD,则ZCDB=ZA;(3)切割线定理。