教你绘制频数分布直方图与折线图
- 格式:docx
- 大小:30.16 KB
- 文档页数:4
高二数学教案:频率分布直方图与折线图总课题总体分布的估量总课时第14课时分课题频率分布直方图与折线图分课时第2 课时教学目标能列出频率分布表,能画出频数条形图、频率分布直方图及折线图;会用样本频率分布去估量总体分布.重点难点绘制频率直方图、条形图、折线图.引入新课1.列频率分布表的一样步骤是什么?能否依照频率分布表来绘制频率直方图?2.作频率分布直方图的方法为:3.假如将频率分布直方图中各相邻矩形的上底边中点并顺次连结起来,就得到_________,简称___________.4.频率折线图的优点是:__________________________.假如样本容量取得足够大,分组的组距取得足够小,那么相应的频率折线图将趋于一条光滑的曲线,我们称这条光滑的曲线为总体分布的___________.例题剖析例1 下表是某学校一个星期中收交来的失物件数,请将5天中收交来的失物数用条形图表示.星期一二三四五件数6 2 3 5 1累计6 8 11 16 17例2 作出例中数据的频率分布直方图.例3 为了了解一大片经济林生长情形,随机测量其中的株的底部周长,得到如下数据表(单位:cm)135 98 102 110 99 121 110 96 100 103125 97 117 113 110 92 102 109 104 112109 124 87 131 97 102 123 104 104 128105 123 111 103 105 92 114 108 104 102129 126 97 100 115 111 106 117 104 109111 89 110 121 80 120 121 104 108 118129 99 90 99 121 123 107 111 91 10099 101 116 97 102 108 101 95 107 101102 108 117 99 118 106 119 97 126 108123 119 98 121 101 113 102 103 104 108(1)编制频率分布表;(2)绘制频率分布直方图;(3)估量该片经济林中底部周长小于100cm的树木约占多少,周长不小于120cm的树木约占多少.巩固练习1.在频率分布直方图中,所有矩形的面积和为_________.2. 辆汽车通过某一段公路时的时速如下图所示,则时速在的汽车大约有______辆.课堂小结什么是频数条形图、频率直方图、折线图、密度曲线.课后训练班级:高二( )班姓名:____________一基础题1.在人中,有个学生,个干部,个工人,个农民,则是工人( )A.频数B.频率C.累计频率D.累计频数2.关于样本频率分布折线图与总体密度曲线的关系,下列说法中正确的是( )A.频率分布折线图与总体密度曲线无关;B.频率分布折线图确实是总体密度曲线;C.样本容量专门大的频率分布折线图确实是总体密度曲线;D.假如样本容量无限增大,分组的组距无限减小,那么频率分布折线图就会无限接近于总体密度曲折线.3.在频率分布直方图中,各个小长方形的面积表示( )A.落在相应各组的数据的频数B.相应各组的频率.C.该样本所分成的组数D.该样本的样本容量4.容量为的某个样本数据拆分为组,并填写频率分布表,若前七组频率之和为,而剩下的三组的频率依次差为,则剩下的三组中频率最大的一组的频率为_________.5.在一个小时内统计一传呼台接收到用户的呼吁次数,按每分钟统计如下:写出一分钟内传呼呼吁次数的频率分布表,并画出频率分布图.二提高题6.在一个容量为的样本,数据的分组及各组的频数如下:(1)列出样本的频率分布表;(2)画出频率分布直方图;(3)依照频率分布直方图估量,数据落在的可能性约是多少?7.姚明在赛季常规赛场竞赛的前场中,带领休斯顿火箭队取得了较好的战绩,提早锁定了季后赛资格.以下是姚明在这场竞赛中的得分表现:(1)假如将那个数据分为组,作出这组数据的频率分布表;(2)画出频率分布直方图并作出频率折线图;要练说,得练听。
教学过程一、复习预习Ⅰ.提出问题,创设情境收集数据、整理数据、描述数据是统计的一般过程。
我们学习了条形图、折线图、扇形图等描述数据的方法,今天我们学习另一种描述数据的统计图——直方图。
Ⅱ.导入新课频数分布直方图问题:为了参加全校各年级之间的广播体操比赛,七年级准备从63名同学中挑出身高相差不多的40名同学参加比赛。
为此收集到这63名同学的身高(单位:㎝)如下:15 81581616815915915115815916 815815415815416915815815815 91671715316161591591614 916316316217216115315616216 216315716216216115715716415 515616516615615416616416515 6157153165159157155164156选择身高在哪个范围的学生参加呢?为了使选取的参赛选手身高比较整齐,需要知道数据(身高)的分布情况,即在哪些身高范围内的学生比较多。
为此我们把这些数据适当分组来进行整理。
1、计算最大值与最小值的差(极差)最小值是149,最大值是172,它们的差是23。
说明身高的变化范围是23㎝.2、决定组距与组数把所有的数据分成若干组,每个小组的两个端点之间的距离(组内数据的取值范围)称为组距。
作等距分组(各组的组距相同),取组距为3㎝(从最小值起每隔3㎝作为一组)。
232733最大值-最小值==组距将数据分成8组:149≤x <152,152≤x <155,…,170≤x <173.注意:①根据问题的需要各组的组距可以相同或不同;②组距和组数的确定没有固定的标准,要凭借经验和所研究的具体问题来决定;③当数据在100个以内时,按照数据的多少,常分成5~12组,一般数据越多分的组数也越多。
3、频数分布表对落在各个小组内的数据进行累计,得到各个小组内的数据的个数(叫做频数)。
用表格整理可得频数分布表:频数分布表身高分组 划记 频数 149≤x <152 2 152≤x <155 正一 6 155≤x <158 正正 12 158≤x <161 正正正 19 161≤x <164 正正 10164≤x <167正8167≤x <1704 170≤x <1732从表格中你能看出应从哪个范围内选队员吗?可以看出,身高在155≤x <158,158≤x <161,161≤x <164三个组的人数最多,一共有12+19+10=41人,因此,可以从身高在155~164㎝(不含164㎝)的学生中选队员。
频率分布直方图和折线图【学习导航】知识网络学习要求1.频率分布直方图的作法,频率分布直方图更加直观形象地反映出总体分布的情况;2.频率分布折线图的作法,优点是反映了数据的变化趋势,如果样本容量足够大,分组的组距足够小,则这条折线将趋于一条曲线,称为总体分布的密度曲线。
【课堂互动】自学评价案例1 下表是某学校一个星期中收交来的失物件数,请将5天中收交来的失物数用条(1)在EXCEL工作表中输入数据,光标停留在数据区中;(2)选择“插入/图表”,在弹出的对话框中点击“柱形图”;(3)点击“完成”,即可看到如下频数条形图.案例2 从某校高一年级的1002名新生中用系统抽样的方法抽取一个容量为100的身高样本,数据如下(单位:cm)。
试作出该样本的频率分布直方图和折线图.【解】上一课时中,已经制作好频率分布表,在此基础上, 我们绘制频率分布直方图.(1)作直角坐标系,以横轴表示身高,纵轴表示组距频率;(2)在横轴上标上150.5,153.5,156.5,…,180.5表示的点。
(为方便起见,起始点150.5可适当前移);(3)在上面标出的各点中,分别以连结相邻两点的线段为底作矩形,高等于该组的组距频率至此,就得到了这组数据的频率分布直方图,如下图150.5 153.5 156.5 159.5 162.5 165.5 168.5 171.5 174.5 177.5 180.8同样可以得到这组数据的折线图.150.5 153.5 156.5 159.5 162.5 165.5 168.5 171.5 174.5 177.5180.8【小结】1.利用直方图反映样本的频率分布规律,这样的直方图称为频率分布直方图(frequency histogram),简称频率直方图。
2. 频率直方图比频率分布表更直观、形象地反映了样本的分布规律。
3.如果将频率分布直方图中相邻的矩形的上底边的中点顺次连结起来,就得到一条折线,我们称这条折线为本组数据的频率折线图(frequency polygon)4.频率分布折线图的的首、尾两端如何处理: 取值区间两端点须分别向外延伸半个组距,并取此组距上的x轴上的点与折线的首、尾分别相连5.如果将样本容量取得足够大,分组的组距取得足够小,则这条折线趋于一条曲线,这一曲线称为总体分布的密度曲线。
Excel在统计中的应用一、用excel来计算样本的数字特征(1)平均值法一:按定义来算,先算出所有数据的总和,然后在除以样本个数法二:直接用函数average计算(2)中位数法一:先排序(数据——排序),然后找出中间值法二:直接用函数median计算(3)众数(英文名mode)直接用函数mode来计算(4)方差(英文名variance)直接用函数var计算(5)标准差(英文名standard deviation)直接用函数stdev计算二、用excel画频率分布直方表和频率分布直方图(分析工具库属于扩展功能,应在工具——宏加载——分析工具库)①录入数据②求出最大值与最小值,确定组距(可接收范围)③工具——数据分析——直方图——确定——(输入区域:所录入的数据;接受区域:确定的分组数据;输出区域:可以在当前表格,也可在新表格)选择累计百分率和图表输出——确定观察所得出的图形?与课本上的频率分布直方图对比画频率分布表:①将接受改为分组,下面数据改为相应区间,将频率改为频数②在右侧增加一列频率和频率/组距,并用相应函数计算画频率分布直方图和频率分布折线图①选中分组下面的数据,按住ctrl,选择频率/组距和累积%下面相应的数据,然后插入——图表——柱形图②将累积%的柱形图改为折线图,(右键——图表类型——折线图)③将条形图变为直方图(右键——数据系列格式——选项——分类间距调整为0)④将累积%的折线图变为频率分布折线图(改变百分比)Excel中没有直接的函数计算茎叶图和总体密度曲线图,可以用专门的统计软件来作(R软件、SPSS软件等)三、画散点图和回归直线插入——图表——散点图——添加趋势线——线性——选项——显示公式——确定工具——数据分析——相关系数r。
Origin绘制累积频率直方图详细教程累积频率分布直方图的意义在于:描述了分数在各分数段所出现累积频率的分布情况。
累积频率,按某种标志对数据进行分组后,分布在各组内的数据个数称为频数或次数,各组频数与全部频数之和的比值称为频率或比重。
为了统计分析的需要,有时需要观察某一数值以下或某一数值以上的频率之和,叫做累积频率,或叫做对频率的累计。
从变量值小的一方向变量值大的一方累加,称为向上累积,反之为向下累积。
频率的最终累积值为100%。
下面是使用Origin绘制累积频率直方图的教程,以对数频率为例。
一、导入数据1.打开origin,导入需要绘制的数据,或者可以直接复制进来。
二、绘制直方图1.选中需要绘制直方图的数据,像Excel中那样选中整列数据,然后找到菜单栏中的“绘制”-“直方图”-第一种直方图类型。
2.出来的直方图纵坐标标签上显示的是“数量”,这时我们需要把它转换成频率。
3.双击纵坐标刻度线,弹出来的对话框中选择“刻度线标签”,在除以因子空白中填入这次处理数据总数的百分之一,如下图所示。
4.输入后转换到左边的“刻度”一栏,修改纵坐标刻度线,根据数据分布频率适当调整,实例调整为0-50,分隔值为5,如下图。
三、绘制累积频率折线图1.双击直方图条形柱子,在弹出的对话框里把“添加分布曲线数据”勾选上,点击:跳转到工作表。
选中弹出的表格中的“累积百分比”,然后选中左下角的“折线”工具,绘制累积频率线。
如右图。
2.弹出来的折线图,修改纵坐标(默认是从-10到110)成0-100,横坐标检查下是不是和右边已绘制好的直方图起始相同与否,不相同需要调整为一样。
3.调整好后,双击折线图空白处,在弹出的对话框中找到“大小/速度”,修改单位为厘米,然后把“宽度”和“高度”修改成和直方图大小一致,为之后把折线复制过去做准备。
注意,两者都必须是“厘米”的单位或者相同即可。
四、成图及修改1.选中带有刻度线的折线图,“复制”并在直方图中“粘贴”,然后双击直方图的空白处,查看直方图的位置,单位同样需要为厘米或者相同,记下位置数据,然后双击折线图空白处,修改位置为一样即可。
第三章频数的分布与应用知识回顾:1. 频数和频率频数:表示对象出现的次数。
频率:表示对象出现的次数与总次数的比值(或百分比)2. 频数与频率的关系式:频率频数样本容量=注:此处各对象的频率总和等于1。
3. 频数分布表、频数分布直方图和频数折线图。
频数分布表:是一个关注样本数据在各小范围内所占比例多少的统计图。
频数分布直方图:是一个用一个个小矩形将频数分布表中的结果直观表现出来的统计图,其中矩形的宽表示组距,矩形的高表示频数。
频数折线图:将频数分布直方图中每一个小矩形宽的中点顺次连接所成的统计图。
4. 绘制频数分布直方图的步骤①计算极差②确定组距与组数以及分点③列频数分布表④画频数分布直方图【典型例题】例2. 为了解某市九年级男生的身高情况,先从该市的一所中学选取容量为60的样本(单位:cm),然后分组如下(1)求出表中的数据a、m的值。
(2)画出频数分布直方图。
解:(1)根据频率频数样本容量=,频数频率样本容量=⨯,可求得m=⨯=60016.,a=-⨯-=60622160045.。
(2)频率分布直方图如下图所示:cm)例3. 某校在5月1日到30日期间对各年级各班推荐的政治小论文评比中,按各班上交论文数(件)按5天一组来分组统计,绘制了频数分布直方图。
已知该图从左到右各矩形的高之比为2∶3∶4∶6∶4∶1,并且第二组的频数为18,问:(1)本次评比中,共有多少篇论文参加?(2)哪组上交的数量最多?有多少篇?(3)经过评比,得知第四、六组分别有20篇和4篇论文获奖,则这两组中哪个组的获奖率较高?解:(1)∵各矩形的高之比为:2∶3∶4∶6∶4∶1。
∴频数之比为:2∶3∶4∶6∶4∶1又,第二组的频数为18,∴各组的频数分布可依次求得为:12,18,24,36,24,6。
∴本次评比共有120篇小论文参加评选。
(2)易求得第四小组上交的小论文最多,有36篇。
(3)第四组的获奖率为%573620=÷;第六组的获奖率为%57%6764>≈÷∴第六组的获奖率更高。
折线图与直方图的制作与分析在数学学习中,我们经常会遇到各种各样的数据,如何将这些数据以直观、清晰的方式呈现给他人,是一个很重要的技能。
而折线图和直方图正是两种常用的数据图表,它们能够有效地展示数据的变化趋势和分布规律。
本文将重点介绍折线图和直方图的制作与分析方法,帮助中学生和他们的父母更好地理解和应用这两种图表。
一、折线图的制作与分析折线图是一种以线段表示数据变化的图表,通常用于展示随时间变化的数据。
制作折线图的步骤如下:1. 收集数据:首先,我们需要收集相关的数据,这些数据可以是某个时间段内的销售额、气温变化等等。
2. 绘制坐标轴:在纸上或电脑上绘制坐标轴,横轴表示时间,纵轴表示数据的变化范围。
根据数据的大小,确定纵轴的刻度。
3. 绘制折线:根据收集到的数据,在坐标轴上标出相应的点,并用直线将这些点连接起来,形成折线。
4. 添加标签:为坐标轴和折线添加标签,使图表更加清晰易懂。
例如,给横轴加上时间单位,给纵轴加上数据单位,给折线加上说明标签。
折线图的分析主要从以下几个方面展开:1. 趋势分析:观察折线的走势,可以了解数据的变化趋势。
如果折线呈上升趋势,说明数据逐渐增加;如果折线呈下降趋势,说明数据逐渐减少;如果折线呈波动趋势,说明数据有周期性的变化。
2. 极值分析:观察折线的高点和低点,可以找出数据的最大值和最小值。
这对于分析数据的波动范围和极端情况非常有帮助。
3. 比较分析:可以将不同时间段的折线图进行比较,找出数据的差异和变化原因。
例如,比较两个季度的销售额折线图,可以看出哪个季度的销售额更高,从而判断销售情况的好坏。
二、直方图的制作与分析直方图是一种以矩形表示数据分布的图表,通常用于展示不同类别或区间的数据频数或频率。
制作直方图的步骤如下:1. 收集数据:同样,我们需要先收集相关的数据,这些数据可以是某个班级学生的身高、某个地区的人口分布等等。
2. 确定分组区间:根据数据的范围和数量,确定合适的分组区间。
1、频数、频率分布图表制作精析2、“三数错解”剖析3、频数与频率典例剖析1、频数、频率分布图表制作精析 ★ 制图要领一、绘制频数、频率分布直方图的一般步骤:① 计算最大值与最小值的差(极差);② 决定组距与组数;③ 决定分点;④ 列频数、频率分布表;⑤ 分别画出频数、频率分布直方图.二、注意事项:1、绘制直方图的关键是决定组数和组距.分组时应注意:分组的组数不仅与数据的多少有关,还与数据的取值情况有关.先求最大值与最小值的差,再确定组距与组数.数据越多,分的组数也应越多,当数据在100以内时,通常按照数据的多少,分成5~12组.2、列频率分布表时应注意:①每个小组的频数是指落在这个小组的数据的个数.每个小组的频率是指这个小组的频数与数据总数的比值.②掌握几个等量关系:各小组的频数之和等于数据总数;各小组的频率之和等于1.3、画出频数、频率分布直方图:分别以横轴上每组别两边界点为端点的线段为底边,作高为相应频数(频率)的矩形,就得到所求的频数(频率)分布直方图.频数、频率分布直方图不同点是纵轴,一个是频数,一个是频率.4、我们可先列出适当的频数分布表,再作出相应的频数分布直方图,然后顺次连结每个长方形上面一边的中点,就可得所求的频数分布折线图.★ 典例分析 下面以盐城市中考试题为例剖析制作过程:【题目】某中学为了解某年级1200名学生每学期参加社会实践活动的时间,随机对该年时间(天) 4 5 6 7 8 9 10 11 12 13人 数 1 2 4 5 7 11 8 6 4 2① 适当分组:3.5天~5.5天,5.5天~7.5天,…共分为5组;② 计算各组的频数:4天1人,5天2人,所以3.5天~5.5天内共3人;其余类似计算.③ 计算各组的频率:数据总数频数频率,如:503=0.06; 分组频数 频率 3.5~5.53 0.06 5.5~7.59 0.18 7.5~9.518 0.36 9.5~11.514 0.28 11.5~13.5 60.12合计50 1.00(2)画频数与频率分布直方图.①频数分布直方图:横轴表示时间(天数),纵轴为频数.②频率分布直方图:横轴表示时间(天数),纵轴为频率.(3)画频数折线图:2、“三数错解”剖析我们知道,平均数、中位数和众数都是反映数据集中趋势的量,平均数反映的是数据平均水平,中位数反映的是一组数据的中间水平,众数反映的是一组数据的大多数水平。
频率分布直方图与折线图及茎叶图1、频数条形图例1.下表是某学校一个星期中收交来的失物件数,请将5天中收交来的失物数用条形图表示.解:象这样表示每一天频数的柱形图叫频数条形图.我们也可以利用直方图反映样本的频率分布规律,这样的直方图称为,简称频率直方图,下面用例1的数据说明2、频率分布直方图:例2解:(1)根据频率分布表,作直角坐标系,以横轴表示,纵轴表示;(画出频率分布直方图)(2)在横轴上和纵轴上标上表示的点;(3)在上面各点中,分别以连接相邻两点的线段为底作矩形,高等于该组的,每一个矩形的面积等于各个组的。
3、频率分布折线图在频率分布直方图中,取相邻矩形上底边的中点顺次连结起来,就得到频率分布折线图(简称频率折线图),请在例2的频率折线图上画出频率折线图。
4、密度曲线如果样本容量取得足够大,分组的组距取得足够小,则相应的频率折线图将趋于一条光滑的曲线,称这条光滑的曲线为总体的密度曲线.5.茎叶图.某篮球运动员在某赛季各场比赛的得分情况如下:12,15,24,25,31,31,36,36,37,39,44,49,50.问题:如何有条理地列出这些数据,分析该运动员的整体水平及发挥的稳定程度?【范例点睛】例1 .有一个容量为100的某高校毕业生起始月薪的样本,数据的分组及各组的频数如下:(1)列出样本的频率分布表;(2)画出频率分布直方图;(3)根据频率分布直方图估计该校毕业生起始月薪低于2000元的可能性.2、为了了解各自受欢迎的程度,甲、乙两个网站分别随机选取了14天,记录下上午8:00-10:00间各自的点击量:甲:73,24,58,72,64,38,66,70,20,41,55,67,8,25;乙:12,37,21,5,54,42,61,45,19,6,19,36,42,14.你能用茎叶图表示上面的数据吗?你认为甲、乙两个网站哪个更受欢迎?【随堂演练】1.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用右侧的条形图表示.根据条形图可得这50名学生这一天平均每天的课外阅读时间为()A.0.6小时B.0.9小时C.1.0小时D.1.5小时2.一般家庭用电(千瓦时)与气温(C )有一定的关系.图(1)表示某年12个月中每月的平均气温.图(2)所示某家庭在这年12个月中每月的用电量.根据这些信息,以下关于该家庭用电量与气温间的关系叙述中,正确的是()A.气温最高时,用电量最多B.气温最低时,用电量最少C.当气温大于某一值时,用电量随气温增高而增加D.当气温小于某一值时,用电量随气温降低而增加3.在频率分布直方图中,所有矩形的面积和为__________.4.为了解高中学生的体能情况,抽了100名学生进行引体向上次数测试,将所得数据整理后,画出频率直方图(如右图所示),图中从左到右依次为第1,2,3,4,5组.(1)第1组的频率为__________,频数为__________.(2)若次数在5次(含5次)以上为达标,则达标率为________________ .5、右面是甲、乙两名运动员某赛季一些场次得分的茎叶图,据图可知()A.甲运动员的成绩好于乙运动员B.乙运动员的成绩好于甲运动员C.甲、乙两名运动员的成绩没有明显的差异D.甲运动员的最低得分为0分甲12345乙824719936250328754219441。
6.2频数分布直方图(一)学习目标:1.了解频数分布直方图的概念。
2.学会画频数分布直方图。
3.学会读懂频数分布直方图。
学习重点:频数分布直方图。
学习难点:画频数分布直方图。
自主探究给同学们8min 的时间,认真看完课本63--67页的内容,回答下列问题: 一、频数分布直方图,频数折线图的定义 1、(1)根据频数的分布绘制的 叫做频数分布直方图(2)把频数分布直方图中的每个小矩形的上端的 ,便得到频数折线图。
(3)频数分布直方图中各个小矩形的高的比等于频数之比,也是频率之比。
二、绘制频数分布直方图,频数折线图的步骤 2、探究:请完成下列问题为了了解中学生的身体发育情况,有关部门对某中学60名同龄女学生的身高进行了测量,结果如下(单位:厘米)167 154 159 166 169 159 156 166 162 158 159 156 166 160 164 160 157 156 157 161 158 158 153 158 164 158 163 158 153 157 162 162 159 154 165 166 157 151 146 151 158 160 165 158 163 163 162 161 154 165 162 162 159 157 159 149 164 168 159 152画出频数分布直方图和频数折线图:(1)计算极差: 。
(2)决定组距和组数样本容量是60,最大值与最小值的差是23cm ,如果取组距为3cm ,则323=732≈8,所以分成 组比较适当。
(3)决定分点:第一组起点数为146,各组是146--148,149--151,...,167--169.(4)列频数分布表:身高段 (cm ) 146--148 149--151 152--154 155--157 158--160 161--163 164--166 167--169 划记 频数 频率(5)根据频数分布表,绘制频数分布直方图,横轴表示身高,纵轴表示每个身高段的学生数。
频率分布:样本中所有数据(或者数据组)的频率和样本容量的比就是该数据的频率,所有数据(或者数据组)的频率的分布变化规律叫做频率分布,可以用频率分布表,频率分布折线图,茎叶图,频率分布直方图来表示.频率分布折线图:如果将频率分布直方图中各相邻的矩形的上底边的中点顺次连接起,就得到一条折线,称这条折线为本组数据的频率折线图。
频数分布表:反映总体频率分布的表格。
一般地,编制频率分布表的步骤如下:(1)求全距,决定组数和组距;(2)分组,通常对组内数值所在区间取左闭右开区间,最后一组取闭区间;(3)登记频数,计算频率,列出频率分布表。
茎叶图:(1)茎是指中间的一列数,叶是从茎的旁边生长出来的数。
(2)制作茎叶图的方法是:将所有两位数的十位数字作为“茎”,个位数字作为“叶”,茎相同者共用一个茎,茎按从小到大的顺序从上向下列出,共茎的叶一般按从大到小(或从小到大)的顺序同行列出;(3)茎叶图的性质:①茎叶图的优点是保留了原始数据,便于记录及表示,能反映数据在各段上的分布情况。
②茎叶图不能直接反映总体的分布情况,这就需要通过茎叶图给出的数据求出数据的数字特征,进一步估计总体情况。
1、频率分布样本中所有数据(或者数据组)的频率和样本容量的比就是该数据的频率,所有数据(或者数据组)的频率的分布变化规律叫做频率分布,可以用频率分布表,频率分布折线图,茎叶图,频率分布直方图来表示.2、频率分布折线图如果将频率分布直方图中各相邻的矩形的上底边的中点顺次连接起,就得到一条折线,称这条折线为本组数据的频率折线图。
3、频数分布表:反映总体频率分布的表格。
一般地,编制频率分布表的步骤如下:(1)求全距,决定组数和组距;(2)分组,通常对组内数值所在区间取左闭右开区间,最后一组取闭区间;(3)登记频数,计算频率,列出频率分布表茎叶图的性质:①茎叶图的优点是保留了原始数据,便于记录及表示,能反映数据在各段上的分布情况。
②茎叶图不能直接反映总体的分布情况,这就需要通过茎叶图给出的数据求出数据的数字特征,进一步估计总体情况。
庖丁巧解牛知识·巧学一、关于频率分布直方图的概念由于频率分布表数字较多,阅读困难,为了将频率分布表中的结果直观形象地表示出来,我们通常画频率分布直方图。
画图时,应以横轴表示分组,纵轴表示频率与组距的比值.以每个组距为底,以各频率除以组距的商为高,分别画成矩形,这样得到的直方图就是频率分布直方图.二、关于频率分布直方图的绘制方法频率分布直方图是在频率分布表的基础上绘制而成的,它的前期工作就是准确列出频率分布表,然后在平面直角坐标系中画出频率分布直方图,具体步骤如下:(1)求极差,即计算最大值与最小值的差.(2)决定组距和组数。
组距与组数的确定没有固定标准,需要尝试、选择,力求有合适的组数,以能把数据的规律较清楚地呈现为准。
太多或太少都不好,不利对数据规律的发现.组数应与样本的容量有关,样本容量越大组数越多。
(3)决定分点,将数据分组.分组时,通常规定分组的区间是“左闭右开”的,避免数据被重复计算。
(4)列频率分布表.一般分“分组"“频数”“频率”三列,最后一行是“合计”。
注意频数的合计应是样本容量,频率合计应是1。
(5)画频率分布直方图。
建立直角坐标系,图中横轴为分组,图中的纵轴表示“频率/组距".各组数据以小长方形表示,其中,小长方形的宽为组距,小长方形的高=组距频率,频率=样本容量频率=组距×组距频率=小长方体的面积。
各小长方形的面积总和为1.由此可以看出,直方图中的各小长方形的面积表示相应的各组的频率。
这样频率分布直方图就以面积的形式反映了数据落在各个小组的频率的大小。
误区警示 直方图中小长方形的高并不表示各组数据的频率,而是频率与组距之比,小长方形的面积才是各组数据的频率.辨析比较 频率分布表在数量表示上比较确切,但不够直观、形象,分析数据的总体态势不太方便,频率分布直方图形象、直观,与频率分布表相比较,频率直方图能直观地表明数据的分布形状,但原始数据不能在图中表示,说明直方图丢失了一些信息。
教你绘制频数分布直方图与折线图
频数分布直方图和频数分布折线统计图是描述数据的两种重要统计图,用这两种统计图把数据描述出来,就以直观地了解数据的分布情况及变化规律下面谈谈这两种统计图的画法:
一、频数分布直方图
画频数分布直方图一般按下列步骤:
1计算极差(最大值与最小值的差)
2决定组数
3列出频数分布表
4画出频数分布直方图
例小明调查了他们班54名学生的身高,结果(单位:cm)如下:
4555
请将数据适当分组,并绘制相应的频数分布直方图
分析:要绘制频数分布直方图,需要把数据适当分组,数出每一组的频数,得出频数分布表,在此基础上绘制频数分布直方图
解:通过观察得到上面数据的最大值是172cm,最小值是141cm,它们的差是(172-141)=31cm
将该组数据按身高的范围分为141≤<145,145≤<149,≤…分成7组整理可得下列统计表:
身高/cm
频
数统计
学生数
(频数)
141≤
<145
3
145≤
<149
正5
149≤
<153
正8
153≤
<157
正9
157≤<161
正
正
14
161≤
<165
正7
165≤
<169
正5
169≤
<173
3
用横轴表示身高,用纵轴表示频数,并在纵轴上等距离标出5,10,15,以各组学生人数为高画出与此组对应的长方形,得到频数分布直方图(如图1)
图1
二、频数折线图
频数折线图画法如下:
1在频数分布直方图的基础上画频数折线图
(1)取频数分布直方图中每个长方形上边的中点;
(2)在横轴上取两个频数为0的点,在直方图横轴的左边取点(139,0),在直方图横轴的右边取点(175,0);
(3)将这些点用线段依次连接起来就得到了频数折线图(如图2)
图2
2根据已有的数据直接画频数折线图
(1)把数据分组,求出每个小组两端点的平均数,这些平均数称为组中值,如图141≤<145这个小组的组中值为(141145)÷2=143
(2)用横轴表示身高,用纵轴表示频数,以各小组的组中值
为横坐标,各小组对应的频数为纵坐标描点,另取两个点(139,0)和(175,0)
(3)依次连接这些点就得到了频数折线图(如图3)
图3。