co2填料塔气体吸收实验数据处理
- 格式:docx
- 大小:11.77 KB
- 文档页数:3
二氧化碳吸收实验报告广西大学实验报告姓名院专业班年月日实验内容吸收实验指导教师一、实验名称:吸收实验二、实验目的:1.学习填料塔的操作;2.测定填料塔体积吸收系数KYa.三、实验原理:对填料吸收塔的要求,既希望它的传质效率高,又希望它的压降低以省能耗。
但两者往往是矛盾的,故面对一台吸收塔应摸索它的适宜操作条件。
〔一〕、空塔气速与填料层压降关系气体通过填料层压降△P与填料特性及气、液流量大小等有关,常通过实验测定。
假设以空塔气速u[m/s]为横坐标,单位填料层压降oPZ[mmH20/m]为纵坐标,在双对数坐标纸上标绘如图2-2-7-1所示。
当液体喷淋量L0=0时,可知PZ~uo关系为一直线,其斜率约1.0—2,当喷淋量为L1时,PZ~uo为一折线,假设喷淋量越大,折线位置越向左移动,图中L2>L1。
每条折线分为三个区段,PZ值较小时为恒持液区,PZ~uo关系曲线斜率与干塔的相同。
PZ值为中间时叫截液区,PZ~uo曲线斜率大于2,持液区与截液区之间的转折点叫截点A。
PZ值较大时叫液泛区,广西大学实验报告姓名院专业班年月日实验内容指导教师PZ~uo曲线斜率大于10,截液区与液泛区之间的转折点叫泛点B。
在液泛区塔已无法操作。
塔的最适宜操作条件是在截点与泛点之间,此时塔效率最高。
图2-2-7-1填料塔层的PZ~uo关系图图2-2-7-2吸收塔物料衡算〔二〕、吸收系数与吸收效率本实验用水吸收空气与氨混合气体中的氨,氨易溶于水,故此操作属气膜控制。
假设气相中氨的浓度较小,那么氨溶于水后的气液平衡关系可认为符合亨利定律,吸收广西大学实验报告姓名院专业班年月日实验内容指导教师平均推动力可用对数平均浓度差法进行计算。
其吸收速率方程可用下式表示:NAKHY〔1〕Yam式中:NA——被吸收的氨量[kmolNH3/h];——塔的截面积[m2]H——填料层高度[m]Ym——气相对数平均推动力KYa——气相体积吸收系数[kmolNH3/m3·h]被吸收氨量的计算,对全塔进行物料衡算〔见图2-2-7-2〕:NAV(Y1Y2)L(某1某2)〔2〕式中:V——空气的流量[kmol空气/h]L——吸收剂〔水〕的流量[kmolH20/h]Y1——塔底气相浓度[kmolNH3/kmol空气]Y2——塔顶气相浓度[kmolNH3/kmol空气]某1,某2——分别为塔底、塔顶液相浓度[kmolNH3/kmolH20]由式〔1〕和式〔2〕联解得:KV(Y1Y2)YaHYm〔3〕为求得KYa必须先求出Y1、Y2和Ym之值。
填料吸收实验装置(二氧化碳体系)说明书天津大学化工基础实验中心一、实验目的:1.了解填料吸收塔的结构和流体力学性能。
2.学习填料吸收塔传质能力和传质效率的测定方法。
二、设备主要技术数据及其附件⒈设备参数:⑴风机:XGB-12型,550W;⑵填料塔:玻璃管内径 D=0.1m,内装φ10×10mm鲍尔环,填料层高度Z=1.2m;⑶填料塔:玻璃管内径 D=0.1m,内装φ10×10mm鲍尔环,填料层高度Z=1.2m;⑷二氧化碳钢瓶1个、减压阀1个(用户自备)。
⒉流量测量:⑴ CO2转子流量计:型号:LZB-6;流量范围: 0.06~0.6m3/h;精度: 2.5%⑵空气转子流量计:型号:LZB-10;流量范围: 0.25~2.5m3/h;精度: 2.5%⑶空气转子流量计:型号:LZB-10;流量范围: 0~50m3/h;精度: 2.5%⑷水转子流量计:型号:LZB-25;流量范围:0~20m3/h;精度: 2.5%⑸解吸收塔水转子流量计:型号: LZB-6 流量范围:60~600L/h 精度: 2.5%⒊浓度测量:吸收塔塔底液体浓度分析:定量化学分析仪一套⒋温度测量:PT100铜电阻,液温度。
三、实验装置的基本情况图1 二氧化碳吸收解吸实验装置流程1-水箱;2-解吸液泵;3-吸收液泵;4-风机;5-空气旁通阀;6-空气流量计;7-吸收液流量计;8-解吸塔;9-解吸收塔底取样阀;10、11-U型管放;12-吸收塔;13- 吸收塔底取样阀;14-解吸液流量计;15- CO2流量计;16-吸收用空气流量计解;17-吸收用空气泵;18- CO2钢瓶;19-水箱放水阀;20-减压阀;21-解吸液取样阀;22-吸收液取样阀吸收质(纯二氧化碳气体或与空气的混合气)由钢瓶经二次减压阀和转子流量计15,进入吸收塔塔底,气体由下向上经过填料层与液相水逆流接触,到塔顶经放空;吸收剂(纯水)经转子流量计7进入塔顶,再喷洒而下;吸收后溶液流入塔底液料罐中由解吸泵 2经流量计 14进入解吸塔,空气由 6流量计控制流量进入解吸塔塔底由下向上经过填料层与液相逆流接触,对吸收液进行解吸,然后自塔顶放空,U形液柱压差计用以测量填料层的压强降。
二氧化碳汲取与解吸实验一、实验目的1.认识填料汲取塔的构造、性能和特色,练习并掌握填料塔操作方法;经过实验测定数据的办理解析,加深对填料塔流体力学性能基本理论的理解,加深对填料塔传质性能理论的理解。
2.掌握填料汲取塔传质能力和传质效率的测定方法,练习实验数据的办理解析。
二、实验内容1.测定填料层压强降与操作气速的关系,确立在必定液体喷淋量下的液泛气速。
2.固定液相流量和入塔混淆气二氧化碳的浓度,在液泛速度下,取两个相差较大的气相流量,分别丈量塔的传质能力(传质单元数和回收率)和传质效率(传质单元高度和体积汲取总系数)。
3.进行纯水汲取二氧化碳、空气解吸水中二氧化碳的操作练习,同时测定填料塔液侧传质膜系数和总传质系数。
三、实验原理:气体经过填料层的压强降:压强降是塔设计中的重要参数,气体经过填料层压强降的大小决定了塔的动力耗费。
压强降与气、液流量均相关,不同样样液体喷淋量下填料层的压强降 P 与气速u的关系如图一所示:L 3> L 2> L 1aPk,P32L 0 = 01u , m/s图一填料层的P ~u关系当液体喷淋量 L00 时,干填料的P ~u的关系是直线,如图中的直线0。
当有必定的喷淋量时,P ~u的关系变为折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。
这两个转折点将P ~u关系分为三个区段:既恒持液量区、载液区及液泛区。
传质性能:汲取系数是决定汲取过程速率高低的重要参数,实验测定可获得汲取系数。
关于同样的物系及必定的设施(填料种类与尺寸),汲取系数跟着操作条件及气液接触状况的不同样样而变化。
1.二氧化碳汲取 - 解吸实验依据双膜模型的基本假定,气侧和液侧的汲取质 A 的传质速率方程可分别表达为气膜G A k g A( p A p Ai ) ( 1)液膜G A k l A(C Ai C A ) (2)式中: G A—A组分的传质速率, kmoI s 1;2A —两相接触面积, m;P A—气侧A组分的均匀分压,Pa;P Ai—相界面上A组分的均匀分压,Pa;C A—液侧A组分的均匀浓度, kmol m 3C Ai—相界面上A组分的浓度kmol m 3k g—以分压表达推进力的气侧传质膜系数,kmol m 2s 1Pa 1;k l—以物质的量浓度表达推进力的液侧传质膜系数,m s 1。
co2填料塔气体吸收实验数据处理一、实验背景和目的二氧化碳(CO2)是一种常见的温室气体,其排放量在近年来不断增加,对全球气候变化产生了重要影响。
因此,减少CO2的排放已成为全球关注的焦点。
其中,CO2捕集技术是目前最为有效的解决方案之一。
本次实验旨在通过CO2填料塔吸收实验来研究该技术的应用效果,并对实验数据进行处理和分析。
二、实验原理本次实验采用填料塔吸收法进行CO2捕集。
填料塔是一种常见的气液接触设备,其结构类似于一个高大的圆柱体。
填料塔内部装有大量填充物,通过将含有CO2气体的空气从顶部喷入塔内,并从底部流出液体溶剂,使得两者之间发生物质传递和质量传递过程,达到吸收CO2的效果。
三、实验步骤1.准备工作:清洗填料塔及相关设备,并测量其重量、高度等参数。
2.制备液体溶剂:根据实验要求,在容器中加入适量水和化学试剂,制备出所需的液体溶剂。
3.实验操作:将制备好的液体溶剂倒入填料塔底部,然后将含有CO2气体的空气从顶部喷入填料塔中,并通过底部排液管流出吸收后的溶液。
4.实验数据处理:根据实验结果,计算出CO2的吸收率、容积质量传递系数等指标,并进行数据分析和比较。
四、实验数据处理1. CO2吸收率计算CO2吸收率是指在单位时间内CO2被液体溶剂吸收的百分比。
其计算公式如下:CO2吸收率(%)=(初始CO2浓度-末端CO2浓度)/初始CO2浓度×100%其中,初始CO2浓度是指喷入填料塔前空气中CO2的浓度,末端CO2浓度是指从填料塔底部排出液体后所得到的溶液中CO2的浓度。
2. 容积质量传递系数计算容积质量传递系数是指单位时间内在填料塔内发生物质传递和质量传递过程时所需的空气流量与液体溶剂质量之比。
其计算公式如下:KLa=V/L(C0-Ct)其中,V是填料塔的有效体积,L是液体溶剂的流量,C0和Ct分别是填料塔顶部和底部CO2浓度。
3. 数据分析通过对实验数据的处理和分析,可以得出以下结论:(1)随着空气流量的增加,CO2吸收率逐渐上升,并在一定范围内保持稳定。
填料塔吸收实验报告填料塔吸收实验报告一、实验目的本实验旨在探究填料塔吸收过程中的吸收效果,并通过实验数据分析填料塔的吸收性能。
二、实验原理填料塔是一种常用的分离设备,广泛应用于化工、环保等领域。
其基本原理是通过将气体与液体接触,利用两相之间的质量传递来实现气体分离或纯化的目的。
填料塔内填充有各种不同形状的填料,增加接触面积,促进气体与液体的充分混合。
三、实验步骤1. 准备实验所需材料和设备:填料塔、进气管、出气管、液体供应系统、温度计等。
2. 将填料塔放置在实验台上,连接好进气管和出气管。
3. 打开液体供应系统,调节液体流量,使之能够均匀覆盖填料塔内的填料。
4. 打开进气管,将待吸收气体引入填料塔内。
5. 通过温度计等仪器监测填料塔内的温度和压力变化,并记录实验数据。
6. 根据实验数据进行数据处理和分析,评估填料塔的吸收效果。
四、实验结果与分析通过实验观察和数据处理,我们得到了填料塔吸收实验的结果。
在填料塔内,气体与液体进行充分接触后,发生了物质的传递和吸收。
根据实验数据,我们可以计算出填料塔的吸收效率和质量传递速率等参数,从而评估填料塔的性能。
填料塔的吸收效率是评价其性能的重要指标之一。
吸收效率可以通过吸收物质的浓度变化来计算。
实验数据显示,在填料塔内,随着时间的增加,吸收物质的浓度逐渐降低,表明填料塔具有较好的吸收效果。
同时,我们还可以通过比较不同填料塔的吸收效率来评估其性能优劣。
质量传递速率是另一个重要的指标,它反映了填料塔中气体和液体之间的传质速度。
根据实验数据,我们可以计算出填料塔的质量传递速率,并与其他填料塔进行比较。
实验结果显示,填料塔的质量传递速率与填料形状、液体流量等因素密切相关。
通过调节这些因素,可以优化填料塔的性能,提高吸收效果。
五、实验总结通过本次填料塔吸收实验,我们深入了解了填料塔的工作原理和性能评估方法。
填料塔作为一种常用的分离设备,在化工、环保等领域具有广泛的应用前景。
二氧化碳吸收实验报告数据处理引言:二氧化碳(CO2)是一种重要的温室气体,它的排放对地球气候产生着极大的影响。
为了解决全球变暖问题,减少CO2的排放已成为全球关注的焦点。
本实验旨在探究不同条件下CO2的吸收情况,通过数据处理和分析,为减少CO2排放提供科学依据。
方法:实验中,我们选取了三个不同温度的溶液进行CO2吸收实验,分别是25℃、35℃和45℃。
每个温度下,我们分别测量了不同时间点的CO2浓度,并记录下来。
实验时间为60分钟,测量间隔为10分钟。
结果:在25℃温度下,CO2浓度随时间的变化如下:- 10分钟:0.04%- 20分钟:0.03%- 30分钟:0.02%- 40分钟:0.02%- 50分钟:0.01%- 60分钟:0.01%在35℃温度下,CO2浓度随时间的变化如下:- 10分钟:0.06%- 20分钟:0.05%- 30分钟:0.04%- 40分钟:0.03%- 50分钟:0.02%- 60分钟:0.02%在45℃温度下,CO2浓度随时间的变化如下:- 10分钟:0.08%- 20分钟:0.07%- 30分钟:0.06%- 40分钟:0.05%- 50分钟:0.03%- 60分钟:0.03%讨论:根据实验结果,我们可以得出以下结论:1. 随着时间的推移,CO2浓度逐渐降低。
这表明在实验条件下,溶液能够吸收二氧化碳。
2. 随着温度的升高,溶液对CO2的吸收能力提高。
这说明温度对CO2的吸收有着积极的影响。
3. 在实验时间内,CO2浓度的降低速度随温度的升高而加快。
这与溶解度的变化有关,温度的升高可以增加溶解度,促进CO2的吸收。
结论:通过本实验的数据处理和分析,我们发现温度对CO2的吸收有着显著的影响。
在实验条件下,随着温度的升高,溶液对CO2的吸收能力增强,CO2浓度的降低速度加快。
这为减少CO2排放提供了科学依据,未来可以尝试利用高温条件下的溶液来吸收CO2,从而降低温室气体的排放。
实验八 填料塔吸收传质系数的测定一、实验目的1.了解填料塔吸收装置的基本结构及流程; 2.掌握总体积传质系数的测定方法; 3.了解气相色谱仪和六通阀的使用方法。
二、基本原理气体吸收是典型的传质过程之一。
由于CO 2气体无味、无毒、廉价,所以气体吸收实验常选择CO 2作为溶质组分。
本实验采用水吸收空气中的CO 2组分。
一般CO 2在水中的溶解度很小,即使预先将一定量的CO 2气体通入空气中混合以提高空气中的CO 2浓度,水中的CO 2含量仍然很低,所以吸收的计算方法可按低浓度来处理,并且此体系CO 2气体的解吸过程属于液膜控制。
因此,本实验主要测定K x a 和H OL 。
1. 计算公式填料层高度Z 为OL OL x x xaZN H xx dx K L dZ z ⋅=-==⎰⎰*12式中: L :液体通过塔截面的摩尔通量,kmol / (m 2·s);K xa :以△X 为推动力的液相总体积传质系数,kmol / (m 3·s);H OL : 液相总传质单元高度,m ;N OL : 液相总传质单元数,无因次。
2. 测定方法(1)空气流量和水流量的测定本实验采用转子流量计测得空气和水的流量,并根据实验条件(温度和压力)和有关公式换算成空气和水的摩尔流量。
(2)测定填料层高度Z 和塔径D ; (3)测定塔顶和塔底气相组成y 1和y 2; (4)平衡关系。
本实验的平衡关系可写成y = mx式中:m :相平衡常数,m=E/P ;E :亨利系数,E =f(t),kPa ,根据液相温度由附录查得;P :总压,Pa ,取101.325kPa对清水而言,x 2=0,由全塔物料衡算)()(2121x x L y y G -=-可得x 1 。
三、实验装置1.装置流程1-液体出口阀2;2-风机;3-液体出口阀1;4-气体出口阀;5-出塔气体取样口;6-U型压差计;7-填料层;8-塔顶预分布器;9-进塔气体取样口;10-玻璃转子流量计(0.4~4m3/h);11-混合气体进口阀1;12-混合气体进口阀2;13-孔板流量计;14-涡轮流量计;15-水箱;16-水泵图5-1 吸收装置流程图本实验装置流程:由自来水源来的水送入填料塔塔顶经喷头喷淋在填料顶层。
六、附实验数据计算举例:1.实验数据计算及结果(以实验中所取得数据的第二组数据为例): (1)填料塔流体力学性能测定(以填料塔干填料数据为例)空气转子流量计读数:0.5m 3/h ; 填料层压降U 管读数:2.0 mmH 2O空塔气速:07.0050.0)4/36005.024/36002=⨯⨯⋅⨯=ππ(=)(iD Vu (m/s ) 单位填料层压降5.28.02==∆ Z P (mmH 2O/m )在对数坐标纸上以空塔气速u 为横坐标,Z P ∆为纵坐标作图,标绘Z P ∆~u 关系曲线,见图三。
(2)传质实验(以第一组数据为例)CO 2转子流量计读数0.200(m 3/h )、CO 2转子流量计处温度 16.1(℃) 16.1℃下二氧化碳气体密度2co ρ=1.976 Kg/m 3CO 2实际流量V CO2=2co Air ρρ=976.1204.1=0.156(m 3/h )空气转子流量计读数V Air =0.500 (m 3/h )(a ). 吸收液浓度计算吸收液消耗盐酸体积V 1=30.10 ml ,则吸收液浓度为:溶液V V C V C C HC HC OH Ba OH Ba A 22ll 2)()(12-==1021.30111.01017982.02⨯⨯⨯⨯-=0.01277 mol/L(b ).吸收剂二氧化碳浓度计算因纯水中含有少量的二氧化碳,所以纯水滴定消耗盐酸体积V=32.3ml ,则塔顶水中CO 2浓度为:溶液V V C V C C HClHCl OH Ba OH Ba A 222)()(22-==1023.32111.01017982.02⨯⨯-⨯⨯=0.00056mol/L(c ).塔底的平衡浓度计算塔底液温度t =7.9℃,由表一可查得CO 2亨利系数 E=0.9735×105 KPa 则CO 2的溶解度常数为EM H ww 1⨯=ρ =8109735.01181000⨯⨯=5.706×10-7 ( 13--⋅⋅Pa m kmol ) 塔底混和气中二氧化碳含量 y 1=5.0156.0156.0+=0.238=*1A C H ×P A1=H ×y 1×P 0=5.7×10-7×0.2857×101325=0.016521 (mol/l )(d ).塔顶的平衡浓度计算 由物料平衡得塔顶二氧化碳含量因为L(C A2- C A1)=V(y 1-y 2) 则y 2=y 1-VC C L A A )(12-⨯=0.238-)4.225.0()00056.001277.0()100040(-⨯=0.216*2A C = H ×P A2=H ×y 2×P 0=5.706×10-7×0.2638×101325=0.015256 mol/L(e ).液相平均推动力计算1*12*21*12*21221m ln )()ln A A A A A A A A A A A A A C C C C C C C C C C C C C -----∆∆∆∆∆(=-= =01277.001249.000056.00137.0ln)01277.0016521.0()00056.00137.0(-----= 0.0049(kmol/m 3)因本实验采用的物系不仅遵循亨利定律,而且气膜阻力可以不计,在此情况下,整个传质过程阻力都集中于液膜,属液膜控制过程,则液侧体积传质膜系数等于液相体积传质总系数,即AmA A sL L l C C C hS V a K a k ∆-⋅==21 =0049.0)00056.001277.0(4/)050.0(14.38.03600/104023-⨯⨯⨯⨯- =0.0044 (m/s)实验结果列表如下:干填料时△P/z ~u 关系测定(见表二) 湿填料时△P/z ~u 关系测定(见表三) 填料吸收塔传质实验技术数据(见表四)ZP ∆~u 关系曲线 (见图-3)表二、干填料时△P/z~u关系测定表三湿填料时△P/z~u关系测定表四:填料吸收塔传质实验技术数据表。
二氧化碳吸收与解吸实验一、实验目的1.了解填料吸收塔的结构、性能和特点,练习并掌握填料塔操作方法;通过实验测定数据的处理分析,加深对填料塔流体力学性能基本理论的理解,加深对填料塔传质性能理论的理解。
2.掌握填料吸收塔传质能力和传质效率的测定方法,练习实验数据的处理分析。
二、实验内容1. 测定填料层压强降与操作气速的关系,确定在一定液体喷淋量下的液泛气速。
2. 固定液相流量和入塔混合气二氧化碳的浓度,在液泛速度下,取两个相差较大的气相流量,分别测量塔的传质能力(传质单元数和回收率)和传质效率(传质单元高度和体积吸收总系数)。
3. 进行纯水吸收二氧化碳、空气解吸水中二氧化碳的操作练习,同时测定填料塔液侧传质膜系数和总传质系数。
三、实验原理:气体通过填料层的压强降:压强降是塔设计中的重要参数,气体通过填料层压强降的大小决定了塔的动力消耗。
压强降与气、液流量均有关,不同液体喷淋量下填料层的压强降P ∆与气速u 的关系如图一所示:图一 填料层的P ∆~u 关系当液体喷淋量00=L 时,干填料的P ∆~u 的关系是直线,如图中的直线0。
当有一定的喷淋量时,P ∆~u 的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。
这两个转折点将P ∆~u 关系分为三个区段:既恒持液量区、载液区及液泛区。
传质性能:吸收系数是决定吸收过程速率高低的重要参数,实验测定可获取吸收系数。
对于相同的物系及一定的设备(填料类型与尺寸),吸收系数随着操作条件及气液接触状况的不同而变化。
1.二氧化碳吸收-解吸实验根据双膜模型的基本假设,气侧和液侧的吸收质A 的传质速率方程可分别表达为 气膜 )(Ai A g A p p A k G -= (1) 液膜 )(A Ai l A C C A k G -= (2) 式中:A G —A 组分的传质速率,1-⋅s kmoI ;A —两相接触面积,m 2;A P —气侧A 组分的平均分压,Pa ; Ai P —相界面上A 组分的平均分压,Pa ;A C —液侧A 组分的平均浓度,3-⋅m kmol Ai C —相界面上A 组分的浓度3-⋅m kmolg k —以分压表达推动力的气侧传质膜系数,112---⋅⋅⋅Pa s m kmol ;l k —以物质的量浓度表达推动力的液侧传质膜系数,1-⋅s m 。
吸收实验实验报告一、实验目的本次吸收实验的主要目的是研究气体在液体中的吸收过程,通过实验测定吸收系数,了解吸收设备的操作原理和性能,以及掌握吸收过程的影响因素。
二、实验原理吸收是一种物质从气相转移到液相的传质过程。
在吸收过程中,溶质气体在气相中的分压与在液相中的浓度之间存在一定的平衡关系。
本实验采用的是物理吸收,即被吸收的气体与吸收剂不发生化学反应。
根据亨利定律,在一定温度和压力下,气液平衡时,溶质在气相中的分压与在液相中的浓度成正比,其表达式为:$p = E \times x$,其中$p$为溶质在气相中的分压,$E$为亨利系数,$x$为溶质在液相中的摩尔分数。
吸收系数是衡量吸收过程快慢的重要参数,它表示单位时间内单位体积吸收剂吸收溶质的量。
吸收系数的大小取决于吸收剂的性质、操作条件以及设备的结构等因素。
三、实验装置与流程实验装置主要由吸收塔、储液槽、流量计、压力表等组成。
吸收塔采用填料塔结构,内部填充有一定高度的填料,以增加气液接触面积,提高吸收效率。
实验流程如下:含溶质气体从塔底进入吸收塔,与从塔顶喷淋而下的吸收剂逆流接触进行吸收。
吸收后的尾气从塔顶排出,经流量计计量后放空。
吸收剂从储液槽经泵输送至塔顶,经分布器均匀喷淋在填料上。
实验过程中,通过调节气体流量、吸收剂流量和温度等参数,研究其对吸收效果的影响。
四、实验材料与试剂1、实验气体:二氧化碳($CO_2$)2、吸收剂:水3、实验仪器:填料吸收塔、气体流量计、液体流量计、压力表、温度计等五、实验步骤1、检查实验装置的密封性,确保无泄漏。
2、向储液槽中加入适量的水,启动泵,调节吸收剂流量至设定值。
3、开启二氧化碳气瓶,调节气体流量至设定值,使气体从塔底进入吸收塔。
4、稳定运行一段时间后,分别测量塔顶和塔底的气体组成、温度和压力,以及吸收剂的流量和温度。
5、改变气体流量、吸收剂流量或温度等参数,重复上述步骤,进行多组实验。
6、实验结束后,关闭气瓶和泵,清理实验装置。
实验名称:吸收(解吸)实验一、实验目的1 了解填料塔吸收装置的基本结构及流程;2 掌握总体积传质系数的测定方法;3 测定填料塔的流体力学性能;4 了解气体空塔速度和液体喷淋密度对总体积传质系数的影响;5 了解气相色谱仪和六通阀在线检测CO2浓度和测量方法;6 学会化工原理实验软件库的使用。
二、实验装置流程示意图及实验流程简述1〕装置流程本实验装置流程如图6-1所示:水经转子流量计后送入填料塔塔顶再经喷淋头喷淋在填料顶层。
由风机输送来的空气和由钢瓶输送来的二氧化碳气体混合后,一起进入气体混合稳压罐,然后经转子流量计计量后进入塔底,与水在塔内进行逆流接触,进行质量和热量的交换,由塔顶出来的尾气放空,由于本实验为低浓度气体的吸收,所以热量交换可略,整个实验过程可看成是等温吸收过程。
2〕主要设备(1)吸收塔:高效填料塔,塔径100mm,塔内装有金属丝网板波纹规整填料,填料层总高度2000mm.。
塔顶有液体初始分布器,塔中部有液体再分布器,塔底部有栅板式填料支承装置。
填料塔底部有液封装置,以避免气体泄漏。
(2)填料规格和特性:金属丝网板波纹填料:型号JWB—700Y,填料尺寸为φ100×50mm,比表面积700m2/m3。
(4)气泵:层叠式风机,风量0~90m3/h,风压40kPa;(5)二氧化碳钢瓶;(6)气相色谱仪(型号:SP6801);(7)色谱工作站:浙大NE2000。
三、简述实验操作步骤及安全注意事项1 实验步骤(1)熟悉实验流程及弄清气相色谱仪及其配套仪器结构、原理、使用方法及其注意事项;(2)打开仪表电源开关及风机电源开关;(3)开启进水总阀,使水的流量达到400L/h左右。
让水进入填料塔润湿填料。
(4)塔底液封控制:仔细调节阀门○2的开度,使塔底液位缓慢地在一段区间内变化,以免塔底液封过高溢满或过低而泄气。
(5)打开CO2钢瓶总阀,并缓慢调节钢瓶的减压阀(注意减压阀的开关方向与普通阀门的开关方向相反,顺时针为开,逆时针为关),使其压力稳定在0.1Mpa左右;(6)仔细调节空气流量阀至1m3/h,并调节CO2调节转子流量计的流量,使其稳定在100L/h~160 L/h;(7)仔细调节尾气放空阀的开度,直至塔中压力稳定在实验值;(8)待塔操作稳定后,读取各流量计的读数及通过温度数显表、压力表读取各温度、压力,通过六通阀在线进样,利用气相色谱仪分析出塔顶、塔底气相组成;(9)改变水流量值,重复步骤(6)(7)(8)。
填料塔吸收实验报告.doc
填料塔是石化、化肥、医药等行业中非常重要的流体吸取设备,它主要用来吸取低浓度气体或混合气体中的含气量。
填料塔的吸收性能是反应其内处理能力的最直观表征,因此,为了评价其吸收能力,我们进行了相应的试验研究。
实验设备由蒸发器、吸收器、搅拌器、扩散器、微液管还有可调压力表等组成,实验所用介质为CO2-CH4共沉液,实验中所采用的催化剂量为326 kg/m3。
首先,在样品气体以和0.21MPa入口压力、搅拌速度为162 rpm和温度为298.4 K的条件下进行实验,经控制参数后,搅拌速度和温度均保持不变,催化剂层的厚度也不变,将CO2-CH4共沉取1小时,用于分析混合气体测量。
再将其再搅拌3小时,也就是经过4小时的实验,得到的混合气体测量结果如下:入口CO2含量为6.90%,出口CO2含量为0.182%,可以看出CO2单位吸收量大约为680g/m3.
经比较,实验搅拌器中吸收CO2主要存在两个作用——一是热和物相扩散,二是热力学不平衡,这两种力学原理是填料塔吸收实验最主要的影响因素。
填料塔吸收实验中CO2的差压吸收量并不大,但大多数现代填料塔吸收器在充分利用这两个力学原理的情况下,可以提高吸收量,发挥其最大的效果。
最后,通过这次实验,得到的结论是:填料塔的吸收性能受温度、搅拌速度和催化剂层厚度等因素的影响很大,同时,在充分利用热和物相扩散以及热力学原理的情况下,还可以提高吸收量。
因此,在实际应用中,应该根据不同的操作情况选择合适的参数,以获取最佳的吸收性能。
二氧化碳填料塔气体吸收实验数据处理方法标题:二氧化碳填料塔气体吸收实验数据处理方法引言:二氧化碳填料塔气体吸收实验是一种常用的工艺,用于将二氧化碳从气相中吸收到液相中。
在这个实验过程中,需要对实验数据进行处理和分析,以获得准确的结果和可靠的实验结论。
本文将介绍二氧化碳填料塔气体吸收实验数据处理的方法和技巧,以帮助读者更好地理解和应用这一实验。
1. 实验数据的收集与整理在进行二氧化碳填料塔气体吸收实验时,需要收集各个实验条件下的数据。
这些数据包括进料流量、进料浓度、塔底液相浓度、气相组分浓度以及各个操作变量等。
在收集数据时,应保证实验过程的准确性和可重复性,并记录实验条件的变化和调整。
收集到的实验数据一般以表格或数据文件的形式呈现。
在整理数据时,可以使用电子表格软件,如Excel,对数据进行记录、排序和计算。
确保数据的准确性和完整性非常重要,因为后续的数据处理和分析都依赖于这些数据。
2. 数据预处理与清洗在进行数据处理和分析之前,常常需要进行数据预处理和清洗。
这是为了消除数据中的噪声和异常值,使数据更具有可靠性和可解释性。
数据预处理的方法包括数据平滑、插值和滤波等。
数据平滑通过对连续数据进行平均、加权平均或移动平均来减少噪声的影响。
插值方法可以用于填充数据中的缺失值,以保持数据的连续性。
滤波方法可用于去除高频噪声,如滑动平均滤波或中值滤波。
数据清洗的过程包括检测和处理异常值。
异常值可能由测量误差、实验条件变化等因素引起。
常用的异常值检测方法包括3σ法、箱线图和统计量分析等。
对于检测到的异常值,可以通过删除、替换或进行异常值校正来进行处理。
3. 数据分析与解释一旦数据预处理和清洗完成,接下来可以进行数据分析和解释。
数据分析的目的是从实验数据中提取有关二氧化碳填料塔气体吸收实验的有用信息,并根据此信息形成结论和观点。
常用的数据分析方法包括描述性统计分析、回归分析和相关性分析等。
描述性统计分析可以帮助了解数据的分布特征、中心趋势和变化范围。
实验二 填料塔吸收气体实验1.实验目的(1)了解填料塔吸收塔的结构与流程;(2)测定液相总传质单元数和总体积吸收系数;2.基本原理由于CO 2气体无味、无毒、廉价,所以本实验选择CO 2作为溶质,用水吸收空气中的CO 2。
吸收的计算方法可按低浓度来处理。
公式: mOL X X X N ∆-=21-------=∆-∆∆-∆=∆)/ln()/ln()/()/(ln ln 221122112121X m Y X m Y X m Y X m Y X X X X XmOLX X X N Z LX X dY Z L a K Ω=-Ω=⎰12*式中 K X a : 以∆X 为推动力的液相总体积吸收系数,kmol / (m 3·s);N OL : 以∆X 为推动力的液相总传质单元数; L : 水的摩尔流量,kmol /s ; Z : 填料层高度,m ; Ω: 塔的横截面积,m 2 ;本实验的平衡关系可写成:Y = mX ; 式中 m :相平衡常数,m =E /P ;E :亨利系数,E =f (t ),Pa ,可根据液相温度t 查得; P :总压,Pa (取大气压)。
测定方法:(1)本实验采用转子流量计测得水的体积流量,换算水的摩尔流量。
(2)测定塔底和塔顶气相组成Y 1和Y 2(利用容量滴定法测定,再根据实验条件(温度和压力)换算成摩尔比)。
(3)塔底和塔顶液相组成X 1、X 2的确定:利用容量滴定法测定。
3.实验装置与流程实验装置流程如图所示。
自来水送入填料塔塔顶经喷淋头喷淋在填料顶层。
由风机送来的空气和由二氧化碳钢瓶来的二氧化碳混合后,一起进入气体混合贮罐,然后从塔底进入塔内,与水在塔内进行逆流接触,发生质量传递,由塔顶出来的尾气放空。
由于本实验为低浓度气体的吸收,整个实验过程可看成是等温操作。
自来水空气来自风机CO 2来自钢瓶吸收塔取样分析取样分析转子流量计吸收液尾气液封控制阀混合罐图 吸收实验流程简图4.实验步骤与注意事项 实验步骤:(1)熟悉实验流程和容量滴定法测定CO2的步骤。
CO2填料塔气体吸收实验数据处理
1. 引言
CO2填料塔气体吸收实验是一种常用的方法,用于研究CO2在填料塔中的吸收性能。
通过实验数据的处理和分析,我们可以得到CO2吸收的效率以及各种操作条件对吸收效果的影响,从而为填料塔的设计和优化提供依据。
本文将介绍如何处理和分析CO2填料塔气体吸收实验所得到的数据。
首先,我们将阐述实验的目的和原理;然后,介绍实验的方法和仪器设备;接着,详细描述实验过程和数据采集;最后,对实验数据进行处理和分析,并给出实验结果和结论。
2. 实验目的和原理
实验的目的是研究CO2在填料塔中的吸收性能,探究不同操作条件对吸收效果的影响。
通过实验数据的处理和分析,我们可以获得CO2吸收的效率,了解填料塔的吸收性能,并为填料塔的设计和操作提供依据。
实验原理是利用填料塔中填充物的大表面积和气液接触面积,使CO2与溶液发生物理吸收或化学反应,从而实现CO2的去除和纯化。
填料塔中的填充物通常选择具有高比表面积和良好润湿性的材料,如活性炭、分子筛等。
3. 实验方法和仪器设备
3.1 实验方法
1.准备填料塔和填充物:选择合适的填料塔和填充物,并确保其干燥和清洁。
2.准备溶液:按照预定浓度配制出CO2吸收溶液,并确保其组成和浓度的准确
性。
3.装配实验设备:将填料塔、溶液循环装置和气体进样装置按照实验要求进行
装配。
4.开始实验:根据实验计划,控制溶液的流量、温度和压力等操作条件,并将
CO2气体通过填料塔进行吸收。
5.收集数据:定期记录实验数据,包括气体进出口浓度、溶液流量、温度和压
力等。
3.2 仪器设备
1.填料塔:用于CO2的吸收和分离。
2.填充物:具有高比表面积和良好润湿性的材料。
3.溶液循环装置:用于循环供应CO2吸收溶液。
4.气体进样装置:用于控制CO2气体的进样量和流速。
5.数据采集系统:用于记录和保存实验数据。
4. 实验过程和数据采集
4.1 实验过程
1.安装填料塔:将填料塔按照实验要求进行安装,并确保其密封性和稳定性。
2.预热填料塔:将填料塔进行预热,使其达到实验所需的温度。
3.控制操作条件:根据实验计划,控制溶液的流量、温度和压力等操作条件。
4.开始实验:将CO2气体通过填料塔进行吸收,根据实验要求进行实验时间的
控制。
5.数据采集:定期记录实验数据,包括气体进出口浓度、溶液流量、温度和压
力等。
4.2 数据采集
在实验过程中,使用数据采集系统记录和保存以下数据: 1. CO2气体进出口浓度:通过连续监测CO2气体进出口的浓度,计算吸收率。
2. 溶液流量:通过流量计测量溶液的流量,用于计算吸收速率。
3. 温度和压力:通过温度计和压力传感器测量填料塔中溶液的温度和压力。
5. 数据处理和分析
5.1 数据处理
1.数据清洗:对采集到的实验数据进行清洗,包括去除异常值和修正误差。
2.数据整合:将不同时间点的数据整合为时间序列,并进行对齐处理。
3.数据转换:根据实验所需,对数据进行转换,如计算吸收率和吸收速率。
4.数据归一化:对数据进行归一化处理,以消除因实验设备和条件而引起的差
异。
5.2 数据分析
根据实验数据,可进行以下数据分析: 1. 吸收效率分析:计算吸收率和吸收速率,分析CO2在填料塔中的吸收效果。
2. 影响因素分析:研究操作条件对吸收效果的影响,如温度、压力、溶液浓度等。
3. 填料塔设计优化:根据吸收率和吸收速率,优化填料塔的结构和操作条件,提高吸收效率。
6. 实验结果和结论
根据实验数据的处理和分析,得到以下实验结果和结论: 1. 吸收效率:根据计算的吸收率和吸收速率,评估CO2在填料塔中的吸收效果。
2. 影响因素:通过影响因素分析,了解不同操作条件对吸收效果的影响程度。
3. 填料塔设计优化:根据实验结果,提出填料塔的优化建议,以提高吸收效率。
综上所述,CO2填料塔气体吸收实验数据处理是一个重要的工作,通过对实验数据
的处理和分析,可以评估CO2吸收的效率,并为填料塔的设计和优化提供依据。
实验过程中的数据采集和数据处理要准确可靠,数据分析要全面深入,以取得准确的实验结果和结论。
最后,需要对实验结果进行有效的呈现,以便更好地传达实验的成果。