基于单片机的GPS授时系统设计分析
- 格式:doc
- 大小:24.50 KB
- 文档页数:2
基于单片机的GPS定位系统设计文献综述GPS定位系统是一种利用全球卫星定位系统(Global Positioning System,GPS)来确定地理位置的技术。
在现代社会,GPS定位系统在各个领域中广泛应用,包括交通、军事、航空航天、物流等。
基于单片机的GPS定位系统是其中的一种应用方式,通过使用单片机作为主控芯片,实现对GPS模块的控制和数据处理,可以实现车辆、人员等的实时定位和追踪。
本文将对基于单片机的GPS定位系统进行综述,包括定位原理、系统组成、关键技术以及应用场景等方面的内容。
1. 定位原理GPS定位系统是基于卫星信号的定位技术,通过接收来自卫星的定位信息,利用三角测量等方法计算出自身的地理位置。
GPS系统由24颗卫星组成,其中至少有4颗卫星同时可见时,就能够确定一个点的位置。
基于单片机的GPS定位系统通过接收和解析卫星发射的导航信号,计算出自身的经纬度信息,从而实现定位功能。
2. 系统组成基于单片机的GPS定位系统主要由三个部分组成:GPS模块、单片机和显示模块。
2.1 GPS模块:GPS模块是实现定位功能的关键部件,它接收卫星发射的导航信号,并将信号转换为数字信号供单片机使用。
GPS模块通常包括天线、接收机和定位引擎等部分。
2.2 单片机:单片机是系统的核心处理器,负责接收和处理GPS模块传递过来的定位数据,并进行进一步的计算和控制。
单片机通常采用较为低功耗的微控制器,具有较好的计算和控制能力。
2.3 显示模块:显示模块将通过单片机处理的定位数据展示给用户,可以采用LCD液晶显示屏、LED数码管等形式,以直观的方式展示地理位置信息。
3. 关键技术基于单片机的GPS定位系统设计中,涉及到以下几个关键技术:3.1 GPS信号接收与解析:GPS信号由卫星发射,经过天线接收后需要进行解析。
这个过程包括信号放大、频率合成、数字信号处理等环节,需要设计合适的电路和算法来实现。
3.2 数据处理与计算:单片机接收到GPS模块传来的经纬度等数据后,需要进行进一步的计算和处理。
基于单片机的GPS定位系统设计摘要:GPS全球定位系统在实际生活中被广泛应用,是当今信息数字化时代发展中的重要组成部分。
因其具有性能好、精度高、应用广的特点,使其成为迄今为止最好的定位导航系统。
本次设计以单片机为核心,通过GPS接收模块接收GPS卫星信号,然后将数据发送到单片机的串口。
单片机执行串口中断,提取所需要的数据并进行处理,最后将处理的数据通过液晶屏显示,成功实现定位。
本系统由52单片机、GPS模块M-87、12864液晶屏等硬件组成,应用C语言编程,完成了GPS信息的提取、处理和显示。
系统可以显示当地经度、纬度、时间、高度等信息,是一台体积小巧、携带方便、可以独立使用的全天候实时的定位导航设备。
关键词:单片机;GPS接收模块;12864液晶屏;串行通信总体方案的设计:本次设计以单片机(STC89C52)为核心,首选通过GPS(M-87)接收模块接收GPS卫星信号,然后将数据发送到单片机的串口,单片机执行串口中断,提取所需要的数据并处理,最后将处理后的数据通过液晶显示屏(LCD12864)显示。
该GPS定位系统硬件电路主要由以下几个部分组成:(1) 控制部分:以STC89C52单片机为核心的小型控制系统;(2)接收部分:以GPS(M-87)接收模块为核心的GPS接收机;(3)显示部分:由LCD12864构成的液晶显示电路;(4)电源部分: 由三节1.5V干电池串连而成的电源进行供电。
该GPS定位系统软件部分主要由以下几个部分组成:(1)串口初始化程序:对TMOD、TH1、TL1、REN、RI、TI等进行赋初值;(2)液晶初始化程序:令PSB=1使LCD为并口方式及LCD开、关标设定等;(3)数据接收与处理程序:编写数据提取与处理程序,实时接收与处理数据。
(4)延时程序:编写延时函数,延时函数可以控制液晶屏内容的显示时长;由此可知:GPS接收模块将接收到的GPS卫星导航电文调制解码,转换为标准格式后,通过串行口将数据送给单片机,当单片机执行串口中断收到GPS接收模块发来的数据,经过片内程序的识别筛选,将筛选出来的数据进行处理后送到显示模块,最后通过液晶显示屏按照要求显示。
基于GPS授时单片机智能音乐打铃系统设计GPS授时技术是一种准确度高、智能化、节省人力的授时技术。
它利用全球卫星导航定位系统(GPS)的信号,获取原子钟精确的时间信息,对现实世界进行授时。
目前,GPS授时技术已被广泛应用于电子计量、通信、交通、航空等领域。
在日常生活中,我们时常需要提醒自己或他人进行某项事务或活动,例如上课、会议、运动、吃药等等。
而传统的闹钟虽然功能简单易用,却缺乏智能化、精确度高的特点。
因此,本文将介绍一种基于GPS授时单片机的智能音乐打铃系统设计,旨在更好地满足用户需求。
一、GPS授时单片机智能音乐打铃系统设计原理该系统采用GPS模块获取世界标准时间信息,将其传输至单片机并进行处理为程序时钟。
在程序的预设时间内,控制程序开启音乐播放模块,播放预设的音乐片段,从而完成智能音乐打铃的功能。
具体设计原理如下:1. GPS模块获取标准时间信息,当前时间为t1。
2. 单片机读取GPS模块传输过来的t1信息,并处理成程序时钟t2。
3. 用户根据需要预设打铃时间t3。
4. 当程序时钟t2达到预设打铃时间t3时,控制单片机开启音乐播放模块,并播放预设的音乐片段。
5. 音乐播放完成后,系统进入待机状态。
二、GPS授时单片机智能音乐打铃系统设计步骤1. 准备材料:GPS模块、单片机、音乐播放模块、显示屏、电源等。
2. 编写单片机控制程序,利用C语言对GPS模块传输的时间信息进行处理,生成程序时钟。
3. 设计音乐播放模块,并将其与单片机连接。
4. 将预设的音乐片段存储至音乐播放模块。
5. 利用单片机的按键、显示屏等外设,设置预设打铃时间。
6. 系统正常工作时,单片机采用轮询方式实时监测程序时钟并与预设打铃时间进行比对,达到预设时间后,控制音乐播放模块进行播放,并进入待机状态。
三、GPS授时单片机智能音乐打铃系统设计优点1. 精确度高:利用GPS授时技术,可达到毫秒级的精确度,避免了人为错误,打铃时间更加准确。
本科毕业设计(论文)题目基于单片机的GPS定位系统设计姓名专业学号指导教师信息工程学院二○一五年六月目录摘要 (I)Abstract (II)前言 (III)1 方案的选择与论证 (1)1.1 方案选择 (1)1.1.1 方案一 (1)1.1.2 方案二 (2)1.1.3 方案论证 (3)2系统软件仿真 (4)2.1 Proteus软件简介 (4)2.1.1 Proteus 的工作过程 (4)2.1.2 Proteus 调试手段 (4)2.2 系统的总体仿真 (5)2.2.1液晶显示模块 (6)2.2.2 GPS模块 (7)3 GPS定位系统硬件设计 (9)3.1 Keil软件介绍 (9)3.2 GPS定位系统硬件设计 (11)3.2.1 IAP15W4K58S4单片机 (11)3.2.2 按键模块设计 (11)3.2.3 按键液晶显示模块 (11)3.2.4 GPS模块 (12)3.2.5 SERF NEO-6 GPS信号接收模块 (13)3.2.6 稳压电路模块 (13)4 基于单片机的GPS定位系统的实现 (15)4.1 硬件部分的实现 (15)4.2 软件的烧录与调试 (16)4.3 最终实现的功能 (17)结论 (18)致谢 (19)参考文献 (20)附录一:总体电路原理图 (22)附录二:实物图 (23)附录三:源程序 (24)基于单片机的GPS定位系统设计摘要本设计是基于IAP15W4K58S4单片机来实现的简易全球定位系统。
本控制系统主要完成接受数据、时间显示、经度显示、纬度显示等常规功能。
此方案基于单片机、全球定位系统模块和1602字符型LCD液晶显示屏等硬件, 并应用C 语言实现了全球定位系统信号的提取、显示及基本的键盘控制操作等。
经过实践测试,这种接收机可以达到基本全球定位系统信息的接收以及显示,可以做到体积小、精度高、连续导航,并可广泛应用于个人野外旅游探险、出租汽车定位及海上作业等领域。
基于51单片机的GPS定位系统设计
GPS定位系统是一种高精度、高可靠性的定位技术,基于51单
片机的GPS定位系统可以用于车辆、船只、无人机等物体的追踪和
导航。
以下是基于51单片机的GPS定位系统设计的步骤:
1. 硬件设计:
GPS模块:选择一款支持串口通信,输出NMEA协议的GPS模块。
51单片机:选择适当的型号,具备较好的计算和通信能力。
显示模块:可以选择LCD显示屏或OLED显示屏来显示当前的定
位信息。
电源模块:GPS模块和51单片机都需要可靠的电源供应,可以
选择锂电池或干电池。
外部存储模块:为了存储历史定位数据,可以选择SD卡存储模块。
2. 软件设计:
a.串口通信程序:通过串口通信程序从GPS模块接收NMEA协议
的数据。
b.解析程序:解析NMEA协议的数据,并提取相关的定位信息
(经度、纬度、速度、时间等)。
c.定位算法:采用常见的定位算法(如卡尔曼滤波、迭代解算等)来计算当前位置。
d.存储程序:将计算出的位置信息存储到SD卡中。
e.显示程序:利用LCD或OLED显示屏显示当前的定位信息。
3. 系统测试
将系统部署到实际场景中进行测试,记录数据并进行分析。
根据测试结果对系统进行改进和优化,以提高其可靠性和精度。
总之,基于51单片机的GPS定位系统设计需要较高的硬件和软件开发能力,需要深入了解GPS原理、51单片机编程以及相关算法的实现方式。
基于单片机的GPS定位系统设计研究GPS(Global Positioning System)是一种全球卫星定位系统,通过一组卫星向地面发送信号,接收器接收并解析这些信号,从而确定接收器的精确位置。
基于单片机的GPS定位系统设计研究涉及到硬件和软件的结合,主要包括GPS接收器的选择、数据处理和位置信息显示等方面。
在设计基于单片机的GPS定位系统之前,首先需要选择合适的GPS接收器。
考虑到系统的可靠性和适用性,选择具有高灵敏度、低功耗和多功能的GPS接收器是重要的。
例如,常用的MTK芯片和UBlox芯片都是在GPS定位领域中应用广泛的选择。
选择合适的GPS接收器后,需要进行初始化和配置以确保正确获取GPS信号。
系统的数据处理模块是GPS定位系统的核心部分。
在接收到GPS信号后,需要解析和提取其中的经纬度信息。
解析GPS数据可以使用NMEA协议,该协议定义了GPS接收器与外部设备之间的数据格式。
通过解析NMEA协议中的数据,可以提取出时间、经度、纬度、速度和高度等位置信息。
解析完成后,可以考虑进行数据滤波以消除信号噪声和提高定位精确度。
在数据处理完成后,接下来是位置信息的显示。
可以利用液晶显示屏、LED指示灯或者其他输出设备来显示位置信息。
为了提高用户体验,可以通过界面设计使显示结果更直观和易于理解。
同时,为了满足不同场景的需求,可以将位置信息以串口通信的方式发送给其他设备,如电脑或者无线模块。
在设计基于单片机的GPS定位系统时,需要考虑系统的稳定性和准确性。
例如,可以通过加入外部天线以提高接收器的信号质量。
另外,选择合适的单片机也是重要的,可以考虑使用性能较好的ARM芯片或者AVR系列的单片机。
在实际应用中,基于单片机的GPS定位系统可以广泛应用于车辆定位、航空导航、户外探险等领域。
比如,可以将该系统应用于汽车导航系统中,通过实时获取车辆位置信息并与地图数据进行匹配,从而提供准确的导航指引。
此外,该系统还可以用于追踪和监控各种移动设备,如无人机、船只、行人等。
基于51单片机的GPS 定位系统的设计戴陆兵(渭南师范学院 物理与电气工程学院 08级电信1班)摘 要 :本系统采用AT89S52单片机为核心设计了一种GPS 定位系统,该系统利用JRC G591 GPS 模块和DS18B20模块完成了GPS 数据和温度的采集,并通过51单片机对数据进行处理后实时显示到LCD12864液晶显示器上。
完成了系统的硬件和软件的设计。
本系统具有性能好、精度高、体积小、价格低廉和应用广的特点。
关键词:GPS;单片机;LCD12864;定位;全球定位系统(Global Positioning System 简称GPS)是美国第二代军用导航系统,可实现全球范围内的实时导航和定位。
GPS 由太空卫星、地面控制系统、用户设备三个部分组成。
由于GPS 具有全球覆盖以及精度高、定位速度快、实时性好、抗干扰能力强等特点,近年来在国内外得到了广泛的应用,在各个领域发挥了极大的作用,已成为了信息时代不可或缺的一部分[1]。
本设计采用AT89S51单片机为控制核心,设计的GPS 定位系统可以计算和显示日期、时间、经度、纬度、速度、海拔高度和实时温度等信息。
具有价格低廉、稳定性高和体积小等优点。
研究和开发GPS 定位系统具有十分重要的意义。
1 系统设计方案1.1 整体介绍本设计以ATMEL 公司单片机AT89S52为控制核心,控制GPS 信息的接收和DS18B20温度信息的采集,并通过一系列的运算和一个独立按键将接收到的信息实时分屏显示到LCD12864液晶显示器上。
本系统所显示的信息有当前经度、纬度、接收到的卫星数、总卫星数、定位与否、日期、时间、温度、速度、和海拔高度。
系统框图见图1。
图1 GPS 定位系统框图 U n R e gi s t e r e d1.2 GPS 模块介绍GPS 接收机只要处于工作状态就会源源不断的把接收并计算出的GPS 导航定位信息通过串口传送出去,在没有进一步处理之前,传送的数据是一长串字节流信息。
基于单片机的GPS定位系统设计研究进展GPS定位系统是一种利用全球定位系统(GPS)卫星进行定位的技术。
它可以通过接收来自卫星的定位信号,计算出接收器的位置以及相关的信息。
在当今社会,GPS定位系统广泛应用于交通管理、导航仪器、军事设备等领域。
本文将探讨基于单片机的GPS定位系统设计的研究进展。
1. GPS定位系统原理GPS定位系统的基本原理是通过接收至少四颗卫星发出的信号,并计算出信号的传播时间差来确定接收器的位置。
在GPS定位系统中,至少需要接收到4颗卫星的信号才能进行准确的定位和测量。
2. 基于单片机的GPS定位系统设计基于单片机的GPS定位系统设计是将GPS接收器与单片机进行集成,以实现位置定位、导航和数据处理等功能。
单片机作为中央处理单元,负责接收和处理来自GPS模块的信号,并将定位结果通过显示屏或其他输出设备显示出来。
3. 单片机选择与接口设计在设计基于单片机的GPS定位系统时,选择合适的单片机至关重要。
单片机应具备足够的计算和处理能力,支持通信接口和外围设备的连接。
例如,常用的单片机有STM32、Arduino等。
同时,还需要考虑单片机与GPS模块之间的接口设计,确保数据传输的可靠性和稳定性。
4. 电源管理与功耗优化基于单片机的GPS定位系统通常需要考虑电源管理和功耗优化。
由于GPS模块和单片机本身的功耗较高,需要合理设计电源电路,以降低系统的功耗和延长电池寿命。
常见的功耗优化方法包括将GPS模块和单片机设置为低功耗模式、优化代码,以及合理选择电源供应电压等。
5. 数据处理与应用开发基于单片机的GPS定位系统不仅可以实现位置定位功能,还可以进行数据处理和应用开发。
例如,可以根据定位结果进行路径规划和导航功能的开发,将定位数据与地图数据进行关联,以实现更智能的导航功能。
此外,还可以将定位数据传输到云服务器进行存储和分析,以实现更复杂的数据处理和应用开发。
6. 系统可靠性与精度提升在设计基于单片机的GPS定位系统时,系统的可靠性和定位精度是需要考虑的重要因素。
基于单片机的GPS授时系统设计分析
摘要随着科学技术的进步,增强型单片机的出现,使很多领域发生的革命,其作用使仪表向微型化、智能化、数字化发展,同时也提高仪表的精度、速度和自动化程度。
本文通过GPS授时原理的分析,设计出了利用单片机把GPS 的时间信号转化成GPS时间并显示在显示屏上的过程,既经济又有效,同时也为生产生活提供精确时间。
关键词GPS授时;单片机;精确时间
0 引言
随着人类在各行各业取得进步,科学技术也得到最大限度的发展,原子钟的使用可以使时间精度达到纳秒级,同时精确的时间也为科学技术的发展提供最基本的保障。
GPS授时系统就是利用一定的接收设备接收卫星上的原子钟的精确时间信号,传送给单片机,单片机处理后并发往显示设备,为人们的生产生活提供精确的时间。
GPS全球定位系统是通过美国通讯卫星高精度、可连续、实时定位模式下的定位系统,它可以同时向用户发送用户的三维坐标和精确定时。
能为全球性、全能性(陆地、海洋、航空与航天)、全天候性优势的导航定位、定时、测速系统等服务。
GPS由三个系统组成:空间卫星系统、地面监控系统和用户接收系统。
目前,单片机主要应用于工业领域,单片机除了具有数值计算能力,还有相当强大的控制功能,用于实时监测和实时控制,在各个领域具有非常重要的作用。
本文利用单片机和普通的接收机设计GPS授时系统,获得精确的GPS时间,既可以对设备进行精确控制,也可以使系统内的所有设备时间同步,比之当前价格昂贵的授时型接收机经济、实用,更容易使公众接受。
1 GPS授时系统原理
GPS系统分3大部分:一是空间卫星系统,有工作卫星21颗,备用卫星3颗;二是地面监控系统,主控站1个,注入站3个,监测站5个;三是GPS用户接收系统,包括接收机、单片机、显示屏。
1.1空间卫星系统
GPS系统中有工作卫星21颗,备用卫星3颗.每颗卫星上都有4台高精度原子钟(铆钟和艳钟各2个),这也是GPS卫星的核心设备。
它发射出标准频率,为GPS定位提供精度非常高的时间信号。
这些卫星都是等间隔地分布在6个轨道面上,轨道面夹角为60°,这样分布方式可以保证了地球上的所有位置均有4颗以上的GPS卫星同时存在。
GPS卫星定位精度高,虽然在地面无线电波定位精度受到的干扰比较大,而且受电离层和对流层的影响,但是通过人们对电离层和对流层的传播规律的认识,也找到了解决办法,建立起了误差修正模型,可以获得精确的时间信息。
1.2地面监控系统
地面监控系统包括主控站、监测站和注入站,主控站位于加利福尼亚州科罗拉多的Falcon空军基地联合航天工作中心.主控站主要接收GPS卫星信号,以及协调和管理所有地面监控系统的工作。
1.3 GPS用户系统
GPS用户接收系统主要有用户接收机、控制部分(单片机)和显示设备。
接收机接收GPS卫星发送的星历参数和时间信号,然后把这些数据传送给单片机,
单片机经过一定模式的分析与计算,可以得到精确的时间信息,最后通过输出端输出时间信号,提供给用户。
原理框图如下图。
GPS用户系统中GPS信号接收、处理模块是核心,接收机和单片机类型比较多,随着电子技术的发展,其功能也越来越强大,接收机用于接收卫星时间信息,具有较低的功耗和较强的抗干扰能力;无论是户外勘测,还是室内监测都可以得到有效的保障。
由于GPS信号接收机与单片机的I/O的电平大多都是TTL 电平,所以可直接通信。
GPS接收机传送的时间数据的波特率有多种:9 600bps、4 800bps、2 400bps,可任意选择,一般使用4800bps就已经足够。
其过程是,GPS接收机获取准确的GPS卫星时间信息,通过GPS的串行通信端口发送时间数据到单片机上,单片机经过一定的处理,把时间信号发到显示端。
程序原理如图:
显示设备则可以选择的是LMB102DDC液晶显示屏。
该设备不但小巧而且成本低,配合该GPS授时系统使用较好,而且适用普通用户。
LMB102DDC液晶显示屏的内核指令比较丰富,既有初始化显示屏的指令,也有基本功能控制指令,本系统中,主要利用其写数据到可读写寄存器中,以显示到显示屏上。
当导航系统在工作时,单片机将时间信息按一定的模型处理后,通过P0串行端口输出,显示在LMB102DDC液晶屏上。
1.4 GPS授时工作原理
由于接收机时钟与GPS卫星的时钟不同步,以及GPS信号在通过电离层和对流层时,由于折射等原因,造成传播的速度不等于真空速度,发生微小的变化,引起时间误差。
接收机的时钟与GPS卫星时钟之间的钟差主要有两个原因引起:一是信号以光速传播到达接收机引起的时延;二是信号通过地球电离层和对流层时引起传播速度发生变化。
为了获得真实的时间,可以用下面的方法计算GPs 卫星与接收机之间的钟差,通过接收机的坐标与GPS卫星的坐标计算接收机与GPS卫星之间真实距离,其值等于“伪距离”减去真空光速时延以及电离层和对流层速度变化引起的误差,从而推算出钟差,本模块采用下面的数学模型,推算钟差,调整接收机的时钟,达到与GPS卫星同步的目的。
其数学模型是:S真=S伪-c∮-△→∮=1/c(S伪-S真-△)
其中:S真为通过坐标计算出的GPS卫星与接收机之间的距离;S伪是利用GPS卫星发出的“测距码”信号(取真空光速),加上信号的传输时延计算出GPS 卫星与接收机之间的“伪距离”;c为真空光速;∮为接收机与GPS卫星时钟钟差;△为电离层与对流层因为传播速度发生变化而引起的误差。
其中△可根据导航电文中的修正参数进行推算,当然也可以采用高级双频GPS信号接收机双频测算精确的修正电离层和对流层的误差。
2 时间信号处理设计
2.1 GPS时间
GPS卫星时间信号不同于通常表示年月日的时间表示法,GPS时间是从1980年1月6日0点0分0秒开始的世界协调时间,主要由星期数和当前星期的日期数组成。
日期数是一个用13位C/A码或P码表示的,每过8192个星期(157年)重置一次零,要知道准确的年月日以及时间信息,必需准确换算出GPS时间信号。
主体程序流程图。