三角高程测量原理
- 格式:docx
- 大小:37.03 KB
- 文档页数:1
三角高程测量
一、三角高程测量原理
(一)适用于:地形起伏大的地区进行高程控制。
实践证明,电磁波三角高程的精度可以达到四等水准的要求。
(二)原理
注意:当两点距离较大(大于300m )时:
1、 加球气差改正数:
B 点的高程:
AB A B h H H += l
i S h l i D h AB AB -+=-+=ααsin tan
即有: 2、可采用对向观测后取平均的方法,抵消球气差的影响。
球差为正,气差为负
二、三角高程测量的观测和计算
①安置经纬仪于测站上,量取仪高i 和目标高s 。
读 至0.5cm ,量取两次的结果之差≤1cm 时,取平均值。
②当中丝瞄准目标时,将竖盘指标水准管气泡居中,读取竖盘读数。
必须以盘左、盘右进行观测。
③竖直角观测测回数与限差应符合规定。
④用电磁波测距仪测量两点间的倾斜距离D ’,或用三角测量方法计算得两点间的水平距离D 。
f
l Dtg i h AB +-+=α即有: R
D f 243.0=。
三角高程测量法的基本原理与实施步骤高程测量是地理测量中的一个重要组成部分,它是确定地点在垂直方向上的高度差,从而推导出地形的起伏和变化情况。
三角高程测量法是一种常用且较为精确的高程测量方法之一,本文将介绍三角高程测量法的基本原理与实施步骤。
一、三角高程测量法的基本原理三角高程测量法基于三角形的相似性原理,它通过一个已知高度的基准点和两个相邻点之间的水平距离来计算出相邻点的高度差。
其基本原理如下:1. 角度测量:首先,我们需要测量出两个相邻点相对于基准点的水平方向的角度。
这可以通过定向测量仪等测量设备来完成。
测量精度要求高时,可以使用全站仪等高精度仪器。
2. 距离测量:在角度测量完成后,我们需要通过测距仪、测距杆等工具测量出基准点和相邻点之间的水平距离。
测距精度将直接影响测量结果的准确性。
3. 高度差计算:测量完成后,我们可以利用三角形的相似性原理,根据已知的角度和距离计算出两个相邻点的高度差。
具体计算方式是利用三角函数中的正切函数来求解高度差。
二、三角高程测量法的实施步骤实际进行三角高程测量时,我们需要按照一定的步骤来进行,以确保测量结果的准确性和可靠性。
下面是三角高程测量法的实施步骤:1. 确定基准点:首先,我们需要选择一个已知高度的基准点。
这个基准点可以是大地水准点、气象台、水坝等高程已知的地物。
在选择基准点时,需要考虑地理位置的便利性和高程的稳定性。
2. 设置测量站:在确定基准点后,我们需要设置测量站点,并在测量站点上安装测量设备,如全站仪等。
测量站点的选择应考虑到地势的平坦性和视线的通畅性,以确保能够准确测量角度和距离。
3. 开展测量:在测量站点设置完毕后,我们可以开始进行角度和距离的测量工作。
首先,利用测量设备测量出基准点和相邻点之间的水平角度;然后,利用测距仪等设备测量出基准点和相邻点之间的水平距离。
4. 计算高度差:在完成测量后,我们可以根据已知的角度、距离和基准点的高度,利用三角函数的运算来计算出相邻点的高度差。
§4-6 三角高程测量一、三角高程测量原理及公式在山区或地形起伏较大的地区测定地面点高程时,采用水准测量进行高程测量一般难以进行,故实际工作中常采用三角高程测量的方法施测。
传统的经纬仪三角高程测量的原理如图4-12所示,设A点高程及AB两点间的距离已知,求B点高程。
方法是,先在A点架设经纬仪,量取仪器高i;在B点竖立觇标(标杆),并量取觇标高L,用经纬仪横丝瞄准其顶端,测定竖直角δ,则AB两点间的高差计算公式为:故(4-11)式中为A、B两点间的水平距离。
图4-12 三角高程测量原理当A、B两点距离大于300m时,应考虑地球曲率和大气折光对高差的影响,所加的改正数简称为两差改正:设c为地球曲率改正,R为地球半径,则c的近似计算公式为:设g为大气折光改正,则g的近似计算公式为:因此两差改正为:,恒为正值。
采用光电三角高程测量方式,要比传统的三角高程测量精度高,因此目前生产中的三角高程测量多采用光电法。
采用光电测距仪测定两点的斜距S,则B点的高程计算公式为:(4-12)为了消除一些外界误差对三角高程测量的影响,通常在两点间进行对向观测,即测定hAB和hBA,最后取其平均值,由于hAB和hBA反号,因此可以抵销。
实际工作中,光电三角高程测量视距长度不应超过1km,垂直角不得超过15°。
理论分析和实验结果都已证实,在地面坡度不超过8度,距离在1.5km以内,采取一定的措施,电磁波测距三角高程可以替代三、四等水准测量。
当已知地面两点间的水平距离或采用光电三角高程测量方法时,垂直角的观测精度是影响三角高程测量的精度主要因素。
二、光电三角高程测量方法光电三角高程测量需要依据规范要求进行,如《公路勘测规范》中光电三角高程测量具体要求见表4-6。
表4-6 光电三角高程测量技术要求往返各注:表4-6中为光电测距边长度。
对于单点的光电高程测量,为了提高观测精度和可靠性,一般在两个以上的已知高程点上设站对待测点进行观测,最后取高程的平均值作为所求点的高程。
三角高程测量1 三角高程测量的基本原理三角高程测量是通过观测两点间的水平距离和天顶距(或高度角)求定两点间的高差的方法。
它观测方法简单,不受地形条件限制,是测定大地控制点高程的基本方法。
目前,由于水准测量方法的发展,它已经退居次要位置,但在山区和丘陵地带依然被广泛采用。
在三角高程测量中,我们需要使用全站仪或者经纬仪测量出两点之间的距离(水平距离或者斜距和高度角,以及测量时的仪器高和棱镜高,然后根据三角高程测量的公式推算出待测点的高程。
由图中各个观测量的表示方法,AB两点间高差的公式为:h=S0tanα+i1-i2 ①但是,在实际的三角高程测量中,地球曲率、大气折光等因素对测量结果精度的影响非常大,必须纳入考虑分析的范围。
因而,出现了各种不同的三角高程测量方法,主要分为:单向观测法,对向观测法,以及中间观测法。
1.1 单向观测法单向观测法是最基本最简单的三角高程测量方法,它直接在已知点对待测点进行观测,然后在①式的基础上加上大气折光和地球曲率的改正,就得到待测点的高程。
这种方法操作简单,但是大气折光和地球曲率的改正不便计算,因而精度相对较低。
1.2 对向观测法对向观测法是目前使用比较多的一种方法。
对向观测法同样要在A点设站进行观测,不同的是在此同时,还在B点设站,在A架设棱镜进行对向观测。
从而就可以得到两个观测量:直觇:hAB= S往tanα往+i往-v往+c往+r往②反觇:hBA= S返tanα返+i返-v返+c返+r返③S——A、B间的水平距离;α——观测时的高度角;i——仪器高;v——棱镜高;c——地球曲率改正;r——大气折光改正。
然后对两次观测所得高差的结果取平均值,就可以得到A、B两点之间的高差值。
由于是在同时进行的对向观测,而观测时的路径也是一样的,因而,可以认为在观测过程中,地球曲率和大气折光对往返两次观测的影响相同。
所以在对向观测法中可以将它们消除掉。
h=0.5(h AB- h BA=0.5[( S往tanα往+i往-v往+c往+r往-( S返tanα返+i返-v返+c返+r返]=0.5(S往tanα往-S返tanα返+i往-i返+v返-v往④与单向观测法相比,对向观测法不用考虑地球曲率和大气折光的影响,具有明显的优势,而且所测得的高差也比单向观测法精确。
三角高程测量原理讲解学习三角高程测量的原理基于三角形的几何性质和三角函数的运用。
三角高程测量中,我们通常选择一个具有高程已知的点作为起始点,再选择一个观测点作为目标点,然后使用测量仪器测量起始点和目标点之间的距离差和水平角差,从而推算目标点的高程。
1.设置基线:首先需要选择一个距离目标点较近的、地势相对较平坦的观测站点作为起始点,同时在观测站点上安装测量仪器,将其与目标点连线称为基线。
2.观测距离:在起始点测量仪器上安装测距仪,通过观测距离仪器测量起始点到目标点的水平距离。
测量时需要注意排除大气折射和大地曲率的影响,采用纠正方法对测量结果进行修正。
3.观测角度:在起始点测量仪器上安装测角仪,通过观测角度仪器测量起始点到目标点的水平角度差。
测角仪器可以测量水平方向的角度差,也可以测量垂直方向的角度差,根据具体情况选择合适的仪器。
4.计算高程差:根据观测距离和角度,可以使用三角函数计算出目标点的高程差。
其中,观测距离和角度差可以通过观测仪器直接读取,高程差的计算可以使用正弦定理、余弦定理等方法进行计算。
需要注意的是,在三角高程测量中,观测站点和目标点之间的距离差通常比较小,所以需要选用高精度的测距和测角仪器,同时在实际操作中也需要注意测量时的环境因素,如大气状态、地球引力等对测量结果的影响。
此外,三角高程测量还可以通过建立高程网,将多个观测点连接起来,依次进行三角高程测量,从而形成一个相对完整的高程测量网,对于大范围的地理位置高程测量具有较高的精度和可靠性。
总结起来,三角高程测量原理是一种通过测量观测站点与目标点之间的距离差和水平角差,然后利用三角函数的运算,来计算目标点的高程差的方法。
它是一种常用且有效的测量方法,可以用于山区、河流等地形复杂的区域,具有较高的精度和可靠性。
在实际操作中,需要选用高精度的测距和测角仪器,并注意环境因素对测量结果的影响。
通过建立高程网,可以拓展三角高程测量的应用范围,获得更全面的高程信息。
三角高程测量原理
三角高程测量原理是通过测量不同位置的角度来计算地面上的高程差。
这个原理是基于三角形的性质,根据三角形的内角和外角之间的关系,可以推导出高程差的计算公式。
测量过程中,需要选取两个测量点A和B,并在这两个点之间选择一个基准点O。
然后,用仰角仪或望远镜等测量工具,分别测量AOB、BOA和AOB三个角的大小。
测量出这三个角度后,可以根据三角形的内角和外角之间的关系来计算高程差。
根据三角形的内角和外角之间的关系,可以得到如下公式:
AOB + BOA + AOB = 180°
将测量的角度代入公式中,可以得到:
AOB + BOA + AOB = 180°
2AOB + BOA = 180°
AOB = (180° - BOA) / 2
根据这个公式,可以计算出AOB的角度,然后利用三角函数计算出高程差。
具体的计算方法可以根据具体的测量设备和测量要求进行选择和调整。
总之,三角高程测量原理是一种通过测量角度来计算地面高程
差的方法。
它利用了三角形的性质,通过测量不同位置的角度来计算地面高程差,可以广泛应用于地质勘探、土地测量和工程测量等领域。
三角高程测量原理
三角高程测量原理在测绘学中非常重要,是测绘学的基础。
它提供了一种通过测量三角形的高程计算地面多点的高程坐标的简单方法。
它的主要原理是利用三角测量法解决问题,通过测量三角形的高程或角度,利用三角关系计算出另一点的高程。
它是一种测量地形高程的方法,也是在测绘中测量水准高程的基本原理。
通过测量三角形的高程,利用三角关系计算另一点的高程,从而实现测量地形高程,或是建筑物高程的测量。
测量三角高程的具体实施方法是:首先,选择一个容易测量的基准点的位置,并用水准仪确定基准点的高程。
接着,在该基准点附近的三个点处测量视距。
然后,使用给定的数据计算三个点的高程。
最后,用计算出来的三个点的高程,计算出待测点的高程,同时校正基准点的高程,最终完成测量。
同时,也可以根据高差测量角度,求出另外两个点的高程。
人们首先测量两个点的视距,然后测量在中间点处的高差,最后通过测量视距和高差计算出另外两个点的高程。
三角高程测量的原理和方法是测量学的重要组成部分,它的应用非常广泛。
它可以应用于道路高程测量、提供建筑物高程信息等等。
因此,三角高程测量原理是测绘学中极其重要的一部分,也是使得测量测绘施工时做出更精确测量结果的基本方法。
由于三角高程测量算法的简单性,它可以应用于各种地理测量服务,从规划到施工再到监测和管理,都能得到重大的支持。
三角高程测量的经典总结---------------------------------------------------------------最新资料推荐------------------------------------------------------ 三角高程测量的经典总结2. 4 三角高程 2. 4. 1 三角高程测量原理 1、原理三角高程测量的基本思想是根据由测站向照准点所观测的垂直角(或天顶距)和它们之间的水平距离,计算测站点与照准点之间的高差。
这种方法简便灵活,受地形条件的限制较少,故适用于测定三角点的高程。
三角点的高程主要是作为各种比例尺测图的高程控制的一部分。
一般都是在一定密度的水准网控制下,用三角高程测量的方法测定三角点的高程。
如下图:现在计划测量 A、 B 间高差, 在 A 点架设仪器, B 点立标尺。
量取仪器高,使望远镜瞄准B 上一点M,它距B 点的高度为目标高,测出水平和倾斜视线的夹角,若 A、 B 水平距离 S 已知,则:注意:上式中可根据仰角或俯角有正负值之分,当取仪器高=目标高时,计算就方便了。
在已知点架站测的高差叫直占、反之为反战。
2、地球曲率与大气对测量的影响我们在水准测量中知道,高程的测量受地球曲率的影响,仪器架在中间可以消除,三角1 / 7高程也能这样,但是对于一些独立交会点就不行了。
三角高程还受大气折射的影响。
如图:加设 A 点的高程为, 在 A 点架设仪器测量求出 B 点的高程。
如图可以得出但如图有两个影响:1)、地球曲率,在前面我们已经知道,地球曲率改正2)、大气折射不易确定,一般测量中把折射曲线近似看作圆弧,其平均半径为地球半径的 6~7 倍,则:,在这里 r 就是图上的 f2。
通常,我们令下面求,如图,在三角形中: ,当测量范围在20km 以内,可以用 S 代替 L,然后对公式做一适当的改正,进行计算。
2. 4. 2 竖盘的构造及竖角的测定 1、竖盘构造 1)、构造有竖盘指标水准管,如图:竖盘与望远镜连在一起,转动望远镜是竖盘一起跟着转动;但是竖盘指标和指标水准管在一起,他们不动,只有调节竖盘水准管微动螺旋式才会移动。
精密三角高程测量一、 精密三角高程测量的原理如图1,为了测量点A 到点B 的高差,在O 处安置全站仪、A 处安置棱镜,测得OA 的距离A S 和垂直角A α,从而计算O 点处全站仪中心的高程O Ho H =A H +A L -A h ∆(1)然后再在过度点1I 处安置棱镜,测得O 1I 的距离1S 和垂直角1α,从而计算1I 点处高程1H1H =0H +1h ∆-1L (2)点A 和点1I 高差为1o h1o h =0H +1h ∆-1L -(o H -A L +A h ∆)=1h ∆-A h ∆+A L -1L (3)图 1然后在下一个转点1O I 处架设仪器,将原A 点的棱镜架设到2I ,1I 处的棱镜旋转与1O 处的全站仪对准。
同理可计算出1I 和2I 两点高差12h12h =2h ∆-'∆1h +1L -2L (4)同理可得第I 点与B 点的高差为iB hiB h =B h ∆-'∆ih +i L -B L (5)点A 和点B 高差AB ∆H 为AB ∆H =1o h +12h +…+iB h=1h ∆-A h ∆+2h ∆-'∆1h +…+B h ∆-'∆i h +A L -B L (6) 从上式可看出,欲求的点A 和点B 的高差中已消去了个转点棱镜高, 并且与仪器高无关,也就不存在量取仪器高,只需精确量取起点和终点的棱镜高。
从而大大减小了量取仪器高和棱镜高而引起的误差。
二、三角高程测量的精度分析1.单向观测三角高程测量高差的计算公式为v i Rs k s -+⨯-+=∆2cos )1(sin h 22αα(7)式中,h ∆为三角高程测量的高差,s 为仪器到棱镜的斜距; α为垂直角,k 为大气垂直折光系数,k=1.14,R 为地球平均曲率半径,R = 6 370 km; i 为仪器高;v 为规牌高或棱镜高。
三、单向观测三角高程测量高差的误差公式为222222222cos )(sin v i k s hm m m R s m s m m ++∙⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+=∆ρααα (8)从上式可知单向观测三角高程测量高差的误差与距离、垂直角的误差,大气折光误差和量测仪器高、棱镜高误差有关。
三角高程测量原理误差分析及应用三角高程测量是一种常用的地理测量方法,用于测量地球表面上任意两点之间的高差。
它的原理基于三角形的几何性质,通过测量三角形的边长和角度来计算出高程差。
误差分析是对测量结果进行评估和分析,以确定测量结果的可靠性和精度。
三角高程测量在工程测量、地形测量和地理信息系统等领域有广泛的应用。
三角高程测量的原理是基于几何三角形的性质。
在三角形中,已知两边长度和夹角时,可以通过正弦定理求得第三边的长度。
在实际应用中,使用测量仪器(如全站仪、水准仪)测量两个点的水平距离和夹角,然后根据几何关系计算出两点之间的高差。
对于三角高程测量的误差分析,需要对各种误差进行综合评估和处理。
首先要进行误差源的分析和估计,确定各个误差源对测量结果的影响程度。
然后通过合适的数理统计方法对误差进行处理,例如最小二乘法、平差方法等,以提高测量结果的准确性和可靠性。
最后,通过误差传递的计算,评估最终测量结果的误差范围和可信度。
三角高程测量在地理测量和工程测量中有广泛的应用。
地理测量方面,可以通过三角高程测量来测量地球表面的高程特征,生成数字高程模型,用于地形分析和地图制作。
在工程测量方面,三角高程测量被用于测量任意两点间的高差,如建筑物、道路和管道等的高程差,以支持工程设计和建设。
另外,在地理信息系统中,三角高程测量可以用于数据融合和质量控制,提高地理数据的精度和准确性。
总结而言,三角高程测量是一种常用的地理测量方法,利用三角形的几何性质来测量地表上任意两点的高差。
在测量过程中会存在各种误差,需要进行误差分析和处理,以提高测量结果的准确性和可靠性。
三角高程测量在地理测量和工程测量中有广泛应用,可以用于生成数字高程模型、工程设计和数据质量控制等领域。
全站仪三角高程测量方法全站仪是一种先进的测量仪器,具有测量水平角、垂直角和斜距的功能,因此在进行三角高程测量时,可以采用以下方法:1. 三角高程测量原理:三角高程测量是利用三角学原理进行测量的方法。
当我们在地面上选择三个测站,并测量出它们之间的水平角、垂直角和斜距时,根据三角关系可以计算出这些测站的高程。
2. 选择测站:在进行三角高程测量时,首先需要选择三个测站,并保证这三个测站之间形成一个合理的三角形。
测站的选择要考虑到其位置相对固定和稳定,同时要满足仪器观测范围的要求。
3. 测量水平角:使用全站仪测量水平角的方法有两种:反射测量和直接测量。
反射测量是将反光棱镜放置在测站上,然后使用全站仪对反射棱镜进行测量,得到水平角的数据。
直接测量是将全站仪直接对准目标,通过全站仪内置的水平角读数装置进行测量。
4. 测量垂直角:全站仪可以通过照准测量和激光测量两种方法来测量垂直角。
照准测量是将全站仪对准目标,然后通过全站仪内置的图像传感器来读取目标的中轴线,从而获得垂直角的数据。
激光测量是利用全站仪内置的激光器向目标发射激光束,然后通过在目标接收到光线的位置上读取垂直角的数据。
5. 测量斜距:通过使用全站仪的测距仪,可以实时测量出目标与测站之间的水平距离或斜距。
全站仪的测距仪可以通过使用红外线或激光技术来测量距离,并将测得的数据显示在仪器的屏幕上。
6. 计算高程:当我们完成三个测站的水平角、垂直角和斜距的测量后,可以利用三角关系计算出测站的高程。
常用的计算方法有正算法和反算法。
正算法是已知两个测站的高程和一个介于它们之间的斜距,通过三角关系计算出第三个测站的高程。
反算法是已知两个测站的高程和一个测站的高程,通过三角关系计算出这个测站到其他两个测站的斜距。
总结:全站仪的三角高程测量方法包括选择测站、测量水平角、测量垂直角、测量斜距和计算高程。
通过合理的测站选择和准确的观测操作,可以获得高精度的三角高程测量数据,从而为工程测量和地形测量提供可靠的高程数据支持。
三角高程测量是一种常用的测量方法,它可以用来测量地面上点的准确高程。
在这篇文章中,我们将着重介绍三角高程测量中的往返观测计算公式。
一、三角高程测量原理三角高程测量是利用三角形的相似性原理,通过已知两点的高程和这两点到待测点的水平距离,来计算待测点的高程。
三角高程测量的基本原理如下:1. 在地面上选择一个已知高程的点A,以及要测量高程的点P。
2. 通过测量仪器测量点A和点P之间的水平距离d和两点的高程差h。
3. 通过三角函数计算出点P的高程。
二、三角高程测量的往返观测在实际测量中,为了提高精度,常常采用往返观测的方法进行测量。
往返观测的原理是利用观测仪器来回测量两点之间的距离和高程差,然后取平均值作为最终结果,以减小由于观测仪器误差、大气温度、大气压力等因素造成的误差。
三、三角高程测量往返观测计算公式往返观测的三角高程测量计算公式如下:1. 求点P的高程差首先需要计算出点P的高程差,使用以下公式:\[ \Delta h = h_1 - h_2 \]其中,\(h_1\) 为第一次测量的高程,\(h_2\) 为第二次测量的高程。
2. 求两次测量的平均距离将两次测量的距离\(d_1\)和\(d_2\)求均值,得到平均距离:\[ \bar{d} = \frac{d_1 + d_2}{2} \]3. 计算点P的高程利用三角函数计算出点P的高程:\[ H = h_2 + \frac{\Delta h \times \bar{d}}{d_2} \]其中,\(H\)为最终计算出的点P的高程。
四、注意事项在进行三角高程测量的往返观测时,需要注意以下几点:1. 观测仪器的选择和校准非常重要,需要保证其精度和稳定性。
2. 大气温度和大气压力对测量结果有较大影响,需要进行相应的修正。
3. 观测时需要注意周围环境的影响,避免受到建筑物、树木、地形等因素干扰。
4. 测量终点的选取应当避免大坡度地形,以减小误差。
通过以上介绍,我们了解了三角高程测量中的往返观测计算公式及其应用注意事项。
三角高程测量1 三角高程测量的基本原理三角高程测量是通过观测两点间的水平距离和天顶距(或高度角)求定两点间的高差的方法。
它观测方法简单,不受地形条件限制,是测定大地控制点高程的基本方法。
目前,由于水准测量方法的发展,它已经退居次要位置,但在山区和丘陵地带依然被广泛采用。
在三角高程测量中,我们需要使用全站仪或者经纬仪测量出两点之间的距离(水平距离或者斜距和高度角,以及测量时的仪器高和棱镜高,然后根据三角高程测量的公式推算出待测点的高程。
由图中各个观测量的表示方法,AB两点间高差的公式为:h=S0tanα+i1-i2 ①但是,在实际的三角高程测量中,地球曲率、大气折光等因素对测量结果精度的影响非常大,必须纳入考虑分析的范围。
因而,出现了各种不同的三角高程测量方法,主要分为:单向观测法,对向观测法,以及中间观测法。
1.1 单向观测法单向观测法是最基本最简单的三角高程测量方法,它直接在已知点对待测点进行观测,然后在①式的基础上加上大气折光和地球曲率的改正,就得到待测点的高程。
这种方法操作简单,但是大气折光和地球曲率的改正不便计算,因而精度相对较低。
1.2 对向观测法对向观测法是目前使用比较多的一种方法。
对向观测法同样要在A点设站进行观测,不同的是在此同时,还在B点设站,在A架设棱镜进行对向观测。
从而就可以得到两个观测量:直觇:hAB= S往tanα往+i往-v往+c往+r往②反觇:hBA= S返tanα返+i返-v返+c返+r返③S——A、B间的水平距离;α——观测时的高度角;i——仪器高;v——棱镜高;c——地球曲率改正;r——大气折光改正。
然后对两次观测所得高差的结果取平均值,就可以得到A、B两点之间的高差值。
由于是在同时进行的对向观测,而观测时的路径也是一样的,因而,可以认为在观测过程中,地球曲率和大气折光对往返两次观测的影响相同。
所以在对向观测法中可以将它们消除掉。
h=0.5(h AB- h BA=0.5[( S往tanα往+i往-v往+c往+r往-( S返tanα返+i返-v返+c返+r返]=0.5(S往tanα往-S返tanα返+i往-i返+v返-v往④与单向观测法相比,对向观测法不用考虑地球曲率和大气折光的影响,具有明显的优势,而且所测得的高差也比单向观测法精确。
三角高程测量原理
1.直接测高法
直接测高法是通过在地面上测量三角形的边长和角度来计算目标点的高程。
主要步骤包括:
(1)测量基线长度:选取一条基线,并准确地测量出其长度。
(2)观测角度:通过望远镜观测目标点与基线两段的夹角,记录下各个角度。
(3)计算高程:利用三角形的边长比例关系,以及所测得的角度,利用三角函数计算出目标点与基准点的高程差。
2.间接测高法
间接测高法是通过测量基线两端与目标点之间的水平距离和垂直距离来计算目标点的高程差。
主要步骤包括:
(1)测量基线长度:选取一条基线,并准确地测量出其长度。
(2)嵌入高程点:在基线两端设置两个已知高程点,并记录下它们与基准点的高程差。
(3)观测距离:利用测距仪或全站仪测量基线两端与目标点之间的水平距离和垂直距离。
(4)计算高程:利用已知高程点与目标点的水平距离、垂直距离,以及基准点与已知高程点的高程差,利用三角形的相似性计算出目标点与基准点的高程差。
在实际应用中,三角高程测量常常与全球定位系统(GPS)结合使用,通过卫星定位来获取更准确的基准点和基线,提高测量结果的精度。
此外,还可以利用差分GPS技术对测量结果进行实时改正,得到更准确的高程数据。
总的来说,三角高程测量原理是一种常用的测量方法,能够通过测量
角度和距离来计算出地面上其中一点的高程或者两点之间的高差。
在实际
应用中,需要考虑到多种因素的影响,并结合其他测量技术来提高测量结
果的准确性和精度。
三角高程测量高差中误差计算公式1. 什么是三角高程测量三角高程测量是一种常用的测量方法,可以用于测量地面上两点间的高度差。
它的原理是通过三角形的性质来计算出两点间的高差,因此被称为三角高程测量。
2. 中误差的概念在三角高程测量过程中,由于测量数据的误差,会导致测量结果的精度受到影响。
为了评估测量结果的精度,需要计算中误差。
中误差是指样本中单个测量值与样本平均值之差的平均值。
通常用标准差来表示中误差,它是各单次测量值离样本平均值的差的平方和的平均数的算术平方根。
3. 三角高程测量中误差的计算公式在三角高程测量中,中误差可以通过测量数据的方差和协方差计算得出。
常用的计算公式如下:1) 方差公式:$$\sigma^2 = \frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n-1}$$其中,$x_i$表示第$i$次测量的结果,$\bar{x}$是所有结果的平均值,$n$是测量次数,$\sigma^2$表示样本方差。
2) 协方差公式:$$\text{cov}(x,y) = \frac{\sum_{i=1}^n (x_i -\bar{x})(y_i - \bar{y})}{n-1}$$其中,$x_i$和$y_i$分别表示第$i$次测量的两个测量值,$\bar{x}$和$\bar{y}$分别表示$x$和$y$的平均值,$\text{cov}(x,y)$表示$x$和$y$的协方差。
3) 中误差公式:$$\sigma_{\text{mid}} = \sqrt{\frac{\sigma^2_a +\sigma^2_b - 2\text{cov}(a,b)}{2}}$$其中,$\sigma_{\text{mid}}$表示中误差,$\sigma^2_a$和$\sigma^2_b$分别表示两个测量角度的方差,$\text{cov}(a,b)$表示两个测量角度的协方差。
4. 如何减小中误差为了减小三角高程测量中误差,可以采取以下措施:1) 提高仪器的精度,使用高精度的仪器进行测量。
三角高程测量原理
三角高程测量是利用三角轮测量法使用测量设备进行高程测量的方法。
三角高程测量的基本原理是:两个观测者分别在不同的地方进行观测,观测者A观测
B点的高度,B观测A与C点之间的距离和角度,从而可以计算C点的高程。
这一原理也
被叫做三角测量法,这是一种建立地表某一点的垂直高度的方法,即根据两个已知点的高度、和连接二者的行程距离、角度,确定第三点的高度的方法;其方法是建立给定调查区
域中各点之间的三角关系,以几何形式表示出高程关系,然后用解三角形公式求出每点的
垂直高度。
三角高程测量法包括三角测距、圆周测量、三次弯曲和三次内曲四种测量方法。
其中
三角测距是最常用的测量方法,一般利用直尺和望远器来测量,测量结果一般以米为单位。
圆周测量是采用大圆周半径和测站角度之间的关系,合计周长来测知道多个测站的间距的
方法,圆周测量的准确度比三角测距要高,是一种近似非精密法。
而三次弯曲、三次内曲,则利用观测者固定位置站物体两点夹角和物体位移零件码之间的关系,来测知两点间距的
方法。
三角高程测量有很多优点,一是结果精度较高,尤其是三角测距的精度,可以达到几
厘米的精度;二是测量工作量较少,测量过程能完全采用人工操作,当采用大圆具时,只
需要把大圆测量四次,即可完成三角高程的测量;三是可以进行大范围的高程测量,甚至
可以对非中心观测地域的无中心点测量进行高程测量。
但三角高程测量也存在不足之处,包括测量范围受限、实用性差等,其中值得特别提
及的是,三角高程测量结果取决于气温、大气压力及湿度的变化,而这些因素的变化会影
响视线的变化,从而导致测量结果的误差加大。
总的来说,三角高程测量是一种非常重要的高程测量方法,它具有精度高、测量范围广、操作简便等优点,但同时也存在一定的不足,有需要时要注意其所遇到的局限性,以
减少测量结果的误差,使测量结果更精确。