《分式》全章导学案
- 格式:doc
- 大小:662.00 KB
- 文档页数:33
第十六章分式从分数到分式主备人:初审人:终审人:【导学目标】1.能用分式表示实际问题中的数量关系,感悟分式的模型思想;了解分式的概念,明确整式与分式的区别.2.理解并掌握判断一个分式有意义、无意义及值为零的方法.3.经历用字母表示实际问题中的数量关系的过程,进一步发展符号感,在此基础上掌握分式中字母取值的方法.【导学重点】理解并掌握分式的概念,体会其内涵.【导学难点】对分式中字母取值范围的认识.【课前准备】明确整式的概念.【学法指导】类比,延伸.【导学流程】一、呈现目标、明确任务1.分式的概念.2.分式中的分母应满足什么条件.二、检查预习、自主学习1.课本第2页思考(1)、(2).2.分式中的分母应满足什么条件时分式才有意义?分式无意义的条件是: .分式的值为零的条件是: .三、教师引导1.对思考(1),引导学生温故,采用先讨论再个别提问的方法,回顾分数、整式.并探索思考(2),找出异同点.(按小组思考、交流).通过观察类比形成分式的概念.2.区分整式与分式,在考虑为什么分数的分母不能为0,从而知道分式中的分母应满足什么条件时分式才有意义.四、问题导学、展示交流例1 下列各式中,哪些是整式,哪些是分式?(1)1a (2)6x(3)27xx(4)24a b + (5)22x y x y -+ (6)2213x x -+- 例2 当x 取什么数时,下列分式有意义?(1)23x(2)1x x - (3)153b - (4)x y x y +-五、点拨升华、当堂达标1.课本P4练习1、2、3.2.当x 为何值时,分式232xx -+无意义? 3.当x 为何值时,分式232xx -+无意义?4.当x 为何值时,分式232xx x -+的值为0?5.当x 为何值时,分式56x -的值为1?6.当x 为何值时,分式23x+的值为负数?六、布置预习1.当x 取何值时,下列分式有意义? (1)32x + (2)532x x +- (3)2254x x --2.当x 为何值时,分式的值为0?(1)75x x + (2)7213x x - (3)221x x x--【课后反思】练习课主备人: 初审人: 终审人:【导学目标】1.继续了解分式、有理式的概念.2.继续理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件. 【导学重点】理解分式有意义的条件,分式的值为零的条件.【导学难点】能熟练地求出分式有意义的条件,分式的值为零的条件. 【课前准备】分式的意义. 【学法指导】类比. 【导学流程】一、呈现目标、明确任务1.继续了解分式、有理式的概念.2.继续理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件.二、检查预习、自主学习1.当x 取何值时,下列分式有意义?(1)32x + (2)532x x +- (3)2254x x --2.当x 为何值时,分式的值为0?(1)75x x + (2) 7213x x - (3)221x x x--三、教师引导分式的值为0时,必须同时满足两个条件:一是分母不能为零;二是分子为零,这样求出的m 的解集中的公共部分,就是这类题目的解.四、问题导学、展示交流1.思考第1页的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?小组讨论设未知数,列方程.设江水的流速为x 千米/时. 轮船顺流航行100千米所用的时间为10020v +小时,逆流航行60千米所用时间6020v-小时,所以10020v +=6020v-. 2.判断下列各式哪些是整式,哪些是分式?x7 , 209y+, 54-m , 238y y -,91-x五、点拨升华、当堂达标1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?(1)甲每小时做x 个零件,则他8小时做零件 个,做80个零件需 小时. (2)轮船在静水中每小时走a 千米,水流的速度是b 千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时.(3)x 与y 的差于4的商是 .2.当x 取何值时,分式2132x x +-无意义?3.当x 为何值时,分式21x x x--的值为0? 六、布置预习1.下列分数是否相等?可以进行变形的的依据是什么?23 46 812 1624 32482.分数的基本性质是什么?试着用字母表示分数的基本性质. 3.课本第4—5页内容. 【课后反思】分式的基本性质(1)主备人: 初审人: 终审人:【导学目标】1.了解分式的基本性质2.灵活运用分式的基本性质进行分式的变形 【导学重点】1.了解分式的基本性质2.灵活运用分式的基本性质进行分式的变形 【导学难点】灵活运用分式的基本性质进行分式的化简 【课前准备】分数的基本性质. 【学法指导】类比、迁移. 【导学流程】一、呈现目标、明确任务 1.理解分式的基本性质.2.运用分式的基本性质进行分式的化简. 二、检查预习、自主学习1.下列分数是否相等?可以进行变形的的依据是什么?23 46 812 1624 32482.分数的基本性质是什么?试着用字母表示分数的基本性质.3.类比分数的基本性质,你能猜想出分式有什么性质吗? 三、教师引导1.通过具体例子引导学生回忆分数的通分、约分的依据——分数的基本性质,再用类比方法得出分式的基本性质.2.联想分数的约分,再联想例2,引导学生怎样对分式进行约分.(约分何时为止?)四、问题导学、展示交流1.P5例2.填空(学生先独立思考,然后分小组讨论).应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变. 2.不改变分式的值,使下列分式的分子和分母都不含“—”号.(1)23a b -- (2)32x y - (3)22x a--五、点拨升华、当堂达标1.课本第8页练习1及习题第4、5、6题.2.利用分式的基本性质,将下列各式化为更简单的形式.(1)2bcac (2)()2x y y xy + (3)()22x xy x y ++六、布置预习阅读教材P6-P8相关内容,思考,讨论,交流下列问题. 1.分数怎么约分?与分数的约分类似,你能把分式248aa b约分吗?分式约分的依据是什么?分式约分约去的是什么?2.什么叫分数的通分? 类似于分数的通分,你能说出分式的通分吗?什么叫做最简公分母?【课后反思】分式的基本性质(2)主备人: 初审人: 终审人:【导学目标】1.类比分数的约分、通分,理解分式约分通分的意义.2.类比分数的约分、通分,掌握分式约分通分的方法与步骤. 【导学重点】运用分式的基本性质正确的进行分式的约分通分. 【导学难点】通分时最简公分母的确定;运用通分法则将分式进行变形. 【课前准备】分数的基本性质. 【学法指导】类比、迁移. 【导学流程】一、呈现目标、明确任务运用分式的基本性质进行分式的通分. 二、检查预习、自主学习1.小学学过的约分通分应注意些什么?2.你预习后对分式的约分通分有什么体会?怎样确定最大公约数与最小公倍数? 三、教师引导阅读教材P6-P8相关内容,思考,讨论,交流下列问题. 1.做下列各题: (1)464(2)20128你做这些题目的根据是什么?我们称为什么运算? 2.与分数的约分类似,你能把分式248aa b约分吗?分式约分的依据是什么?分式约分约去的是什么?3.什么叫做分式的约分?什么叫做最简分式?4.把分数12,34,56通分.什么叫分数的通分? 5.类似于分数的通分,你能说出分式的通分吗?什么叫做最简公分母? 四、问题导学、展示交流 P6例3.约分.为约分要先找出分子和分母的公因式. P7例4.通分.通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.五、点拨升华、当堂达标1.课本第8页练习2及习题第7题.2.约分:(1) 22220ab a b (2) 22244x x x x --+ (3)22969x x x --+ (4)222248422x xy y x y -+- 3.通分:(1)26x ab ,29x a bc (2) 2121a a a -++,261a - (3) 223a a +,332a -,221549a a +-六、布置预习(1) x x x 3222+= ()3+x (2) 32386b b a =()33a(3) c a b ++1=()cn an + (4) ()222y x y x +-=()y x -【课后反思】练习课主备人: 初审人: 终审人:【导学目标】1.继续类比分数的约分、通分,理解分式约分通分的意义.2.继续类比分数的约分、通分,掌握分式约分通分的方法与步骤. 【导学重点】做一些练习. 【导学难点】熟练通分和约分. 【课前准备】通分和约分. 【导学流程】一、呈现目标、明确任务1.继续类比分数的约分、通分,理解分式约分通分的意义.2.继续类比分数的约分、通分,掌握分式约分通分的方法与步骤. 二、检查预习、自主学习 填空:(1) x x x 3222+= ()3+x (2) 32386b b a =()33a(3) c a b ++1=()cn an + (4) ()222y x y x +-=()y x - 三、教师引导要在上节课的基础上更加熟练地进行通分约分的计算. 四、问题导学、展示交流 1.约分:(1)cab ba 2263 (2)2228mn n m (3)532164xyz yz x - (4)x y y x --3)(2 3.通分: (1)321ab 和c b a 2252 (2)xy a 2和23x b(3)223ab c 和28bc a- (4)11-y 和11+y五、点拨升华、当堂达标1.不改变分式的值,使下列分式的分子和分母都不含“-”号.(1) 233abyx -- (2) 2317b a --- (3) 2135x a -- (4) m b a 2)(-- 2.判断下列约分是否正确: (1)c b c a ++=ba(2)22y x y x --=y x +1 (3)nm nm ++=0 3.通分: (1)231ab 和b a 272 (2)x x x --21和xx x +-21 4.不改变分式的值,使分子第一项系数为正,分式本身不带“-”号. (1)ba ba +---2 (2)y x y x -+--32六、布置预习1.阅读教材P10-P12内容,完成下列问题.2.用语言描述分数的乘除法法则,并用字母表示出来. 【课后反思】分式的乘除(1)主备人: 初审人: 终审人:【导学目标】1.通过类比分数的乘除运算法则,探究得出并掌握分式的乘除法法则.2.会进行简单分式的乘除运算,具有一定的代数划归能力.3.能解决一些与分式有关的简单实际问题.【导学重点】分式的乘除法法则. 【导学难点】运用分式的乘除法法则对分子、分母是多项式的分式进行乘除运算和符号变化. 【课前准备】分数的乘除运算. 【学法指导】类比、迁移. 【导学流程】一、呈现目标、明确任务分式的乘除法法则,用法则会进行计算. 二、检查预习、自主学习1.分数乘除法计算法则内容你还清楚吗?2.P10问题1 的由来依据是_______________,水面的高的由来依据是__________. 3.问题2的数量关系是什么?4.猜一猜,可以用分数乘除法的法则来推广分式的乘除法法则吗?三、教师引导阅读教材P10-P12内容,思考、讨论、交流完成下列问题. 1.用语言描述分数的乘除法法则,并用字母表示出来.2.类比分数的乘除法法则,用语言描述分式的乘除法法则,并用字母表示出来.3.在进行分式的乘除运算时,如果分式的分子、分母是多项式时,应该怎么办?分式的乘除法对运算结果有什么要求?四、问题导学、展示交流 P11例1,这道例题就是直接应用分式的乘除法法则进行运算.应该注意的是运算结果应约分到最简,还应注意在计算时跟整式运算一样,先判断运算符号,再计算结果.P11例2,这道例题分式的分子、分母是多项式,应先把多项式分解因式,再进行约分.结果的分母如果不是单一的多项式,而是多个多项式相乘是不必把它们展开.P12例3,这道应用题有两问,第一问是:哪一种小麦的单位面积产量最高?先分别求出“丰收1号”、“丰收2号”小麦试验田的面积,再分别求出“丰收1号”、“丰收2号”小麦试验田的单位面积产量,分别是( )( ),还要判断出以上两个分式的值,哪一个值更大.要根据问题的实际意义可知a >1,因此()22121a a a -=--<221a -+,即()21a -<21a -,可得出“丰收2号”单位面积产量高.五、点拨升华、当堂达标1.课本13页练习第2、3题;2.课本22页习题16.2第1、2(1)(2)题. 六、布置预习 复习旧知:1.分式的乘除法法则.2.乘方的意义. 【课后反思】分式的乘除(2)主备人: 初审人: 终审人:【导学目标】1.经历探索分式的乘方过程,并结合具体情境说明其合理性. 2.会进行简单分式的乘除乘方的混合计算,具有一定的化归能力. 【导学重点】熟练地进行分式的乘方运算. 【导学难点】熟练地进行分式的乘、除、乘方的混合运算. 【课前准备】乘方的意义. 【学法指导】类比、迁移. 【导学流程】一、呈现目标、明确任务 1.分式的乘方法则;2.分式的乘、除、乘方混合运算法则. 二、检查预习、自主学习分式的乘除法法则;2.乘方的意义;3.分数的乘方法则. 三、教师引导问题1:美术课上需要一张边长为bacm 的正方形卡纸,你能算出它的面积吗? 问题2:一个正方体的容器,它的棱长为ba,你能求出它的容积吗?根据乘方的意义和分式乘法的法则,计算:=⎪⎭⎫ ⎝⎛2b a . =⎪⎭⎫⎝⎛3b a =⎪⎭⎫⎝⎛10b a ==b a b a b a b a n .)( 分式的乘方法则: .四、问题导学、展示交流 例5.计算:(1)2223a b c ⎛⎫- ⎪⎝⎭; (2)3223322a b a c cd d a ⎛⎫⎛⎫÷⋅ ⎪ ⎪-⎝⎭⎝⎭ 分式乘除乘方的混合运算解题步骤是: . 计算:(1)()22222xy x xy x x xy y x y-⋅÷-+- (2)()()222142y x x y xy x y x +-÷⋅- (3)已知()2490a b ++-=,求22222a ab a abb a b +-⋅-的值. 五、点拨升华、当堂达标课本15页练习1、2及课本22页习题16.2第2、3题. 六、布置预习什么叫通分?通分的关键是什么?什么叫最简公分母? 分数的加减运算法则是什么? 【课后反思】练习课主备人: 初审人: 终审人:【导学目标】1.通过类比分数的乘除运算法则,探究得出并掌握分式的乘除法法则.2.会进行简单分式的乘除运算,具有一定的代数划归能力.3.能解决一些与分式有关的简单实际问题. 【导学重点】熟练地进行分式的乘方运算. 【导学难点】熟练地进行分式的乘、除、乘方的混合运算. 【课前准备】分式的乘除法和分式的乘方. 【学法指导】类比、迁移. 【导学流程】一、呈现目标、明确任务1.会进行简单分式的乘除运算,具有一定的代数划归能力. 2.能解决一些与分式有关的简单实际问题. 二、检查预习、自主学习什么叫通分?通分的关键是什么?什么叫最简公分母? 分数的加减运算法则是什么?计算下列各式:(1)1255+ (2)1255- (3)1123+ (4)1123- 三、教师引导分式乘除法的混合运算先统一成为乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的计算结果要是最简的.四、问题导学、展示交流(1))4(3)98(23232b x b a xy y x ab -÷-⋅=xb b a xy y x ab 34)98(23232-⋅-⋅ (先把除法统一成乘法运算)=xb b a xy y x ab 349823232⋅⋅ (判断运算的符号) =32916ax b (约分到最简分式) (2) x x x x x x x --+⋅+÷+--3)2)(3()3(444622=x x x x x x x --+⋅+⋅+--3)2)(3(31444622 (先把除法统一成乘法运算) =x x x x x x --+⋅+⋅--3)2)(3(31)2()3(22(分子、分母中的多项式分解因式) =)3()2)(3(31)2()3(22---+⋅+⋅--x x x x x x =22--x 五、点拨升华、当堂达标(1))2(216322b a a bc a b -⋅÷ (2)103326423020)6(25b a c c ab b a c ÷-÷ (3)x y y x x y y x -÷-⋅--9)()()(3432 (4)22222)(x y x xy y xy x x xy -⋅+-÷- 六、布置预习 计算1123-,并回忆分数的加减法法则: . 类比分数的加减法,你能猜想出分式的加减法法则吗?分别用语言和式子表示分式的加减法法则. . 【课后反思】分式的加减(1)主备人: 初审人: 终审人:【导学目标】1.知道分式加,减的一般步骤,能熟练进行分式的加减运算. 2.进一步渗透类比思想、化归思想. 【导学重点】异分母分式的加减运算. 【导学难点】分式的通分.【课前准备】分数的加减法.【学法指导】类比、迁移.【导学流程】一、呈现目标、明确任务掌握分式的加减法法则,并能够熟练的运用.二、检查预习、自主学习计算1123-,并回忆分数的加减法法则:.类比分数的加减法,你能猜想出分式的加减法法则吗?分别用语言和式子表示分式的加减法法则..三、教师引导阅读教材P15-P16相关内容,思考,讨论,交流后完成下列问题.1.分式的加减法的实质与分数的加减法相同,你能说出分式的加减法法则?2.同学们能说出最简公分母的确定方法吗?3.通分: .分式通分时,要注意:4.归纳:(1)同分母的分式加减法.(2)异分母的分式加减法.四、问题导学、展示交流教材P16例6计算应用分式的加减法法则.第(1)题是同分母的分式减法的运算,第二个分式的分子是个单项式,不涉及到分子变号的问题,比较简单,所以要补充分子是多项式的例题,教师要强调分子相减时第二个多项式注意变号.五、点拨升华、当堂达标课本16页练习1、2及习题第4、5题已知13aba b=+,14bcb c=+,15cac a=+,求abcab bc ac++的值.六、布置预习1.我们已经学习了分式的哪些运算.2.分式的乘除运算主要是通过进行的,分式的加减运算主要是通过进行的.3.分数的混合运算法则是什么?【课后反思】分式的加减(2)主备人:初审人:终审人:【导学目标】明确分式混合运算的顺序,熟练地进行分式的混合运算. 【导学重点】熟练地进行分式的混合运算. 【导学难点】熟练地进行分式的混合运算. 【课前准备】分数的四则混合运算. 【学法指导】类比、迁移. 【导学流程】一、呈现目标、明确任务明确分式混合运算的顺序,熟练地进行分式的混合运算. 二、检查预习、自主学习1.我们已经学习了分式的哪些运算?2.分式的乘除运算主要是通过 进行的,分式的加减运算主要是通过 进行的.3.分数的混合运算法则是什么? 三、教师引导一、认真阅读P17例7,例8.学习例题的解题方法和步骤. 二、合作探究,生成总结 1.计算:(1)22211()x yx y x y x y +÷-+- (2)2121()a a a a a-+-÷ 归纳:1.分式的混合运算步骤为:(1) ,(2) ,(3) .四、问题导学、展示交流1.计算22224xx x x x x ⎛⎫⋅÷ ⎪+--⎝⎭; 2211xy x y x y x y ⎛⎫+÷ ⎪-+-⎝⎭. 2.课本P18页练习第2题 五、点拨升华、当堂达标 1.课本第23页习题第6题. 2.若()()353131x A Bx x x x -=+-+-+,求A 、B 的值.六、布置预习1.回忆正整数指数幂的运算性质.2.回忆0指数幂的规定.3.完成P18页练习2. 【课后反思】练习课主备人: 初审人: 终审人:【导学目标】1.明确分式混合运算的顺序.2.熟练地进行分式的混合运算. 【导学重点】熟练地进行分式的混合运算. 【导学难点】熟练地进行分式的混合运算. 【课前准备】分数的四则混合运算. 【学法指导】类比 迁移. 【导学流程】一、呈现目标、明确任务 1.明确分式混合运算的顺序. 2.熟练地进行分式的混合运算. 二、检查预习、自主学习(1) x x x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷---(3))2122()41223(2+--÷-+-a a a a 三、教师引导 (1)x xx x x x x x -÷+----+4)44122(22这道题先做括号里的减法,再把除法转化成乘法,把分母的“-”号提到分式本身的前边..解:x xx x x x x x -÷+----+4)44122(22=)4(])2(1)2(2[2--⋅----+x xx x x x x =)4(])2()1()2()2)(2([22--⋅-----+x xx x x x x x x x =)4()2(4222--⋅-+--x xx x x x x =4412+--x x (2)2224442yx x y x y x y x y y x x +÷--+⋅- 这道题先做乘除,再做减法,把分子的“-”号提到分式本身的前边.解:2224442y x x y x y x y x y y x x +÷--+⋅- =22222224))((2x y x y x y x y x y x y y x x +⋅-+-+⋅- =2222))((y x y x y x y x xy --⋅+- =))(()(y x y x x y xy +--=yx xy+-四、问题导学、展示交流 (1) )1)(1(yx x y x y +--+ (2) 22242)44122(aaa a a a a a a a -÷-⋅+----+ (3) zxyz xy xyz y x ++⋅++)111(五、点拨升华、当堂达标 计算24)2121(aa a ÷--+,并求出当=a -1的值. 六、布置预习1.回忆正整数指数幂的运算性质.2.回忆0指数幂的规定.3.完成P21页练习题. 【课后反思】整数指数幂(1)主备人: 初审人: 终审人:【导学目标】1.知道负整数指数幂na-=na 1(0a ≠,n 是正整数). 2.掌握整数指数幂的运算性质. 【导学重点】掌握整数指数幂的运算性质. 【导学难点】掌握整数指数幂的运算性质. 【课前准备】熟悉正整数指数幂的运算性质. 【学法指导】类比、迁移. 【导学流程】一、呈现目标、明确任务引入负整数指数幂后,前面学习的正整数指数幂的运算性质可推广到整数指数幂. 二、检查预习、自主学习1.回忆正整数指数幂的 算性质.2.回忆0指数幂的规定. 三、教师引导 1.前置自学探索负整数指数幂的运算性质,仿照同底数幂的除法公式来计算:2555÷= 371010÷=(2)利用约分计算这两个式子:22553515555÷== 3377410110101010÷==由此,我们得到35-= 410-=整数指数幂的运算法则: . 归纳:一般地,当n 是正整数时,()0_______≠=-a an,这就是说,()0≠-a a n 是na 的倒数.2.填空(1)-22= (2)(-2)2= (3)(-2) 0=(4)20= (5)2 -3= (6)(-2) -3=3.计算 (1)()232x y- (2)()3222x yx y --⋅ (3)()()232223x y x y --÷四、问题导学、展示交流 1.教学P20例9、10题.2.将下列各式写成只含有正整数指数幂的形式. (1)()2221a bc --- (2)()()3223x y y z ---(3)()225xy z --- (4)()231x y x y -五、点拨升华、当堂达标 1.课本第21页练习1、2.2.已知327x-=,2439y⎛⎫= ⎪⎝⎭,251x +=,求x ,y ,z 的值.六、布置预习用科学记数法表示下列各数:(1)光的速度是300000000米/秒;(2)银河系中的恒星约有160000000000个. 【课后反思】整数指数幂(2)主备人: 初审人: 终审人:【导学目标】学会小于1的正数用科学记数法表示的方法. 【导学重点】掌握小于1的正数用科学记数法表示.【导学难点】学会正数指数与负整数指数用于科学记数法的区别. 【课前准备】熟悉用科学记数法表示较大数的方法. 【学法指导】知识迁移.【导学流程】一、呈现目标、明确任务会用科学记数法表示小于1的正数. 二、检查预习、自主学习 用科学记数法表示:8684000000= ;-8080000000= .三、教师引导1.填空: 10-1=0.1;10-2= ;10-3= ;10-4= ;10-5= ;10-6= ;10-n= ;你发现用10的负整数指数幂表示0.00…01这样较小的数有什么规律吗?请说出你总结的结论:____________________________________________________2、用科学记数法表示下列各数:(1)0.001 (2) -0.000001 (3)0.001357 (4)-0.000000034 想一想:从上题的解题过程中你发现了什么?3.归纳:用科学计数法表示绝对值较小的数可写成10na -⨯的形式,其中a 要求1≤│a │<10,n 为正整数.其中n 的值等于___________.四、问题导学、展示交流1.用科学记数法填空:(1)1秒是1微秒的1000000倍,则1微秒= 秒 (2)1毫克= 千克(3)1米是1微米的1000000倍,则1微米= 米 (4)1纳米= 微米 (5)1平方厘米= 平方米 (6)1毫升= 升 2.用科学记数法表示下列结果:(1)地球上陆地的面积为149000000平方公里,用科学记数法表示为 .(2)一本200页的书厚度约为 1.8厘米,用科学记数法表示一页纸的厚度约等于 .3、用科学计数法表示下列各数:0.00004, -0.034, 0.00000045, 0.003009 五、点拨升华、当堂达标 1.课本第22页练习1、22.用科学计数法表示下列各数并保留2个有效数字: 0.000665; 0.0000896 六、布置预习完成P22页练习题. 【课后反思】练习课主备人: 初审人: 终审人:【导学目标】1.理解负整数指数幂na-=n a1(0a ≠,n 是正整数). 2.熟练掌握整数指数幂的运算性质.3.复习小于1的正数用科学记数法表示的方法. 【导学重点】做练习. 【导学难点】掌握整数指数幂的运算性质. 【课前准备】负整数指数幂和科学计数法. 【导学流程】一、呈现目标、明确任务1.熟练掌握整数指数幂的运算性质.2.复习小于1的正数用科学记数法表示的方法. 二、检查预习、自主学习1.回忆正整数指数幂的运算性质:(1)同底数的幂的乘法:nm n m a a a +=⋅(,m n 是正整数);(2)幂的乘方:mnnm aa =)((,m n 是正整数);(3)积的乘方:nnn b a ab =)((n 是正整数); (4)同底数的幂的除法:nm nmaa a -=÷(0a ≠,,m n 是正整数,m n >);(5)商的乘方:n nn ba b a =)((n 是正整数);2.回忆0指数幂的规定,即当0a ≠时,10=a . 3.你还记得1纳米=10-9米,即1纳米=9101米吗? 4.计算当0a ≠时,53a a ÷=53a a =233a a a ⋅=21a,再假设正整数指数幂的运算性质n m n m a a a -=÷(0a ≠,,m n 是正整数,m n >)中的m n >这个条件去掉,那么53a a ÷=53-a =2-a .于是得到2-a =21a(0a ≠),就规定负整数指数幂的运算性质:当n 是正整数时,na-=n a1(0a ≠). 三、教师引导类比负数的引入后使减法转化为加法,而得到负指数幂的引入可以使除法转化为乘法这个结论,从而使分式的运算与整式的运算统一起来.四、问题导学、展示交流 1.填空(1)-22= (2)(-2)2= (3)(-2) 0=(4)20= (5)2 -3= (6)(-2) -3= 2.计算 (1)()232x y- (2)()3222x yx y --⋅ (3)()()232223x y x y --÷五、点拨升华、当堂达标1. 用科学计数法表示下列各数:0.00004, -0.034, 0.000 00045, 0. 0030092.计算(1) (3×10-8)×(4×103) (2) (2×10-3)2÷(10-3)3六、布置预习阅读教材P26-P29相关内容完成下列问题.1.什么是分式方程?它与我们学过的整式方程有何不同?2.我们已经会解整式方程,对于我们新学的分式方程,我们能否把它转化成我们会解的整式方程来做呢?应该怎样转化呢?3.完成P29页练习中(1)(2)题. 【课后反思】分式方程(1)主备人: 初审人: 终审人:【导学目标】1.理解分式方程的意义.2.了解分式方程的基本思路和解法.3.理解解分式方程时可能无解的原因,并掌握分式方程验根的方法.【导学重点】解分式方程的基本思路和解法. 【导学难点】解分式方程时可能无解的原因. 【学法指导】理解、运用. 【课前准备】列方程解应用题的步骤. 【导学流程】一、呈现目标、明确任务 会解分式方程.二、检查预习、自主学习1.完成本章引言的问题,小组议一议:方程的特征,然后概括出分式方程的概念__________________________________.3.分式方程与整式方程的区别是___________________________________. 三、教师引导 (一)自学质疑 1.分式方程的定义.( )叫分式方程.分式方程与整式方程的区别是( ).2.练习:判断下列各式哪个是分式方程.(1)5x y +=;(2)2253x y z +-=;(3)1x ;(4)05yx =+.3.解分式方程的基本思想是( ),基本方法是去分母( ).而正是这一步有可能使方程产生增根.(二)合作探究解方程:(1)2110525x x =--. 通过解上面两方程(1)、(2),特别是通过检验你发现了什么? 四.问题导学、展示交流 1.课本第28页例1、2.2.指出下列方程中哪些是分式方程?哪些不是分式方程?为什么?(1)21632x x -+= (2) 12x x -= (3)11021x -=+ (4)11523x x-=3.关于x 的方程4332=-+x a ax 的根为1x =,则a 应取值( ) A.1 B.3 C.-1 D.-34.方程xx x -=++-1315112的根是( )A.x =1B.x =-1C.x =83D.x =2五、点拨升华、当堂达标 1.课本第29页练习.2.已知3x =是方程112x k -=-的解,求k 的值. 六、布置预习1.什么叫分式方程?2.解分式方程的一般步骤是什么?3.预习分式方程的应用,完成P31页练习题. 【课后反思】分式方程(2)主备人: 初审人: 终审人:【导学目标】1.列分式方程解应用题的一般步骤;2.学会用等量关系列分式方程解应用题; 【导学重点】学会用等量关系列分式方程解应用题. 【导学难点】用等量关系列分式方程解应用题. 【学法指导】类比、迁移. 【课前准备】列一元一次方程解应用题的步骤. 【导学流程】一、呈现目标、明确任务学会找等量关系列分式方程解应用题. 二、检查预习、自主学习 1.解分式方程的步骤是什么? 2.列方程解应用题的步骤是什么?3.我们学过哪几种类型的应用题?每种类型的基本公式是什么? 行程问题、数字问题、工程问题、顺水逆水问题、利润问题. 三、教师引导探讨1. 两个工程队共同参与一项筑路工程,甲队单独施工完成总工程的三分之一,这时增加了乙队,两队又共同工作了半个月,总工程全部完成.求乙队单独完成需要的时间.归纳:解工程问题的基本思路是(1) .(2) .(3) .探讨2. 从2004年5月起某列车平均提速V 千米/时,用相同的时间,列车提速前行驶S 千米,提速后比提速前多行驶50千米,提速前列车的平均速度为多少?归纳:行程问题的基本思路是。
§ 16.1.1从分数到分式自主合作学习丽习目标_| >1.分式的概念:" 訂>2.掌握分式有意义的条件;乂 ' I >3.分式的值为0, ±1的条件.91X3、下列各式中 A.2x + l⑹壬Jr -1无论X 取何值, B.2x+l (7)XX 2+2分式都有意狡的是( D.2X 2+14、当x. y 满足 ________ 时,分式二丄有意义;—y四、课堂测控:—1 × a 4 2α-5 X 1 m + n 11>下列各式、 、 9 -> -> 9 9 9X 3 π 3Zr +5 3 X ■一 )厂 % +1 加 一 n 5Cr -b 1 X 1 +2x +1 ci — b— 2x + 1 是分式的有 是整式的有 是有理式的有 2、下列分式,当X 取何值时有意狡.2 3 + x 22x+lx + 1 (D-: (2) ----(3) ---- (4)——U2Λ-33x+2x-13(“ 一 b)-3x 2, O 中,-25/加∖5ab 2c/一9Λ2+6x + 96X 2 -12xy+ 6y 23x-3>τ「— 14、 当X时,分式 --------- 的值为零X" +x-24x + 3 4Λ,+ 3 5、 当X _____ 时,分式 —— 的值为1;当X __________ 时,分式 __ 的值为T.x-5 x-5分式的基木性质一约—耳主合作■律学习目标 >ι.理解并掌握分式的基本性质;j >2.灵活运用分式基本性质将分式化为最简分式.【学習i 程】独立看书4〜7页二. ∖∙z独立完成下列预习作业:1、分式的分子与分母同乘(或除以)一个不为O 的整式,分式的值 ______________ππA A ∙ C ... A A÷ (J X即一= ------ 或—= ---------- (C≠0)B Bc B B÷C2、填空:(D ——='——— 2Λ* X — 2⑵凹—):丝亠十)(b≠0)ab a 2b a 2CrbX3、利用分式的基本性质:将分式 一的分子和分母的公因式X 约去,使分式 L -IXX 1——变为——,这样的分式变形叫做分式的 _________________ :经过约分后的分式-2x x-2丄.其分子与分母没有 ____________ ,像这样的分式叫做 _________________ ・ X — 2三. 合作交流,解决问题: 将下列分式化为最简分式:3x 1 +3xy _ x+ y6X 2()四、课堂测控:1. 分数的基本性质为: __________________________________________________ .用字母表示为: _________________ . 2. 把下列分数化为最简分数:(1) —=; (2) 二= :(3)—=124513分式的基本性质为:_________________________________________________________________________ ・x 2 +3xx + 38/?3③ x^-< = χ-y ④E -U+V)2(• -) Cl+ C4、分式4y+3χ,1 X2 Xy + y 2 a 2 + 2ab 9 - .S 4a X 4 -1 x+ y (Ih 一 2b-A. 1个B. 2个C. 3个D. 4个5、约分:{严 ⑵("PClC2X 2)中是最简分式的有() ⑶(x+y)2-——SHo) an + Cn6a 3b 23a 3)X 2 + xy⑷ ----- -(χ-y)★⑸X 2-9m 2 一 3∕π+ 2nr -In2分式的基本性质一通分~[f⅞弓目忆[>1.理解并掌握分式的基本性质及最简公分母的含义:> 2.灵活运用分式基本性质将分式变形。
人教版八年级数学上册《分式》导学案 分式的乘除(第一课时)【学习目标】1.理解和掌握分式的乘除法运算法则,能进行简单的分式乘除法运算;2.掌握分式的分子和分母是单项式的分式的乘除法计算;3.掌握分式的乘方法则,会进行分式的乘方运算. 【知识梳理】1.分式乘法的运算法则:两个分式相乘,把分子的积作为积的 ,把分母的积作为积的 .用式子表示为 .2.分式除法的运算法则:两个分式相除,把除式的分子和分母 ,再与被除式 .3.计算:(1)2b a -·(-43ab ) (2)x2y 32÷ ()y x 26-4.n a 表示 ,其中a 叫做 ,n 叫做 .5.计算:6.分式的乘方法则:分式的乘方,把 ,即 .7.计算:(1)32)32(c b a - (2)32)-2(x y【典型例题】知识点一 分子、分母是单项式的分式乘法1.计算2916431ab b a •)( (2)(x 2−2y )3∙6xy 2x 4知识点二 分子、分母是单项式的分式除法2.计算 xy y x 323-(1)222÷ (2)(b 3a 2)2÷(−b 36a )知识点三 分子、分母是单项式的分式乘除乘方混合运算;2)()()()(=⋅=⎪⎭⎫ ⎝⎛b a ;3)()()()()(=⋅⋅=⎪⎭⎫ ⎝⎛b a ;)()(4)()()()(=⋅⋅⋅=⎪⎭⎫ ⎝⎛b a .)()(=⎪⎭⎫ ⎝⎛nb a3.43223)()()ab a b ab -÷-•(4.计算(1)3223b a b b a ÷⋅(3)(xy 2−z )4∙(z 2xy )3÷(xz −y )5(4)(b2ax )2÷(−ax3b )×8ab 3【巩固训练】1.列各式中,计算结果是分式的是( )A. B. C. D.2.化简÷是( )A .mB .﹣mC .D .﹣3.计算:4352310251b a c c b a ⋅)( (2)22223498zxy z y x ÷- (3)43222)()()x y x y y x -÷⋅-(人教版八年级数学上册《分式》导学案n am b ÷35x x ÷3223734x x y y ÷nm m 23n ⋅3222)3()23()2)(2(ab b b a -⋅-÷-分式的乘除(第二课时)【学习目标】1.熟练运用分式的乘除法运算法则,能进行简单的分式乘除法运算;2.掌握分式的分子和分母是多项式的分式的乘除法计算.【知识梳理】1.在进行分式相乘时,如果分子或分母是多项式,现将分子或分母____________,将除法转化为____________,再约分化简,题中有括号的,应先算括号里面的. 2.因式分解(1)2249n m - (2)22224)(y x y x -+ (3)81721624+-x x【典型例题】知识点一 分子、分母是多项式的分式乘除法1.222250101y x y x xy y x -⋅-)( 4121222--÷--a a a a )( 22222)2(243y x y x y xy x y x ++÷++-)(2.(1) 165)4(2n 2--÷-m mn m (2))(4243y x yx xy y x ⋅- (3)知识点二 分式的化简求值3.先化简再求值: 228241681622+-⋅+-÷++-a a a a a a a 选择一个合适的数代入求值.4.先化简,再求值: x 2+2x−8x 3+2x 2+x÷(x−2x⋅x+4x+1) 其中x =−45【巩固训练】1. 化简xyx xy x +÷+)2(的结果是( ) A. B.y x +2 C. D.2.化简1211a 222+--÷-+a a a a a 的结果是( ) A.11+-a a B.11-+a a C.a1D.a 3.化简÷的结果是( ) A .B .C .D .4.使分式()22222y x ay ax y a x a y x ++⋅-- 的值等于5,则a 的值是( ) A.5 B.-5 C.51 D.51-5.计算:(1)mm m m m --⋅-+-3249622 (2)()2x xy xy yx -÷-(3)44246322+++÷--x x x x x (4)22233969⎪⎭⎫⎝⎛+-⋅+--x x x x x(5) a 2−16a 2+8a+16÷a−42a+8∙a−2a+2 (6)x+2x 2−6x+9÷13−x ∙x−3x+26.先12)1(441222-+⋅+÷++-m mm m m m m 化简,再选一个你认为合适的m 的值代入求值.2()x y +2x x。
第十五章分式15.1.1 从分数到分式教学目标1.了解分式的概念,能用分式表示实际问题中的数量关系.2.能确定分式有意义的条件.教学重、难点分式的概念教学过程设计一、创设问题,激发兴趣章引言:一艘轮船在静水中的最大航速为30 km/h,它沿江以最大航速顺流航行90 km所用时间,与以最大航速逆流航行60 km所用时间相等,江水的流速为多少?问题1 顺流航行的速度、逆流航行的速度与轮船在静水中的速度、水流速度之间有什么关系?顺流航行的速度=轮船在静水中的速度+水流速度;逆流航行的速度=轮船在静水中的速度-水流速度.问题2 这个问题的等量关系是什么?顺流航行90 km所用时间=逆流航行60 km所用时间.问题3 应怎样设未知数?如何根据等量关系列出方程?解:设江水的流速为v km/h.依题意得:追问式子与分数有什么相同点和不同点?它们与你学过的整式有什么不同?问题4 填空:(1)长方形的面积为10 cm2,长为7 cm,宽应为cm;长方形的面积为S,长为a,宽应为cm.问题4 填空:(2)把体积为200 cm3的水倒入底面积为33 cm2的圆柱形容器中,水面高度为cm;把体积为V 的水倒入底面积为S 的圆柱形容器中,水面高度为 .追问1 上面问题中得到的式子,,,哪些不是我们学过的整式?追问2 式子,,与以前学过的整式不同,这些代数式有什么共同的特征?二、知识应用,巩固提高分式的定义:一般地,如果A,B 表示两个整式,并且B 中含有字母,那么式子叫做分式(fraction).分式中,A 叫做分子,B 叫做分母.问题5 我们知道,要使分数有意义,分数中的分母不能为0.要使分式有意义,分式中的分母应满足什么条件?为什么?例1 下列分式中的字母满足什么条件时分式有意义?三、应用提高、拓展创新课本128页练习1、2、3四、归纳小结(1)本节课学习了哪些主要内容?(2)你能举例说明什么是分式吗?(3)如何确定分式有意义的条件?五、布置作业:教科书习题15.1第1、2、3题.教后反思:15.1.2 分式的基本性质(1)教学目标1.了解分式的基本性质,体会类比的思想方法.2.掌握分式的约分,了解最简分式的概念.教学重、难点分式的基本性质和分式的约分教学过程设计一、创设问题,激发兴趣问题1 下列分数是否相等?追问这些分数相等的依据是什么?问题2 你能叙述分数的基本性质吗?分数的基本性质:一个分数的分子、分母乘(或除以)同一个不为0的数,分数的值不变.问题3 你能用字母的形式表示分数的基本性质吗?问题4 类比分数的基本性质,你能想出分式有什么性质吗?分式的基本性质:分式的分子与分母乘(或除以)同一个不等于0的整式,分式的值不变.追问1 如何用式子表示分式的基本性质?二、知识应用,巩固提高追问2 应用分式的基本性质时需要注意什么?(1)分子、分母应同时做乘、除法中的同一种运算;(2)所乘(或除以)的必须是同一个整式;(3)所乘(或除以)的整式应该不等于零.例2 填空:问题5 观察上例中(1)中的两个分式在变形前后的分子、分母有什么变化?类比分数的相应变形,你联想到什么?像这样,根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分.经过约分后的分式,其分子与分母没有公因式.像这样分子与分母没有公因式的式子,叫做最简分式.例3 约分:追问1 由上例你能归纳出在分式中,找分子和分母的公因式的方法是什么吗?追问2 如果分式的分子或分母是多项式,那么该如何思考呢?三、应用提高、拓展创新教科书132页练习1四、归纳小结(1)本节课学习了哪些主要内容?(2)运用分式的基本性质时应注意什么?(3)分式约分的关键是什么?如何找公因式?(4)探究分式的基本性质和分式的约分的过程,你认为体现了哪些数学思想方法?五、布置作业:教科书习题15.1第4、6题.教后反思:15.1.2 分式的基本性质(2)教学目标1.了解最简公分母的概念,会确定最简公分母.2.通过类比分数的通分来探索分式的通分,能进行分式的通分,体会数式通性和类比的思想.教学重、难点准确确定分式的最简公分母教学过程设计一、创设问题,激发兴趣问题1 通分:追问1 分数通分的依据是什么?追问2 如何确定异分母分数的最小公分母?问题2 填空:像这样,根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.追问1 你认为分式通分的关键是什么?分式通分的关键是找出分式各分母的公分母.追问2 上面问题中的两个分式的公分母是什么?为通分要先确定各分式的公分母,一般取各分母的所有因式的最高次幂的积作公分母,它叫做最简公分母.追问3 两个分式的最简公分母是如何确定的?最简公分母的确定方法:取各分母系数的最小公倍数与各字母因式的最高次幂的乘积.分母是多项式时,最简公分母的确定方法是:先因式分解,再将每一个因式看成一个整体,最后确定最简公分母.二、知识应用,巩固提高例通分:三、应用提高、拓展创新教科书132页练习1四、归纳小结(1)本节课学习了哪些主要内容?(2)分式通分的关键是什么?(3)分式通分时,确定最简公分母的方法是什么?五、布置作业:教科书习题15.1第7题教后反思:15.2.1 分式的乘除(1)教学目标1.理解分式的乘除法法则,体会类比的思想.2.会根据分式的乘除法法则进行简单的运算,并理解其算理教学重、难点分式的乘除法法则的运用教学过程设计一、创设问题,激发兴趣问题1 一个水平放置的长方体容器,其容积为V ,底面的长为a ,宽为b ,当容器内的水占容积的n m 时,水面的高度为多少? (1)这个长方体容器的高怎么表示?(2)容器内水面的高与容器内的水所占容积间有何关系?容器内水面的高与容器高的比和容器内的水所占容积的比相等.问题2 大拖拉机m 天耕地a hm 2,小拖拉机n 天耕地b hm 2,大拖拉机的工作效率是小拖拉机的工作效率的多少倍?(1)本题中出现的“工作效率”的含义是什么?(2)大拖拉机和小拖拉机的工作效率怎样表示?观察上述两个问题中所列出的式子中,其中涉及到分式的有哪些运算?你能用学过的运算法则求出结果吗?问题3 计算:在计算的过程中,你运用了分数的什么法则?你能叙述这个法则吗?如果将分数换成分式,那么你能类比分数的乘除法法则,说出分式的乘除法法则吗? 怎样用字母来表示分式的乘除法法则呢?二、知识应用,巩固提高分式的乘除法法则如何用文字语言来描述?乘法法则:分式乘分式,用分子的积作为积的分子,分母的积为积的分母.除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.例1 计算:三、应用提高、拓展创新教科书138页 练习2四、归纳小结(1)本节课学习了哪些主要内容?(2)分式的乘除法运算与分数的乘除法运算有什么区别和联系?五、布置作业:教材第144页第1题;第145页第10、11题.教后反思:15.2.1分式的乘除(2)教学目标1.能运用分式的乘除法法则进行复杂计算.2.能运用分式的乘除法解决一些简单的实际问题.教学重、难点用分式的乘除法法则进行计算,并解决一些实际问题.教学过程设计一、创设问题,激发兴趣问题1 约分:分子与分母分别是多项式的分式如何约分?问题2 计算:分子与分母都是单项式的两个分式如何乘除?二、知识应用,巩固提高例1 计算:分子或分母是多项式的两个分式如何乘除呢?解题策略:对于分子与分母都是单项式的两个分式乘除,可直接利用分式的乘除法法则,再根据分式的基本性质进行约分,将最后的结果化成最简分式.而对于分子或分母中含有多项式的两个分式相乘,为了使算式简洁,也便于找出分子与分母中的公因式,需要先将多项式因式分解,把多项式化成整式的积的形式,然后利用分式的乘除法法则进行运算,利用分式的基本性质进行约分,并把最后的结果化成最简分式.例2 “丰收1号”小麦的试验田是边长为a m(a>1)的正方形去掉一个边长为1 m 的正方形蓄水池后余下的部分,“丰收2号”小麦的试验田是边长为(a-1)m的正方形,两块试验田的小麦都收获了500 kg.(1)哪种小麦的单位面积产量高?(2)高的单位面积产量是低的单位面积产量的多少倍?思考以下问题:① 你能说出小麦的“单位产量”的含义吗?② 如何表示这两块试验田的单位产量?③ 怎样确定哪种小麦的单位产量高?④ 你能列式表示(2)的问题吗?归纳解题步骤:(1)先根据题意分别列出表示两个量的代数式;(2)再根据题意列出相应的算式;(3)最后通过计算解决问题.三、应用提高、拓展创新教科书138页 练习3四、归纳小结运用分式的乘除法法则计算分子或分母含有多项式 的分式主要步骤是什么?五、布置作业:教材第144页第2题.教后反思:15.2.1 分式的乘方教学目标1.理解分式乘方的运算法则,能根据法则进行乘方运算,体会数式通性.2.能根据混合运算法则进行分式乘除、乘方混合运算.教学重、难点分式的乘方及分式乘除、乘方混合运算教学过程设计一、创设问题,激发兴趣例1 计算: 2235353259.-+-x x x x x ÷⋅练习1 计算:2222222222222551334216423282816--+----++++m n p q mnp q pq mnm n n m m n m m n m na a a a a a a ⋅÷⋅÷÷⋅();()();()(). 思考 你能结合有理数乘方的概念和分式乘法的法则写出结果吗?2310===a a a b b b ()? ()? ()?猜想:n 为正整数时=⎪⎭⎫ ⎝⎛nb a ? 你能写出推导过程吗?试试看.你能用文字语言叙述得到的结论吗?分式的乘方法则:一般地,当n 是正整数时,这就是说,分式乘方要把分子、分母分别乘方.二、知识应用,巩固提高例2 计算:例3 计算:分式的乘除、乘方混合运算与分数的乘除、乘方混合运算有什么联系和区别吗? 练习2 计算:三、应用提高、拓展创新教科书139页练习2四、归纳小结(1)本节课学习了哪些主要内容?(2)运用分式乘方法则计算的步骤是什么?它与整式的乘方运算有什么区别和联系?(3)分式的乘方与乘除混合运算的运算顺序是什么?五、布置作业:教科书习题15.2第3(3)(4)题.教后反思:15.2.2分式的加减教学目标1.理解分式的加减法法则,体会类比思想.2.会运用法则进行分式的加减运算,体会化归思想.教学重、难点分式的加减法法则教学过程设计一、创设问题,激发兴趣问题1 甲工程队完成一项工程需n 天,乙工程队要比甲队多用3天才能完成这项工程,两队共同工作一天完成这项工程的几分之几?(1)甲工程队一天完成这项工程的几分之几?(2)乙工程队一天完成这项工程的几分之几?(3)甲乙两队共同工作一天完成这项工程的几分之几?问题2 2009年、2010年、2011年某地的森林面积(单位:km 2)分别是S 1,S 2,S 3,2011年与2010年相比,森林面积增长率提高了多少?(1)什么是增长率?(2)2010年、2011年的森林面积增长率分别是多少?(3)2011年与2010年相比,森林面积增长率提高了多少?分式的加减法与分数的加减法类似,它们实质相同.观察下列分数加减运算的式子,你能将它们推广,得出分式的加减法法则吗?分式的加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减.二、知识应用,巩固提高例 计算:1122323++-p q p q ().三、应用提高、拓展创新课本141页 练习1、练习2练习:你能应用本节课所学知识解决“问题1”和“问题2”吗?四、归纳小结(1)本节课学习了哪些主要内容?(2)我们是怎么引出分式加减法法则的?(3)在进行分式的加减运算时要注意哪些问题?五、布置作业:教科书习题15.2第4、5题.教后反思:15.2.2分式的混合运算教学目标1.理解分式混合运算的顺序.2.会正确进行分式的混合运算.3.体会类比方法在研究分式混合运算过程中的重要价值.教学重、难点分式的混合运算.教学过程设计一、创设问题,激发兴趣问题 数的混合运算的顺序是什么?你能将它们推广,得出分式的混合运算顺序吗? 分式的混合运算顺序:“从高到低、从左到右、括号从小到大”.例1 计算:这道题的运算顺序是怎样的?通过对例1的解答,同学们有何收获?对于不带括号的分式混合运算:(1)运算顺序:先乘方,再乘除,然后加减;(2)计算结果要化为最简分式.二、知识应用,巩固提高例2 计算: 2252412232142244-++--+-----+m m m m x x x x x x x x ⎛⎫⋅ ⎪⎝⎭⎛⎫÷ ⎪⎝⎭() ;() .通过对例2的解答,同学们有何收获?对于带括号的分式混合运算:(1)将各分式的分子、分母分解因式后,再进行计算;(2)注意处理好每一步运算中遇到的符号;(3)计算结果要化为最简分式.三、应用提高、拓展创新练习1 计算:四、归纳小结(1)本节课学习了哪些主要内容?(2)分式混合运算的顺序是什么?我们是怎么得到它的?(3)在进行分式混合运算时要注意哪些问题?五、布置作业:教科书习题15.2第6题.教后反思:15.2.3 整数指数幂教学目标1.了解负整数指数幂的意义.2.了解整数指数幂的性质并能运用它进行计算.3.会利用10的负整数次幂,用科学记数法表示一些小于1 的正数.教学重、难点幂的性质(指数为全体整数),并会用于计算,以及用科学记数法表示一些小于1的正数.教学过程设计一、创设问题,激发兴趣问题1 你们还记得正整数指数幂的意义吗?正整数指数幂有哪些运算性质呢?将正整数指数幂的运算性质中指数的取值范围由“正整数”扩大到“整数”,这些性质还适用吗?问题2 a m 中指数m 可以是负整数吗?如果可以,那么负整数指数幂a m 表示什么?(1)根据分式的约分,当 a ≠0 时,如何计算53a a÷? (2)如果把正整数指数幂的运算性质(a ≠0,m ,n 是正整数,m >n )中的条件m >n 去掉,即假设这个性质对于像53a a÷情形也能使用, 如何计算? 数学中规定:当n 是正整数时,()01≠=-a a an 这就是说,()0≠-a a n 是a n 的倒数.问题3 引入负整数指数和0指数后,m n m n a a a +⋅=(m ,n 是正整数)这条性质能否推广到m ,n 是任意整数的情形?问题4 类似地,你可以用负整数指数幂或0 指数幂对于其他正整数指数幂的运算性质进行试验,看看这些性质在整数范围内是否还适用?(1)m n m n a a a +⋅= (m ,n 是整数);(2)m n mn a a =() (m ,n 是整数);(3)n n nab a b =() (n 是整数);(4)m n m n a a a -÷=(m ,n 是整数); (5)n n n b aba =⎪⎪⎭⎫ ⎝⎛(n 是整数). 二、知识应用,巩固提高例1 计算:三、应用提高、拓展创新问题5 能否将整数指数幂的5条性质进行适当合并?这样,整数指数幂的运算性质可以归结为:(1)m n m n a a a +⋅= (m ,n 是整数);(2)m n mn a a =() (m ,n 是整数);(3)n n nab a b =() (n 是整数);探索: 4321101000010001.01010001001.010100101.0101010.1----========归纳:如何用科学记数法表示0.003 5和0.000 098 2呢?规律:对于一个小于1的正小数,从小数点前的第一个0算起至小数点后第一个非0数字前有几个0,用科学记数法表示这个数时,10的指数就是负几.例2 用科学记数法表示下列各数:(1)0.3;(2)-0.000 78;(3)0.000 020 09.例3 纳米(nm )是非常小的长度单位,1 nm =10-9 m .把1 nm 3 的物体放到乒乓球上,就如同把乒乓球放到地球上.1 mm 3 的空间可以放多少个1 nm 3 的物体(物体之间的间隙忽略不计)?四、归纳小结(1)本节课学习了哪些主要内容?(2)整数指数幂的运算性质与正整数指数幂的运算性质有什么区别和联系?五、布置作业:教科书习题15.2第7、8、9题教后反思:15.3 分式方程(1)教学目标1.了解分式方程的概念.2.会用去分母的方法解可化为一元一次方程的简单的分式方程,体会化归思想和程序化思想.3.了解解分式方程根需要进行检验的原因.教学重、难点利用去分母的方法解分式方程教学过程设计一、创设问题,激发兴趣问题1 为了解决引言中的问题,我们得到了方程v v -=+30603090.仔细观察这个方程,未知数的位置有什么特点?追问1 方程13321;251051;32212++=+-=-+=x x x x x x x x 与上面的方程有什么共同特征?分母中含有未知数.分式方程的概念:分母中含有未知数的方程叫做分式方程.追问2 你能再写出几个分式方程吗?注意:我们以前学习的方程都是整式方程,它们的未知数不在分母中.问题2 你能试着解分式方程vv -=+30603090吗? 问题3 这些解法有什么共同特点?总结:这些解法的共同特点是先去分母,将分式方程转化为整式方程,再解整式方程. 思考:(1)如何把分式方程转化为整式方程呢?(2)怎样去分母?(3)在方程两边乘以什么样的式子才能把每一个分母都约去呢?(4)这样做的依据是什么?总结:(1)分母中含有未知数的方程,通过去分母就化为整式方程了.(2)利用等式的性质2可以在方程两边都乘同一个式子——各分母的最简公分母. 追问 你得到的解6=v 是分式方程v v -=+30603090的解吗? 二、知识应用,巩固提高问题4 解分式方程: 2110525=.--x x追问1 你得到的解5=x 是分式方程2510512-=-x x 的解吗?该如何验证呢?5=x 是原分式方程变形后的整式方程的解,但不是原分式方程的解.追问2 上面两个分式方程的求解过程中,同样是去分母将分式方程化为整式方程,为什么整式方程90306030-=+v v ()()的解6=v 是分式方程v v -=+30603090的解,而整式方程510+=x 的解5=x 却不是分式方程2510512-=-x x 的解? 原因:在去分母的过程中,对原分式方程进行了变形,而这种变形是否引起分式方程解的变化,主要取决于所乘的最简公分母是否为0.检验的方法主要有两种:(1)将整式方程的解代入原分式方程,看左右两边是否相等;(2)将整式方程的解代入最简公分母,看是否为0.显然,第2种方法比较简便!问题5你能概括出解分式方程的基本思 路和一般步骤吗?解分式方程应该注意什么?基本思路 将分式方程化为整式方程一般步骤:(1)去分母;(2)解整式方程;(3)检验.注意:由于去分母后解得的整式方程的解不一定是原分式方程的解,所以需要检验.三、应用提高、拓展创新例 解下列方程:四、归纳小结(1)本节课学习了哪些主要内容?(2)解分式方程的基本思路和一般步骤是什么?解分式方程应该注意什么?五、布置作业:教科书习题15.3第1(1)~(4)题.教后反思:15.3 分式方程(2)教学目标1.会解较复杂的分式方程和较简单的含有字母系数的分式方程.2.能够列分式方程解决简单的实际问题.3.通过学习分式方程的解法,体会转化的数学思想.教学重、难点分式方程的解法教学过程设计一、创设问题,激发兴趣例1 解方程 31112-=.--+x x x x ()()解分式方程的步骤:(1)去分母,将分式方程转化为整式方程;(2)解这个整式方程;(3)检验.用框图的方式总结为:二、知识应用,巩固提高例2 解关于x 的方程11+=.-a b b x a ()例3 两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的三分之一,这时增加了乙队,两队又共同工作了半个月,总工程全部完成,哪个队的施工速度快?三、应用提高、拓展创新某车间有甲、乙两个小组,甲组的工作效率比乙组工作效率高25%,因此甲组加工2 000个零件所用的时间比乙组加工1 800个零件所用的时间少半小时,问甲、乙两组每小时各加工多少个零件?四、归纳小结(1)本节课学习了哪些主要内容?(2)解分式方程的一般步骤有哪些?关键是什么?解方程的过程中要注意的问题有哪些?(3)列分式方程解应用题的步骤是什么?与列整式方程解应用题的过程有什么区别和联系?五、布置作业:教科书习题15.3第1(2)(4)(6)(8)、4、5题.教后反思:15.3 分式方程(3)教学目标列分式方程解决实际问题.教学重、难点列分式方程解实际问题.教学过程设计一、创设问题,激发兴趣例1 某进货员发现一种应季衬衫,预计能畅销,他用8 000元购进一批衬衫,很快销售一空.再进货时,他发现这种衬衫的单价比上一次贵了4 元/件,他用17 600元购进2 倍于第一次进货量的这种衬衫.问第一次购进多少件衬衫?分析:二、知识应用,巩固提高例2 某次列车平均提速v km/h.用相同的时间,列车提速前行驶s km,提速后比提速前多行驶50 km,提速前列车的平均速度为多少?思考:(1)这个问题中的已知量有哪些?未知量是什么?(2)你想怎样解决这个问题?关键是什么?表达问题时,用字母不仅可以表示未知数(量),也可以表示已知数(量).上面例题中,出现了用一些字母表示已知数据的形式,这在分析问题寻找规律时经常出现.例2中列出的方程是以x 为未知数的分式方程,其中v,s是已知常数,根据它们所表示的实际意义可知,它们是正数.三、应用提高、拓展创新练习1 商场用50 000元从外地采购回一批T恤衫,由于销路好,商场又紧急调拨18.6万元采购回比上一次多两倍的T恤衫,但第二次比第一次进价每件贵12元.求第一次购进多少件T恤衫.练习2 八年级学生去距学校s km的博物馆参观,一部分学生骑自行车先走,过了t min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是学生骑车速度的2倍,求学生骑车的速度.四、归纳小结(1)借助分式方程解决实际问题时,应把握哪些主要问题?(2)本节课的分式方程的应用方面应注意些什么?举例说明.五、布置作业:教科书习题15.3第6、7、8题.教后反思:。
人教版八年级数学上册《分式》导学案分式方程(第三课时)【学习目标】1.经历将实际问题中的等量关系用分式方程表示的过程;2.会列出分式方程解决简单的应用题,并掌握列分式方程解应用题的一般步骤;3.发展分析问题和解决实际问题的能力,体会数学的应用价值.【知识梳理】1.列分式方程解应用题的关键是找出题目中的 .2.分式方程解应用题的一般步骤:(1)审:审清题意,找 . (2)设:设未知数.(3)列:根据,列分式方程. (4)解:解分式方程.(5)检:检验所求的解是否为分式方程的解,并检验分式方程的解是否符合 .(6)答:写出答案.【典型例题】知识点一列分式方程解决实际问题1.某单位将沿街的一部分房租出租,每间房屋的租金相同.已知每间房屋的租金第二年比第一年多500元,所有房屋出租的租金第一年为9.6万元,第二年为10.2万元.(1)你能找出这一情境中的等量关系吗?(2)填表:设第一年每间房屋的租金为x元.(3)你能利用方程求出这两年每间房屋的租金各是多少吗?2.某农场开挖一条长960米的渠道,开工后工作效率比计划提高50%,结果提前4天完成任务.原计划每天挖多少米?【巩固训练】1.某市在道路改造过程中,需要铺设一条长为m 千米的管道,为了尽量减少施工对交通造成的影响,实际施工时,工作效率比原计划提高了n %,结果提前了8天完成任务,设原计划每天铺设管道x 千米,根据题意,下列方程正确的是( ) A.8%m m x n x-= B.8(1%)m m x n x -=+ C.8(1%)m m n x x -=+ D.8(1%)m m n x x -=- 2.为了改善生态环境,防止水土流失,某村计划在荒坡上种480棵树,由于青年志愿者的支援,每日比原计划多种 31 ,结果提前 4天完成任务,原计划每天种多少棵树?3.为解决“最后一公里”的交通接驳问题,北京市投放了大量公租自行车供市民使用.到2023年底,全市已有公租自行车25000辆,租赁点600个,预计到2025年底,全市将有公租自行车50000辆,并且平均每个租赁点的公租自行车数量是2023年底平均每个租赁点的公租自行车数量的1.2倍.预计到2025年底,全市将有租赁点多少个?4.为应对新冠疫情,某药店到厂家选购A 、B 两种品牌的医用外科口罩,B 品牌口罩每个进价比A 品牌口罩每个进价多0.7元,若用7200元购进A 品牌数量是用5000元购进B 品牌数量的2倍.(1)求A 、B 两种品牌的口罩每个进价分别为多少元?(2)若A 品牌口罩每个售价为2元,B 品牌口罩每个售价为3元,药店老板决定一次性购进A 、B 两种品牌口罩共6000个,在这批口罩全部出售后所获利润不低于1800元.则最少购进B 品牌口罩多少个?5.某服装店购进一批甲、乙两种款型时尚T 恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T 恤衫各购进多少件?(2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T 恤衫商店共获利多少元?。
15.1.1 从分数到分式【学习目标】:1、能正确说出分式的概念,会判断一个代数式是否为分式,会求分式的值。
2、能正确说出分式有意义、分式值为零的条件,并能应用上述两条件解题. 学习重点:分式的定义学习难点:分式有意义、值为零的条件的应用。
学习过程: 自主学习:问题:1、长方形的面积为 10cm ,长为 7cm,宽应为( ) cm; 长方形的面积为 S,长为 a,宽应为 ( )2、把体积为 200cm 的水倒入底面积为 33cm 的圆柱形容器中,水面高度为 cm,把体积 为 V 的水倒入底面积为 S 的圆柱形容器中,水面高度为( ).观察:1. 107、20033、45-等是 ( ),分母中( ) 字母 2.式子S a 、VS 、10020v +、6020v -等分母中 ( ) 字母归纳: 1.分式的定义:( )2.分式有意义的条件:( ) ,分式无意义的条件3.分式值为零的条件:( ) 二、合作探究1、独立完成课本练习 T1,T2.2、在代数式-3x 、22273x y xy -、18x-、5x y -、x y 、35y +、2x x 中是整式的有 , 是分式的有________________3、请同学们先完成课本例 1 三、学以致用1、巩固练习:(1)当 x___________时,分式841x x -+ 有意义.(2)当 x 为任意实数时,下列分式中,一定有意义的一个是( )A .21x x -B .211x x +-C .211x x -+ D. 11x x -+(3)使分式 x 有意义的条件是( )A.x≠2B. x≠-2C.x≠2 且 x≠-2D.x≠0(4)不论 x 取何值时,下列分式总有意义的是 ( )A .21x x -B .2xx + C .22(2)x x + D .22x x +(5)已知3254x x +-,要使分式的值等于 0,则 x=( )A. 45B. 45-C. 23D.- 23(6)若226x x x -+- 的值为 0,则 x 的值是( )A.x=±1B.x=-2C.x=3 或 x=-3D.x=0(7)使分式213x --的值为正的条件是( )A.x <13B.x >13 C.x <0 D.x >0四、能力提升 1.一般地,用 A ,B 表示两个整式,A÷B 就可以表示成 的形式,如果 中含有字母的式子 就叫做分式。
精品“正版”资料系列,由本公司独创。
旨在将“人教版”、”苏教版“、”北师 大版“、”华师大版“等涵盖几乎所有版本的教材教案、课件、导学案及同步练习和检测题分享给需要的朋友。
本资源创作于2020年8月,是当前最新版本的教材资源。
包含本课对应 内容,是您备课、上课、课后练习以及寒暑假预习的最佳选择。
§16.1.1从分数到分式 自主合作学习【学习过程】一、 独立看书1~4页二、 独立完成下列预习作业: 1、单项式和多项式统称 .2、32表示 ÷ 的商,)()2(n m b a +÷+可以表示为 . 3、长方形的面积为102cm ,长为7cm ,宽应为 cm ;长方形的面积为S ,长为a ,宽应为 .4、把体积为203cm 的水倒入底面积为332cm 的圆柱形容器中,水面高度为 cm ;把体积为V 的水倒入底面积为S 的圆柱形容器中,水面高度为 . 5、一般地,如果A 、B 表示两个整式,并且B 中含有 ,那么式子BA叫做分式.◆◆分式和整式统称有理式◆◆三、合作交流,解决问题:分式的分母表示除数,由于除数不能为0,故分式的分母不能为0,即当B ≠0时,分式BA才有意义. 1、当x 时,分式x32有意义; ➢1. 分式的概念; ➢2. 掌握分式有意义的条件;➢3. 分式的值为0,±1的条件.学习目标2、当x 时,分式1-x x有意义; 3、当b 时,分式b351-有意义;4、当x 、y 满足 时,分式yx yx -+有意义; 四、课堂测控: 1、下列各式x 1,3x ,a π,5342+b ,352-a ,22y x x -,11x +,n m n m -+,15x+y ,22a b a b --,121222+-++x x x x ,)(3b a c -,23x -,0中, 是分式的有 ; 是整式的有 ; 是有理式的有 . 2、下列分式,当x 取何值时有意义.⑴a 2; ⑵2323x x +- ⑶2132x x ++ ⑷11-+x x⑸y x -1 ⑹122-x ⑺22+x x⑻13-x3、下列各式中,无论x 取何值,分式都有意义的是( )A .121x +B .21x x +C .231x x + D .2221x x +4、当x 时,分式2212x x x -+-的值为零5、当x 时,分式435x x +-的值为1;当x 时,分式435x x +-的值为-1. §16.1.2分式的基本性质--约分 自主合作学习【学习过程】一、 独立看书4~7页二、 独立完成下列预习作业:1、分式的分子与分母同乘(或除以)一个不为0的整式,分式的值 .即C B C A B A ⋅⋅=或 CB CA B A ÷÷=(C ≠0) 2、填空:⑴222-=-x x x x ;y x xxy x +=+22633 ⑵b a ab b a 2=+ ;ba ab a 222=- (b ≠0) 3、利用分式的基本性质:将分式xx x22-的分子和分母的公因式x 约去,使分式xx x 22-变为21-x ,这样的分式变形叫做分式的 ;经过约分后的分式21-x ,其分子与分母没有 ,像这样的分式叫做 . 三、合作交流,解决问题: 将下列分式化为最简分式:⑴c ab bc a 2321525- ⑵96922++-x x x ⑶y x y xy x 33612622-+-➢1. 理解并掌握分式的基本性质;➢2.灵活运用分式基本性质将分式化为最简分式.学习目标 ( ) ( ) ( ) ( )四、课堂测控:1.分数的基本性质为: .用字母表示为: . 2.把下列分数化为最简分数:(1)812= ;(2)12545= ;(3)2613= . 分式的基本性质为: .3、填空:①3222=+xx x ②)(3863323----=a b b a ③)()(222-----=+-yx y x y x ④)0()(1≠+----=++n cn an c a b 4、分式434y x a+,2411x x --,22x xy y x y -++,2222a abab b +-中是最简分式的有( ) A .1个 B .2个 C .3个 D .4个5、约分:⑴ac bc 2 ⑵2)(xy y y x + ⑶22)(y x xyx ++⑷222)(y x y x -- ★ ⑸22699x x x ++-; ★ ⑹2232m m m m -+-.§16.1.2分式的基本性质--通分 自主合作学习【学习过程】一、 独立看书7~8页二、 独立完成下列预习作业:1、利用分式的基本性质:将分式的分子和分母同乘适当的整式,不改变分式的值,使几个分式化为分母相同的分式,这样的分式变形叫做分式的 .2、根据你的预习和理解找出: ①x 1与y 3的最简公分母是 ; ②a x 与ab y 的最简公分母是 ; ③ab b a +与22a b a -最简公分母是 ;④231yz x 与22xy 的最简公分母是 .★★如何确定最简公分母?一般是取各分母的所有因式的最高次幂的积 三、合作交流,解决问题: 1、通分:⑴b a 223与cab b a 2- ⑵26x ab ,29ya bc➢1. 理解并掌握分式的基本性质及最简公分母的含义; ➢ 2.灵活运用分式基本性质将分式变形。
人教版八年级数学上册《分式》导学案分式方程(第一课时)【学习目标】1.理解分式方程的概念,并能判断一个方程是不是分式方程;2.能将实际问题中的等量关系用分式方程表示.【知识梳理】1.方程的定义:含有 的等式叫做方程.2.解一元一次方程的一般步骤:3.分式方程的定义:【典型例题】知识点一 分式方程的定义1.方程:1255341112362235552122=-=+-=-=--=-x x y x x x x x x π)()()()()(其中分式方程的个数是( )A.1B.2C.3D.42.下列方程是分式方程的有 (填序号).()()().124;0141313;1252;242212为常数)、(为常数)、()(b a abx x x x b a b x a x x x x =-=-+--++=-=+-小结;(1)分式方程的主要特征:①含有分母;②分母中含有未知数;③是方程.⑵分式方程与整式方程的区别在于分母中是否含有未知数.知识点二 列分式方程3.部分学生自行组织春游,预计费用为120元,后来又有2名学生参加,费用不变,这样每人可少交3元.若设原来的人数是x ,则可列方程为 .4.为切实加强我市学校新冠疫情防控工作,筑牢校园疫情防控屏障,保障广大师生员工生命健康安全,某校师生员工共2000人需要开展全员核酸检测工作,由于组织有序,实际上每小时检测人数比原计划增加100人,结果提前1小时完成检测任务.若设原计划每小时检测x 人,则据题意可列方程为( )A .+100=B .﹣100= C .+1=D .﹣1=小结:列方程的关键是找出等量关系。
【巩固训练】1.在方程①1111x y=+-;②210x+=;③1x ya b+=(a,b为常数);④21xx=;⑤23356x x-+-=;⑥137xxa-=-+(a是常数);⑦2=πx中是分式方程的有(只填序号)2.某镇修建一条“村村通”公路,若甲乙两个工程队单独完成,甲工程队比乙工程队少用10天,若甲乙两对合作,12天可以完成,设甲单独完成这项工程需要x天,则根据题意,可列方程为_________________.3.某地对一段长达4800m的河堤进行加固.在加固600m后,采用新的加固模式,每天的加固长度是原来的2倍.用9天完成了全部加固任务.如果设原来每天加固河堤x米,请列出关于x的分式方程.等量关系式:列出方程:4.小亮从图书馆借了一本书,共280页,借期是两周.当他读完书的一半时,发现以后平均每天读书的页数必须增加1倍才能在借期内读完.如果设小亮读前半本书时平均每天读x页,请列出关于x的分式方程.等量关系式:列出方程:5.某地积极响应“把绿水青山变成金山银山,用绿色杠杆撬动经济转型”发展理念,开展荒山绿化,打造美好家园,促进旅游发展.某工程队承接了90万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了任务.设原计划每天绿化的面积为x万平方米.(请列出符合题意的分式方程)。
导学案15.1.1 从分数到分式【学习目标】1、掌握分式概念,掌握分式有意义的条件和值为零的条件,能用分式表示数量关系.2、经历分式概念的自我建构过程及用分式描述数量关系的过程,体验类比的数学思想.3、体验数学活动充满着探索和创造,体会分式模型思想.【学习重点】理解分式有意义的条件,分式的值为零的条件.【学习难点】能熟练地求解分式有意义的条件、分式的值为零的条件. 【学习过程】一、课前导学:(学生自学课本126-127页内容,并完成下列问题) 1、单项式和多项式统称 .2、53表示 ÷ 的商,)()2(n m b a +÷+可以表示为 . 3、填空:⑴长方形的面积为102cm ,长为7cm ,宽应为 cm ;长方形的面积为S ,长为a ,宽应为 .⑵把体积为2003cm 的水倒入底面积为332cm 的圆柱形容器中,水面高度为 cm ;把体积为V 的水倒入底面积为S 的圆柱形容器中,水面高度为 .思考:式子a s ,s v ,5+x x ,212-+x x 有什么共同点? 答:它们与分数有什么相同点和不同点? 答:相同点: ,不同点 【定义】一般地,形如BA 的式子叫做分式,其中A 和B 均为 ,B 中含有 . 5、⑴当x 时,分式x 32有意义; ⑵当x 时,分式1-x x有意义;⑶当x 时,分式523+-x x 有意义; ⑷当x = 时,分式623+-x x 无意义【结论】分式有意义的条件是 ;分式无意义的条件是 . 6、当x = 时,分式xx 3+值为零; 当x = 时,分式54--x x 值为零【结论】分式值为零的条件是 .二、合作、交流、展示: 1.问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?2.例题: 例题1列各式中,哪些是分式,哪些整式?(1)x 4 (2)4a (3)y x -1(4)43x (5)21x 2 (6)232-x ⑺y x x +2注意:分式的分子和分母都是整式,分子可以含有字母,也可以不含有字母,而分母中必须含有字母,这是分式与整式的根本区别.例题2. 当x 为何值时,下列分式有意义. (1)535+-x x (2)432--x x (3)()21-x x (4)232+-x x例题3当x 为何值时,下列分式的值为零(1)xx 32+ (2)592--x x (3)33+-x x ⑷()242+-x x x思考:分式112-+x x 的值可能为0,为什么?三、巩固与应用:1.填空;⑴走一段长10千米的路,步行用了x 2小时,骑自行车所用时间比步行所用时间的一半少为0.2小时,骑自行车的平均速度为 .⑵甲完成一项工作需t 小时,乙完成同样工作比甲少用1小时,甲乙的工作效率是⑶小李要打一份12000字的文件,第一天他打了2h ,打字速度为字每分钟w 字/min ,第二天他打字的速度比第一天快了10字/ min ,两天打完全部文件,第二天他字用的时间为2、下列各式中,分式的有 , 是整式的有 ; ①x 1,②3x ,③a π,④)(3b a c -,⑤352-a ,⑥22y x x-,⑦11x +,⑧n m n m -+,⑨ 22a b a b--, 3、下列各式中,无论x 取何值,分式都有意义的是( )A .121x + B .21xx + C .231x x+ D .2221x x + 4、当x = 时,分式2212x x x -+-的值为零, 当x = 时,分式()623--x x x 的值为零四、小结: 1. 式子 BA 是分式的条件是A 和B 均为 ,B 中含有2. 分式B A 有意义的条件是 ,分式B A 值为零的条件是五、作业:《课本》第133页. 第1、2、3题第一学期初二数学导学案15.1.2(1) 分式基本性质(一)【学习目标】1.理解分式的基本性质和分式的变号法则. 2.会用分式的基本性质将分式约分,.3.经历探索分式的基本性质的过程,体验分式变形的方法,体验类比的数学思想.【学习重点】理解分式的基本性质,理解分式变号的法则,利用分式的基本性质进行分式的约分. 【学习难点】灵活运用分式的基本性质进行分式的约分. 【学习过程】一、课前导学:(学生自学课本129-131页内容,并完成下列问题)1.因式分解中平方差公式: ,完全平方公式: .2.把下列各式分解因式:⑴2226ab b a += ⑵y y x 42-= ⑶3222b ab b a +-=3.填空:⑴()1032= , ()35624= , ()a 232=(其中a ≠0 ), ()595=c c (其中a ≠0 ) 分数的基本性质: .4.【思考】类比分数的基本性质,你能猜想分式的有什么性质?分式的基本性质:用式子表示为⑴B A = (C ≠0) ⑵BA= (C ≠0) 5.填空:⑴ ()ab ac b 2= ⑵ ()2632xy y x= ⑶ ()2-=a b b a ⑷ ()y y x 486= ⑸ ()x x xy x 242222=+ ⑹()()()()y x y x y x xy -=--2 5. ⑴=÷÷=232232242242b b b ab b ab ⑵()()()()()()=-÷--÷-=--2222222222x x x x x x 【定义】与分数的约分类似,利用分式的基本性质,我们可以对分式进行约分.把一个分式的分子和分母中的 约去,叫做分式的约分.【定义】把一个分式约分后,分式中的分子和分母没有公因式, 这样的分式叫做 .5.把下列分式进行约分:⑴=c b ab 32 ⑵=22188mn n m ⑶=+x x x 222 ⑷()()()=+--4332x x x二、合作、交流、展示:1.分式的基本性质: 分式的分子、分母乘以(或除以)同一个不为0的整式,分式的值不变.可用式子表示为:B A =C B C A ∙∙ B A =CB C A ÷÷(C ≠0) (思考:为什么C ≠0) 2.例题 例题1.填空:⑴c a b ++1=()cn an + ⑵ ()x x x x -=+21 ⑶()y xy x =3 ⑷()yx xxy x +=+22633 例题2.约分:⑴c ab bc a 2321525- ⑵96922++-x x x ⑶()a a --1)1(3 ⑷y x y xy x 33612622-+- 注意:1、约分的关键步骤是确定分子与分母的公因式,当分子或分母是多项式时,应先分解因式,然后再约分.2、分式约分后的结果是最简分式或整式.例题3.不改变分式的值,使下列分式的分子和分母都不含“-”号.(1) 23b ac-- (2) 235b xy - (3)()22b a b a ++-- ⑷ 2317b a ---仔细观察,思考:分子、分母、分式本身的三个符号中,同时改变几个符号,分式值不会改变? 三、巩固与应用:1.若分式 yx xy + 的分子、分母中的x 与y 同时扩大2倍,则分式的值( )A 、扩大2倍B 、缩小2倍C 、不变D 、是原来的2倍2、(1) x x x 3222+= ()3+x ;(2) 32386b b a =()33a (3) c a b ++1=()cn an +; (4) ()222y x y x +-=()yx - 3.约分:(1)c ab b a 2263 (2)x y y x --3)(2 (3)222b a ab a -+ ⑷()222y x y x +- 4.不改变分式的值,使分子第一项系数为正,分式本身不带“-”号. (1)ba ba +---2 (2)y x y x -+--32四、小结: 1.分式的基本性质2.分式约分的步聚五、作业:《课本》第133页. 第4、5、6题第一学期初二数学导学案15.1.2(2) 分式的基本性质(二)――通分【学习目标】1. 理解最简公分母的含义.2. 灵活运用分式的基本性质进行分式的通分.3、从分数通分到分式的通分,体验类比转化的数学思想.【学习重点】准确确定分式的最简公分母,熟练进行分式的通分. 【学习难点】灵活运用分式的基本性质进行分式的通分. 【学习过程】一、课前导学:(学生自学课本131-132页内容,并完成下列问题)1.分式的基本性质: . 2.填空:⑴25xy --= ;⑵()22--x x = ;⑶3---x y= . 3.把分数87和123通分:87= , 123= .4.利用分式的基本性质,把ab 21和232ab -化成分母都是b a 26的分式: ab 21=()()∙∙ab 21=()b a 26 , 232ab -=()()()∙∙-232a b = ()ba 26【定义】与分数的通分类似,把几个异分母的分式分别化成与原来分式相等的 的分式,叫做分式的通分. 我们把分母b a 26叫做分式ab 21和232ab-的最简公分母, 思考:最简公分母b a 26与分母ab 2、23a 之间有什么关系?【定义】一般取各分母的 因式的 的积作公分母,它叫做最简公分母. 【方法】确定最简公分母的步骤: ⑴系数取: ;⑵字母和因式取: ;⑶字母和因式的指数取 . 简称为“小、全、高” 5. 指出下列分式分母的最简公分母,并把它们通分. ⑴223ab 和28bc a解: 最简公分母: 223ab =()()∙∙223ab = , 28bc a =()()∙∙28bc a = (2)11-y 和11+y 解: 最简公分母: 11-y =()()∙-∙)1(1y = , 11+y =()()∙+∙)1(1y =二、合作、交流、展示: 1. 确定最简公分母的步骤:“小、全、高”! “小”: “全”: “高”: . 2.例题 例1、指出下列分式的最简公分,并通分: ⑴bc a 362 与d b a a 22152- ⑵ d b c 382与2127abd - 例2、指出下列分式的最简公分母并通分: ⑴52-x x 与53+x x⑵ x x x 222+-与()221+-x x【方法】当分母是多项式时,先把分母分解因式后,再确定最简公分母. 例3、指出下列分式的最简公分,并通分: ⑴2121a a a -++与261a - ⑵ 229y x y -与y x x --32三、巩固与应用:1.通分: ⑴bc a d 26-与2274ab cd ⑶x y y x 33-+与()2y x xy - ⑷9422-m mn 与mm 2332+-2.若分式()x x x-3有意义则x 的取值范围是 .3.下列各式对不对?如果不对,写出正确答案:⑴ x x x x -=+--111212 ⑵ ()yx xy x x xy -=--22 4.拓展: ⑴.使分式1332-+x x 的值是整数x 的值为 . ⑵.已知2+32=3222⨯,3+83=8332⨯,4+154=15442+,… 若10+ab =a b ⨯210(其中a 、b为正整数),求分式ba ab b ab a 22222+++的值.四、小结: 1. 最简公分母的意义; 2.确定最简公分母的步骤:3.通分的步骤:五、作业:《课本》第133页. 第7题第一学期初二数学导学案15.2.1分式的乘法【学习目标】1.理解分式的乘除法法则,体会类比的思想. 2.会根据分式的乘除法法则进行简单的运算. 【学习重点】运用分式的乘除法法则进行运算. 【学习难点】分子、分母为多项式的分式乘除运算. 【学习过程】一、课前导学:(自学课本第135-137页,完成下列问题)1、约分 ⑴233123ac c b a = ⑵ ()2xy y y x += ⑶ ()22y x xy x ++= ⑷()222y x y x --= 2、分数的乘除:32×54=()()()()⨯⨯,75×92=()()()()⨯⨯,32÷54=32×()()=()()⨯⨯32,75÷92=75×()()=()()⨯⨯75 【分数的乘法法则】:分数乘分数,用 作为积的分子, 作为积的分母. 【除法法则】:除以一个 的数等于 这个数的 . 分式的乘除,猜一猜a b ×c d =()()()()⨯⨯, a b ÷c d =a b ×()()=()()()()⨯⨯ 【分式的乘法法则】:分式乘分式,用 作为积的分子, 作为积的分母. 【分式的除法法则】:分式除以分式,把除式的分子、分母 位置后,与被除数 . 2、填空(1)=∙c a a b (2)a ba 22∙= (3)=÷ab a 22 (4)nxmymx ny -∙=3、问题1、一个水平放置的长方体容器,其容积为V ,底面的长为a ,宽为b ,当容器内的水占容积的nm时,水面的高度为多少?(提示:这个长方体容器的高怎么表示?)4、问题2、大拖拉机m 天耕地a 2hm ,小拖拉机n 天耕地b 2hm ,大拖拉机的工作效率是小拖拉机的工作效率的多少倍?(分析)大拖拉机和小拖拉机的工作效率怎样表示?所以:大拖拉机的工作效率是小拖拉机的工作效率的 ÷ = 倍. 二、合作、交流、展示:例1:分子、分母为单项式的分式乘除(1)y x 34·32x y (2)cd b a cab 4522223-÷【收获】:(1)运算结果应约分到最简。
第十五章 分 式15.1.1分数到分式学习目标:1.了解分式、有理式的概念;2.理解分式有意义的条件,分式的值为零的条件;3.能熟练地求出分式有意义的条件,分式的值为零的条件; 4.熟练地求出分式有意义的条件,分式的值为零的条件。
学习重点:理解分式有意义的条件,分式的值为零的条件。
学习难点:能熟练地求出分式有意义的条件,分式的值为零的条件。
一、自主学习 (一)知识准备1.什么叫整式? ;式分为 和 。
(二)预习指导1. 叫分式?分式与整式的区别是 。
(二)预习检测1.判断下列各式哪些是整式,哪些是分式?(1)9x +4, (2) x 7 ,(3) 209y +, (4)54-m , (5) 238y y -(6)91-x2.分式有意义的条件是 ;分式的值为零的条件是 。
二.合作探究探究点一:分式的概念:一般地,形如B A 的式子叫做分式,其中A 和B 均为整式,B 中含有字母,式子BA叫做分式。
问题1.分式的分子和分母中,哪个必须含有字母?问题2.分式和分数有什么样区别和联系?问题3.分式与整式又有什么区别呢?总结:1.分式分数线相当于 ,还有 的作用; 2.分式并非是只含有分母的式子,必须是 。
针对训练1.下列各式中,哪些是分式哪些不是?为什么?(1)9x +4, (2)x 7 ,(3) 209y +, 4) 54-m , (5) 238y y -,(6)91-x (7)πx探究点二:分式有意义的条件(重点)问题1. 分式BA中,B 不可以为零,为什么?分式中的分母的字母是否能等于零? 问题2.当x =1时分式122-x 有意义吗?为什么?总结:1.分式有无意义与 无关,只要保证 即可; 针对训练2.x 为何值时,下列分式有意义? (1)a 2; (2)11-+x x ; (3)232+m m ; (4)122-x 探究点2.分式值为零的条件(重点)问题1.当m =1或-1时,分式 的值为零,该说法正确吗?为什么?问题2.分式的值为零的前提是什么?分式的值为零的条件是什么?总结:分式的值为零的条件是 . .二者缺一不可 针对训练3.当x 为何值时,分式的值为零?(1) (2 ) (3)三.达标测评 见学习指要15.1.2分式的基本性质(1)学习目标:1.理解分式的基本性质.2.会用分式的基本性质将分式变形.学习重点:理解分式的基本性质. 分式的分子、分母和分式本身符号变号的法则。
人教版数学八年级上全章导学案 第15章分式全章导学案人教版数学八年级上导学案 15.1 分式15.1.1 从分数到分式【学习目标】1.了解分式的概念,会判断一个代数式是否是分式;2.了解分式产生的背景和分式的概念,掌握分式与整式概念的区别与联系; 3.理解并能熟练地求出分式有意义的条件,分式的值为零的条件;【学习重点】理解分式的概念,分式有意义的条件.【学习难点】能熟练地求出分式有意义的条件,分式的值为零的条件. 【知识准备】1.在①3x 2,②11x +,③15x+y ,④a b a b +-, ⑤0,⑥a π•这几个式子中,单项式有: ____________多项式有: ______整式的有: _____________________ (只填序号)2.由上题我们发现,由数与字母的 ___ 组成的式子叫单项式;几个单项式的和叫 ;单项式和多项式统称 。
【自习自疑】一.阅读教材,完成下列问题: 1.通过思考发现,a s 、s V 、v +20100、v-2060与分数一样,都是 的形式,分数的分子A 与分母B 都是 ,并且B 中都含有 _ ,那么式子 __ 叫做分式。
2.我们小学里学过的分数有意义的条件是 ;那么当__________时,分式BA才有意义。
二.预习评估 1.在代数式-3x ,31y +,5y x -,y x ,πx ,x 81-, 22732xy y x -, 中,是整式的有_________________ . 是分式的有_________________ . 2.当x ___________时,分式21xx -有意义3.使分式2xx +有意义的条件是 ( )A .x ≠2B .x ≠-2C .x ≠2且x ≠-2D .x ≠0 4.已知分式4523-+x x ,要使分式的值等于零,则x 等于( )A .54 B .45- C .32D .23-我想问:请你将预习中未能解决的问题和有疑问的问题写下来,等待课堂上与老师和同学探究解决.等级______________ 组长签字_______________【自主探究】【探究一】分式的产生 1. 用代数式填空:(1)已知某长方形的面积是102cm ,长为5cm ,则这个长方形的宽为 cm ; (2)已知某长方形的长为a 2cm ,宽为b cm ,则这个长方形的面积为 cm ; (3)已知某长方形的面积是s 2cm ,长为5cm ,则这个长方形的宽为 cm ; (4)已知某长方形的面积是102cm ,长为a cm ,则这个长方形的宽为 cm ; (5)一辆汽车行驶s 千米用了t 小时,那么它的平均车速为 千米/小时;一列火车行驶s 千米比这辆汽车少用了1小时,那么它的平均车速为 km/h ; 2.思考:(1)以上式子中,是整式的有哪些?(2)不是整式的有哪些?它们的共同特征是:①从形式上看,像 ,即都由 、分数线、 三部分组成;②从内容上看,它们的分母都含有 。
常村镇中心学校数学导学案 小组__姓名__【学习课题】 第11课时 复习1 本章知识结构梳理(1)分式的定义:_______________________________________ (2)分式有意义的条件:_______________________________________ (3)分式无意义的条件:_______________________________________、分式的定义 (4)分式B A的值为0的条件:__________________________________ (5)分式B A>0的条件:_______________________________________(6)分式BA<0的条件:_______________________________________(1)基本性质:_______________________________________ 公式:_______________________________________ 2、分式的基本性质 (2)约分:_______________________________________ (3)通分:_______________________________________ (1)分式的乘除法法则:_______________________________________ 公式:_______________________________________、分式的运算 同分母的分式相加减:_________________________ (2)分式加减异分母的分式相加减:_________________________(1)定义:_______________________________________(2)解分式方程的步骤:_______________________________________ 增根的定义 :____________________________________ (3)增根 分式方程产生增根的原因:____________________________ 、分式方程 检验增根的方法:____________________________________ (4)解分式方程的方法:_______________________________________(5)分式方程的应用 达标练习:1、分式392--x x 当x __________时分式的值为零。
八年级数学下册《分式全章复习》导学案1 新人教版课时学习过程(定向导学:教材1-33 页)学习流程\内容\方法学习要求\笔记\补充\演练目标解读(2分钟)1、掌握分式的混合运算和分式方程的解法。
2、会用分式方程解部分应用题。
夯实基础(15分钟)【学法指导】知识网络考点例析考点1:分式的概念和性质例1 (1)已知分式的值是零,那么x的值是()A、-1B、0C、1D、1(2)当x________时,分式没有意义、例2 下列各式从左到右的变形正确的是()A、B、C、D、考点2:分式的化简与计算例3 计算的结果是________、例4 计算、例5 化简、能力提升(20分钟):考点3:分式条件求值例6 先化简下列代数式,再求值:,其例7 先化简代数式:,然后选取一个使原式有意义的 x的值代入求值、总结梳理(10分钟):教师引导,学生自我总结分式的混合运算法则。
过关检测 (5分钟)1、计算2、计算时间:2分钟目标要求:师生共同解读目标自主学习要求:l 课代表公布好答案。
l 对子用双色笔互批互改互议,组长检查l 疑难点课代表收集整理,板书黑板。
课堂笔记:【重点识记】n 群学:小组分层讲解C层讲解要点答案。
B层分析补充提醒。
A层规律总结。
组内自行抽签或者指派决定小组内成员讲解。
注意效率,每人每题讲解时间不超过2分钟。
课代表参与到各小组进行评价。
评分标准10分。
合作要求:①互查互检组内成员演练成果及自行修正;②观察大黑板展演成果,快速查找问题,组长记录问题;③交流新思路、新解法、新拓展、展示注意:u 小组抽签:分区u 要求:1、有序展示,大胆展示,思维严密,表述清晰!2、每组展示不超过3分钟,超时计0分。
满分10分。
纠错质疑和评价组每人次加1分,展示组不加组分。
评价:小组组织有效,分层合作,任务完成可评满分10分。
其他按照ABCDE分别给予10-8-6-5-4等级给分。
第16章 分式第1课时 §16.1 分式及其基本性质——1. 分式的概念 学习目标:1、从列规范代数式中认识分式,并能概括分式的概念。
2、正确地判断一个代数式是否是分式。
一、衔接知识回顾:用规范的代数式填写下列空格。
1、被除数÷除数=除数被除数,如:3(整数)÷4(整数)= ( ),注意:(0 作除数) 。
2、类比:被除式÷除式 = (商式),例如:7 ÷P= ,a ÷ 3b= ,x÷(x+y)= , (a-b)÷4= , t ÷(a-x)= ,(x 2-2xy+y 2)÷(2x -y)= 。
3 、做一做(1)面积为2平方米的长方形一边长3米,则它的另一边长为 米; (2)面积为S 平方米的长方形一边长a 米,则它的另一边长为________米;(3)一箱苹果售价p 元,总重m 千克,箱重n 千克,则每千克苹果的售价是 元。
请将1、2、3所写的代数式把分母有共同特征的进行分类,并将同一类填入一个圈内,并说明理由。
特征: 特征; 二、新知自学: 1、 分式的概念:形如 ( 、 是整式,且 中必含有 , )的式子,叫做分式.其中 叫做分式的分子, 叫做分式的分母. 2、整式和分式统称 。
3、当分母 时,分式有意义; 当分母 时,分式无意义;当分子 且分母 时,分式的值为零. 例如:在分式aS中,当a 时,分式aS有意义; 当a 时,分式a S 没有意义;当 ,且 时,分式aS的值为零。
三. 探究、合作、展示问题1:下列各代数式中,哪些是整式?哪些是分式? (1)x 21;(2)43a; (3)y x xy +2; (4)33y x -; (5) n m -9;(6)πx ;(7)3+1.同步一试:在代数式-23x ,yx -4,x+y ,a b 34,兀122-x 中,分式有( )A 、2个B 、3个C 、4个D 、5个问题2:当x 取什么值时,下列分式有意义? (1)31-x ; (2)121+-x x 322+-x x . (3)2)12(-x x问题3:x 为何值时,分式11-+x x 的值为正? x 为何值时,分式xx-12的值为负?当x 取什么数时,分式 42||2--x x (1)有意义 (2)值为零?四、巩固训练1、有理式x 1,21(x +y ),3x ,x m -2,3-x x ,1394y x +中分式有( )个。
A. 1 B. 2 C. 3 D. 4 2.(2010浙江嘉兴)若分式1263+-x x 的值为0,则( ) (A )2-=x(B )21-=x (C )21=x (D )2=x3.(2010资阳)使分式12-x x有意义,则x 的取值范围是 ( ) A.21≥x B.21≤x C. 21>x D.21≠x4.(2010山东聊城)使分式1212-+x x 无意义的x 的值是( )A .x =21-B .x =21C . 21-≠xD .21≠x ※5、当x= 时,分式11||+-x x 的值为零。
五.拓展提高:(标有“※”是难度较大的题)1.分式112+-x x 的值为0,则( )A..x=-1 B .x=1 C .x=±1 D .x=0 2.使分式x-31有意义的x 的取值是( ) A.x≠0 B. x≠±3 C. x≠-3 D. x≠3 3.当分式21-x 没有意义时,x 的值是( ) A .2B .1C .0D .—2※4.当x 时,代数式32--x x 有意义;当x 时,代数式23--x x 的值为零。
课题:第2课时 §16.1 分式及其基本性质——2.分式的基本性质(1)学习目标: 掌握分式的基本性质;利用分式的基本性质对分式进行“等值”变形;了解分式约分的步骤和依据,掌握分式约分的方法;使学生了解最简分式的意义,能将分式化为最简分式。
一、衔接知识回顾: 学生独立完成后互相对正。
1.将下列各分数化成最简分数:42= ;86= ;630 = ; 1218 = 。
注意:化简一个分数,首先找到分子、分母的 数,然后利用分数的 就可将分数化简。
2.分数的基本性质是: 。
二、看书自学1.分式的基本性质:分式的分子与分母都乘以(或 ) 不等于零的 ,分式的值不变.用式子表示是: B A =MB MA ⋅⋅ ,B A =÷÷B A ( 其中M 是 的整式)。
与分数类似,根据分式的基本性,可以对分式进行约分和通分.2.举例 约分(1)4322016xyy x -; 解:分子与分母的公因式是 ,约去公因式即4322016xy y x -= 。
(2)44422+--x x x 。
解:现将分子与分母进行因式分解x 2-4= ,x 2-4x+4= ,分子与分母的公因式是 ,约去公因式即44422+--x x x = 。
3.分式约分的依据是 。
分式的约分,即把分子与分母的 约去.4.分子与分母没有 的分式称为最简分式. 三、问题探究、合作讨论、展示问题1:分式的分子与分母的公因式如何确定?问题2:利用分式基本性质判断下列每组代数式是否相等,若相等请说明理由?(1)a a 2与21 答: 理由是: (2)mn n 2与m n答: 理由是:问题3:下列等式的右边是怎样从左边得到的?(1)x b 2=xyby2(y ≠0) 答: (2)bx ax =ba答: 问题4:把下列分式约分:(1)2232axy yax =(2))(3)(2b a b b a a ++-=(3)32)()(a x x a --= (4)yxy x 242+-=问题5:不改变分式的值,使下列分式的分子和分母都不含“-”号.a b56--= ,y x 3-= , nm --2= , n m67--= ,yx43---= 。
归纳:(1)根据分式的意义,分数线代表除号,又起括号的作用。
(2)当括号前添“+”号,括号内各项的符号不变;当括号前添“—”号,括号内各项都变号。
四、课内巩固1、利用分式的性质填空:(1)x x x 3222+=3)(+x ; (2)()3323386a b b a =)(33a ;(3)c ab ++1=cn an +)(; (4)()()y x y x y x -=+-222=)(y x- 。
2、化简22a a a += ; 2222444m mn n m n-+-= . 3、(2009年淄博市)化简222a b a ab-+的结果为( )A .b a-B .a ba- C .a ba+ D .-b五、拓展提高1、下列变形正确的是( ) A 、11112-+=-x x x B 、11112-=-+x x x C 、121+=x x D 、()11111--=--x x x x 2、化简62962-+-x x x 的结果是()A .23+xB .292+xC .292-xD .23-x 3、将分式yx x+2中的X,Y 都扩大为原来的3倍,分式的值 。
4、不改变分式的值,使下列分式的分子与分母的最高次项的系数是正数:(1)21x x -= ; (2)322+--x x= .5、化简:11222---+-y x y xy x =_________,()()2222x x x+--= .6.如果把分式2x yx+中的x 和y 都扩大10倍,那么分式的值( ) A .扩大10倍 B .缩小10倍 C .不变 D .扩大2倍第3课时 §16.1 分式及其基本性质——3.分式的基本性质(2)通分学习目标:进一步理解分式的基本性质. 理解分式通分的意义, 会确定几个分式的最简公分母,掌握分式通分的方法及步骤。
一、复习与新知自学:1.判断下列约分是否正确,若不正确、请将正确答案写在后面。
(1)c b c a ++=b a( ) (2)22y x y x --=y x +1( ) (3)nm nm ++=0 ( ) 2.4x 2y 3;20x 2y 4的公因式是 ;x 2-9;x 2-6x+9的的公因式是 。
3.利用分数的基本性质可以对分数进行通分. 把分数21,43,32通分。
解:最简公分母是 。
∴21= , 43 = ,32=4.分数的通分:把几个异分母的分数化成 的分数,而不改变分数的值,叫做分数的通分。
5.和分数通分类似,把几个异分母的分式化成与原来的分式 的 的分式叫做分式的通分。
6.通分的关键是确定几个分式的 。
各分母系数的 数、所有因式的最 次幂的积作为公分母叫做 公分母。
二、问题探索、讨论、展示:问题1:求下列各组分式的最简公分母。
(1)4322361,41,21xy y x z y x 的最简公分母是:(2)2241x x -与412-x 的最简公分母是:(3)2)3(21,)3)(2(1,)2(31++--x x x x x 的最简公分母是:(4)11,1,2222-++x x x x x 的最简公分母是:问题2:通分(1)231x ,xy125 (2)x x +21,x x -21 (3)221y x -,xy x +21. 解:(1)231x 与xy125的最简公分母为 ,所以231x = xy125= (2)x x +21与x x -21因为x 2+x= ,x 2-x= ,最简公分母为 ,所以 y x -1= y x +1= (3)221y x -,xyx +21因为x 2-y 2=__________ __, x 2+xy =____________,最简公分母为 , 所以221y x -= xyx +21=归纳:求几个分式的最简公分母的步骤?1.取各分式的分母中系数的 ; 2.各分式的分母中所有字母或因式都要取到; 3.相同字母(或因式)的幂取指数最 的;4.所得的系数的 与各字母(或因式)的最 次幂的积即为最简公分母。
三、课内巩固训练 通分: (1)321ab 和c b a 2252 (2)xya2和23x b(3)11-y 和11+y四、提高 通分:(1)abc、bca 、acb ; (2)xx +21,1212++-x x ; (3)4,)2(122—x x x -.第4课时 §16.2 分式的运算——1.分式的乘除法(1) 学习目标:掌握分式乘除法的运算法则,会进行分式的乘除法运算。
一、类比自学 1.计算下列算式: (1)32×54= (2)75×92= (3)32÷54= (4)75÷92= 归纳:两个分数相乘,把 相乘的积作为积的分子,把分母相乘的积作为积的 ; 两个分数相除,把除数的分子和分母 位置后,再与被除数 . 2.类比猜一猜、再算一算:(字母a ,b ,c ,d 都是整数,但a ,c ,d 不为零)a b ⋅cd =a b ÷cd =如果上面字母代表整式,那么就得到类似于分数的分式的乘除法. 3.分式的乘除法法则:(分式的乘除法法则与分数的乘除法法则类似)两个分式相乘,把 相乘的积作为积的 ,把 相乘的积作为积的 ;约分化成最简分式。