2019版一轮优化探究物理(鲁科版)练习:第五章 第1讲 曲线运动 运动的合成与分解 Word版含解析
- 格式:doc
- 大小:231.50 KB
- 文档页数:9
第五章曲线运动万有引力与航天预测2021年选择性考试改为福建本省自主命题且实行单科考试后,考试时长和试题题量均会相应增加,预计2021年的考试中,对曲线运动部分的考查点主要在平抛运动和圆周运动,特别是与能量综合考查圆周运动的临界问题,选择题、计算题的考查方式均有可能。
而对天体运动的考查,由于近年来我国在航天方面的迅猛发展,高考常常结合我国的航天实际成就来命题,选择题出现的可能性较大.[全国卷考情分析]——供老师参考考点内容要求高考(全国卷)三年命题情况对照分析201720182019运动的合成与分解ⅡⅠ卷T15:平抛运动规律Ⅱ卷T17:平抛运动、机械能守恒定律T19:行星运动规律、机械能守恒定律Ⅲ卷T14:天Ⅰ卷T18:竖直面内的圆周运动、动能定理T20:双星问题Ⅱ卷T16:天体密度Ⅲ卷T15:开普勒第三定律T17:平抛运Ⅰ卷T21:重力与万有引力、动力学、能量与图象结合Ⅱ卷T14:万有引力与距离的关系T19:平抛运动与图象结合Ⅲ卷T15:不同天体运动中各物理量的比较抛体运动Ⅱ匀速圆周运动、角速度、线速度、向心加速度Ⅰ匀速圆周运动的向心力Ⅱ离心现象Ⅰ万有引力定律及其应用Ⅱ环绕速度 Ⅱ 体运动 动T25:竖直面内的圆周运动、动能定理第二宇宙速度和第三宇宙速度 Ⅰ经典时空观和相对论时空观Ⅰ备考策略:1。
考查方式:从近几年高考来看,对万有引力定律及其应用、人造卫星及天体运动问题的考查,题型通常为选择题,难度中等;对平抛运动的规律及其研究方法,圆周运动的角速度、线速度和向心加速度等的考查,题型一般为选择题,对曲线运动与动力学和能量结合的题目,通常为计算题。
2.命题趋势:分析历年高考命题情况可以发现有两大趋势:一是以现代科技、生产、生活为背景,与牛顿运动定律、机械能守恒定律等内容综合;二是与现代航天技术密切联系.第1节 曲线运动 运动的合成与分解一、曲线运动 1.速度的方向质点在某一点的速度方向,沿曲线在这一点的切线方向。
曲线运动及天体运动定律的应用【模拟试题】(答题时间:45分钟)1. 关于互成角度的两个初速度不为零的匀变速直线运动的合运动,下列说法正确的是 A. 一定是直线运动 B. 一定是曲线运动C. 可能是直线运动,也可能是曲线运动D. 以上都不对2. 一质点做曲线运动,它的轨迹由上到下(如图示曲线),关于质点通过轨迹中点时的速度v 的方向和加速度a 的方向可能正确的是图中的哪一个?ABCDa3. 一个质点受两个互成锐角的力F 1和F 2作用,由静止开始运动,若运动中保持二力方向不变,但F 1突然增大到F 1+△F ,则质点此后A. 一定做匀变速曲线运动B. 在相等的时间内速度的变化一定相等C. 可能做匀速直线运动D. 可能做变加速曲线运动4. 做平抛运动的物体,每秒的速度增量总是 A. 大小相等,方向相同 B. 大小不等,方向不同 C. 大小相等,方向不同 D. 大小不等,方向相同5. 如图所示,以9.8 m/s 的水平速度v 0抛出的物体,飞行一段时间后垂直地撞在倾角为θ=30°的斜面上,可知物体完成这段飞行的时间是A.33s B. 332 s C. 3s D. 2 s 6. 如图所示,有一个质量为M 的大圆环半径为R ,被一轻杆固定后悬于O 点,有两个质量为m 的小环(视为质点),同时从大环两侧的对称位置由静止滑下,两小环同时滑到大环底部时,速度为v ,则此时大环对轻杆的拉力为A. (2m+M)gB. Mg—2mv2/RC. 2m(g+v2/R)+MgD. 2m(v2/R-g)+Mg7. 火车轨道在转弯处外轨高于内轨,其高度差由转弯半径与火车速度确定。
若在某转弯处规定行驶速度为v,则下列说法中正确的是①当以速度v通过此弯路时,火车重力与轨道面支持力的合力提供向心力②当以速度v通过此弯路时,火车重力、轨道面支持力和外轨对轮缘弹力的合力提供向心力③当速度大于v时,轮缘挤压外轨④当速度小于v时,轮缘挤压外轨A. ①③B. ①④C. ②③D. ②④8. 汽车以一定速率通过拱桥时,下列说法中正确的是A. 在最高点汽车对桥的压力大于汽车的重力B. 在最高点汽车对桥的压力等于汽车的重力C. 在最高点汽车对桥的压力小于汽车的重力D. 汽车以恒定的速率过桥时,汽车所受的合力为零9. 下列那些现象是为了防止物体产生离心现象的:①汽车转弯时要限制速度②转速很高的砂轮半径不能做得太大③在修筑铁路时,转弯处轨道的内轨要低于外轨④离心水泵工作时A. ①②③B. ②③④C. ①②④D. ①③④10. 在光滑的水平面上,一轻绳的一端固定在O点,另一端拴一质量为m的球,当球绕O点做匀速圆周运动时,若突然将绳的中点挡住,则在挡住的瞬间,下列各量变大的是A. 球的线速度B. 球的角速度C. 球的加速度D. 绳的拉力11. 如图所示,物体P用两根长度相等不可伸长的细线系于竖直杆上,它们随杆转动,若转动角速度为ω,则A. ω只有超过某一值时,绳子AP才有拉力B. 绳BP 的拉力随的增大而增大C. 绳BP的张力一定大于绳子AP的张力D. 当ω增大到一定程度时,绳子AP的张力大于BP的张力12. 若人造卫星绕地球做匀速圆周运动,则下列说法正确的是A. 卫星的轨道半径越大,它的运行速度越大B. 卫星的轨道半径越大,它的运行速度越小C. 卫星的质量一定时,轨道半径越大,它需要的向心力越大D. 卫星的质量一定时,轨道半径越大,它需要的向心力越小13. 我们的银河系的恒星中大约四分之一是双星,某双星由质量不等的星体S1和S2构成,两星在相互之间的万有引力作用下绕两者连线上某一定点C做匀速圆周运动。
[课时作业] 单独成册 方便使用[基础题组];;一、单项选择题;;1.牛顿时代的科学家们围绕引力的研究,经历了大量曲折顽强而又闪烁智慧的科学实践.在万有引力定律的发现历程中,下列叙述不符合史实的是( );; A .开普勒研究了第谷的行星观测记录,得出了开普勒行星运动定律B .牛顿将行星与太阳、地球与月球、地球与地面物体之间的引力规律推广到宇宙中的一切物体,得出了万有引力定律C .卡文迪许首次在实验室中比较准确地得出了引力常量G 的数值D .根据天王星的观测资料,哈雷利用万有引力定律计算出了海王星的轨道;; 解析:开普勒研究了第谷的行星观测记录,得出了开普勒行星运动定律,选项A 正确;牛顿将行星与太阳、地球与月球、地球与地面物体之间的引力规律推广到宇宙中的一切物体,得出了万有引力定律,选项B 正确;卡文迪许首次在实验室中比较准确地得出了引力常量G 的数值,选项C 正确;英国人亚当斯和法国人勒维耶根据万有引力推测出“新”行星的轨道和位置,柏林天文台年轻的天文学家伽勒和他的助手根据勒维耶计算出来的“新”行星的位置,发现了海王星,故D 错误. 答案:D;;2.若有一颗“宜居”行星,其;质量为地球的p 倍,半径为地球的q 倍,则该行星卫星的环绕速度是地球卫星环绕速度的( );; A.pq 倍 B.q p 倍C.p q 倍D.pq 3倍解析:对于中心天体的卫星,G MmR 2=m v 2R ,v =GMR ,设该行星卫星的环绕速度为v ′,地球卫星的环绕速度为v ,则v ′v =M ′M ·RR ′=pq ,C 正确.答案:C3.如图,若两颗人造卫星a 和b 均绕地球做匀速圆周运动,a 、b 到地心O 的距离分别为r 1、r 2,线速度大小分别为v 1、v 2,则( ) A.v 1v 2=r 2r 1 B.v 12=r 1r 2C.v 1v 2=(r 2r 1)2 D.v 1v 2=(r 1r 2)2 解析:万有引力提供卫星绕地球做匀速圆周运动的向心力,有G Mmr 2=m v 2r ,所以v =GM r ,v 1v 2=r 2r 1,A 项正确.答案:A4.(2018·山西五校四联)天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.若某双星的质量分别为M 、m ,间距为L ,双星各自围绕其连线上的某点O 做匀速圆周运动,其角速度分别为ω1、ω2,质量为M 的恒星轨道半径为R ,已知引力常量为G ,则描述该双星运动的上述物理量满足( ) A .ω1<ω2B .ω1>ω2C .GM =ω22(L -R )L 2D .Gm =ω21R 3解析:双星系统中两颗星的角速度相同,ω1=ω2,则A 、B 项错误.由GMm L 2=mω22(L -R ),得GM =ω22(L -R )L 2,C项正确.由GMm L 2=Mω21R ,得Gm =ω21RL 2,D 项错误.答案:C5.(2018·四川成都高三质检)如图所示,2016年10月19日,神舟十一号入轨后,经历5次变轨,到达距离地面393公里轨道,与天宫二号成功对接,对接之后两者一起绕着地球做匀速圆周运动,已知地球的质量M =5.97×1024 kg ,地球的半径R =6 378公里,引力常量G =6.67×10-11N·m 2/kg 2,地球表面的重力加速度g 取10 m/s 2.则( )A .神舟十一号为了追上天宫二号,无论在什么轨道上只要加速就行B .天宫二号运行的速度大于7.9 km/sC .神舟十一号变轨前后忽略其质量的变化,则变轨后动能减小,引力势能增大D .对接成功后两者一起运行的周期为1 h解析:神舟十一号为了追上天宫二号,必须在低轨道加速,A 错误;第一宇宙速度大小为7.9 km/s ,而第一宇宙速度为近地轨道环绕速度,根据公式G Mmr 2=m v 2r ,解得v =GMr ,轨道半径越大,线速度越小,所以天宫二号运行的速度小于7.9 km/s ,B错误;变轨后轨道半径增大,根据v =GMr 可知变轨后速度减小,动能减小,变轨时,需要克服万有引力做功,故引力势能增大,C 正确;根据公式G Mm r 2=m 4π2T 2r 可得T =2πr 3GM,代入数据可得T ≈5.54×103s>3 600 s ,D 错误. 答案:C 二、多项选择题6.(2017·高考江苏卷)“天舟一号”货运飞船于2017年4月20日在文昌航天发射中心成功发射升空.与“天宫二号”空间实验室对接前,“天舟一号”在距地面约380 km 的圆轨道上飞行,则其( ) A .角速度小于地球自转角速度 B .线速度小于第一宇宙速度 C .周期小于地球自转周期D .向心加速度小于地面的重力加速度解析:由GMm(R +h )2=m (R +h )4π2T 2知,周期T 与轨道半径的关系为(R +h )3T 2=k (恒量),同步卫星的周期与地球的自转周期相同,但同步卫星的轨道半径大于“天舟一号”的轨道半径,则“天舟一号”的周期小于同步卫星的周期,也就小于地球的自转周期,C 对.由ω=2πT 知,“天舟一号”的角速度大于地球自转的角速度,A 错.由GMm(R +h )2=m v 2R +h知,线速度v =GM R +h,而第一宇宙速度v ′=GMR ,则v <v ′,B 对.设“天舟一号”的向心加速度为a ,则ma =GMm(R +h )2,而mg =GMmR 2,可知a <g ,D 对.答案:BCD7.(2018·江西赣州模拟)如图所示,运行轨道在同一平面内的两颗人造卫星A 、B ,同方向绕地心做匀速圆周运动,此时刻A 、B 与地心恰在同一直线上且相距最近,已知A 的周期为T ,B 的周期为2T3.下列说法正确的是( )A .A 的线速度小于B 的线速度 B .A 的角速度小于B 的角速度C .A 的重力小于B 的重力D .从此时刻到下一次A 、B 相距最近的时间为2T解析:根据万有引力提供向心力得G Mmr 2=m v 2r =mω2r ,解得v =GMr ,ω=GM r 3,可知轨道半径越大,线速度、角速度都越小,故A 的线速度和角速度都较小,故A 、B 正确.由于不知道A 、B 两颗卫星的质量关系,所以无法判断两颗卫星的重力大小关系,故C 错误.从此时刻到下一次A 、B 相距最近,转过的角度差为2π,即(2π2T 3-2πT )t =2π,解得t =2T ,故从此时刻到下一次A 、B 相距最近的时间为2T ,故D 正确.答案:ABD8.(2018·郑州质量预测)中国北斗卫星导航系统(BDS)是中国自行研制的全球卫星导航系统,是继美国全球定位系统(GPS)、俄罗斯格洛纳斯卫星导航系统(GLONASS)之后第三个成熟的卫星导航系统.预计2020年左右,北斗卫星导航系统将形成全球覆盖能力.如图所示是北斗导航系统中部分卫星的轨道示意图,已知a、b 、c 三颗卫星均做圆周运动,a是地球同步卫星,则()A.卫星a的角速度小于c的角速度B.卫星a的加速度等于b的加速度C.卫星a的运行速度大于第一宇宙速度D.卫星b的周期大于24 h解析:a的轨道半径大于c的轨道半径,则卫星a的角速度小于c的角速度,选项A 正确;a的轨道半径与b的轨道半径相等,则卫星a的加速度等于b的加速度,选项B正确;a的轨道半径大于地球半径,则卫星a的运行速度小于第一宇宙速度,选项C错误;a的轨道半径与b的轨道半径相等,卫星b的周期等于a的周期,为24 h,选项D错误.答案:AB[能力题组]一、选择题9.(2018·四川双流高三质检)2016年2月11日美国科学家宣布人类首次直接探测到引力波.1974年美国物理学家泰勒和赫尔斯发现了一颗编号为PSRB1913+16的脉冲星,该天体是一个孤立双星系统中质量较大的一颗.他们对这个双星系统的轨道进行了长时间的观测,发现双星间的距离正以非常缓慢的速度逐渐减小.该观测结果和广义相对论预言的数值符合得非常好,这间接证明了引力波的存在.泰勒和赫尔斯也因这项工作于1993年荣获诺贝尔物理学奖.那么由于双星间的距离减小,下列关于双星运动的说法中正确的是()A.周期逐渐减小B.角速度逐渐减小C.两星的向心加速度都逐渐减小D.两星之间的万有引力逐渐减小解析:根据G m1m2L2=m1ω2r1=m2ω2r2,r1+r2=L知ω=G(m1+m2)L3,因双星间的距离减小,则双星角速度变大,周期变小,故A正确,B错误;两星间距离减小,则两星间万有引力增大,D 错误;根据G m 1m 2L 2=m 1a =m 2a 知,L 变小,则两星的向心加速度增大,故C 错误. 答案:A10.已知,某卫星在赤道上空轨道半径为r 1的圆形轨道上绕地运行的周期为T ,卫星运动方向与地球自转方向相同,赤道上某城市的人每三天恰好五次看到卫星掠过其正上方,假设某时刻,该卫星在A 点变轨进入椭圆轨道(如图),近地点B 到地心距离为r 2.设卫星由A 到B 运动的时间为t ,地球自转周期为T 0,不计空气阻力,则( ) A .T =38T 0 B .t =(r 1+r 2)T 2r 1r 1+r 22r 1C .卫星在图中椭圆轨道由A 到B 时,机械能增大D .卫星由图中圆轨道进入椭圆轨道过程中,机械能不变解析:根据题意有2πT ·3T 0-2πT 0·3T 0=5·2π,得T =38T 0,所以A 正确;由开普勒第三定律有[12(r 1+r 2)]3(2t )2=r 31T 2,得t =(r 1+r 2)T 4r1r 1+r 22r 1,所以B 错误;卫星在椭圆轨道中运行时,机械能是守恒的,所以C 错误;卫星从圆轨道进入椭圆轨道过程中在A 点需点火减速,卫星的机械能减小,所以D 错误. 答案:A11.(多选)已知月球围绕地球运动的周期大约为27天,某颗近地卫星绕地球运动的周期大约为1.4 h ,地球同步卫星的轨道半径为r 2,地球半径为R .下列说法中正确的是( )A .地球同步卫星距离地球中心的距离r 2与月球中心到地球中心的距离r3之比为1∶9B .近地卫星距离地球中心的距离r 1与月球中心到地球中心的距离r 3之比为3∶48C .地球同步卫星绕地球运动的加速度a 2与赤道上物体随地球自转的加速度a 0之比为r 2∶RD .地球同步卫星绕地球运动的加速度a 2与月球绕地球运动的加速度a 3之比为9∶1 解析:根据开普勒第三定律有r 3T 2=k ,可得r =3kT 2,代入已知条件得选项A 正确,B 错误.地球同步卫星绕地球运动的角速度和地球自转角速度相等,由a =ω2r 可知,a 2∶a 0=r 2∶R ,选项C 正确.根据万有引力提供向心力有G Mm r 2=ma ,得a 2∶a 3=r 23∶r 22=(9r 2)2∶r 22=81∶1,选项D 错误.答案:AC 二、非选择题12.(2017·高考天津卷)我国自主研制的首艘货运飞船“天舟一号”发射升空后,与已经在轨运行的“天宫二号”成功对接形成组合体.假设组合体在距地面高为h 的圆形轨道上绕地球做匀速圆周运动,已知地球的半径为R ,地球表面处重力加速度为g ,且不考虑地球自转的影响.则组合体运动的线速度大小为________,向心加速度大小为________.解析:设组合体的质量为m 、运动线速度为v ,地球质量为M ,则 G Mm(R +h )2=ma 向=m v 2R +h ,又有G Mm R 2=mg 联立上述两式得a 向=R 2(R +h )2g ,v =R g R +h.答案:Rg R +h R 2(R +h )2g 13.(2018·湖北武汉调研)如图所示,一宇航员站在质量分布均匀的某星球表面的一斜坡上的A 点,沿水平方向以速度v 0抛出一个小球,测得经过时间t 小球落到斜坡上的另一点B ,斜坡的倾角为θ,已知该星球的半径为R ,求: (1)该星球表面的重力加速度; (2)该星球的第一宇宙速度.解析:(1)设该星球表面的重力加速度为g ,由平抛运动规律,则 x =v 0t ,y =12gt 2,yx =tan θ, 解得g =2v 0tan θt(2)一质量为m 的卫星在该星球表面附近环绕星球运行时,重力提供向心力, 则mg =m v 2R 解得v =gR =2v 0R tan θt, 此即该星球的第一宇宙速度. 答案:(1)2v 0tan θt (2)2v 0R tan θt。
[课时作业]单独成册方便使用1.对质点运动来讲,以下说法中正确的是()A.加速度恒定的运动可能是曲线运动B.运动轨迹对任何观察者来说都是不变的C.当质点的加速度逐渐减小时,其速度也一定逐渐减小D.作用在质点上的所有力消失后,质点运动的速度将不断减小解析:加速度恒定的运动可能是曲线运动,如平抛运动,A正确;运动轨迹对不同的观察者来说可能不同,如匀速水平飞行的飞机上落下的物体,相对地面做平抛运动,相对飞机上的观察者做自由落体运动,B错误;当质点的速度方向与加速度方向同向时,即使加速度减小,速度仍增加,C错误;作用于质点上的所有力消失后,质点的速度将不变,D错误.答案:A2.如图所示的曲线是某个质点在恒力作用下的一段运动轨迹.质点从M点出发经P点到达N点,已知弧长MP大于弧长PN,质点由M点运动到P点与从P点运动到N点的时间相等.下列说法中正确的是()A.质点从M到N过程中速度大小保持不变B.质点在这两段时间内的速度变化量大小相等,方向相同C.质点在这两段时间内的速度变化量大小不相等,但方向相同D.质点在MN间的运动是变加速运动解析:由题中可知弧长MP大于弧长PN,t MP=t PN,A错误.质点始终受恒力作,加速度恒定,则质点在这两段时间内的速度变化用,由牛顿第二定律得a=Fm量大小相等,方向相同,且质点做匀变速曲线运动,B正确,C、D错误.答案:B3.(2018·成都外国语高三质检)如图所示,一块橡皮用细线悬挂于O点,现用一支铅笔贴着细线的左侧水平向右以速度v匀速移动,运动过程中保持铅笔的高度不变,悬挂橡皮的那段细线保持竖直,则在铅笔未碰到橡皮前,下列说法正确的是(不计一切摩擦)()A.橡皮的运动轨迹是一条直线B.橡皮在竖直方向上做匀加速运动C.绳中拉力T>mg且逐渐减小D.橡皮在图示位置时的速度大小为v cos2θ+1解析:将铅笔与细线接触的点的速度分解为沿细线方向和垂直于细线方向,则沿细线方向上的分速度为v sin θ,因为沿细线方向上的分速度等于橡皮在竖直方向上的分速度,所以橡皮在竖直方向上速度为v sin θ,因为θ逐渐增大,所以橡皮在竖直方向上做变加速运动,不是匀加速运动,橡皮在水平方向上做匀速运动,竖直方向做加速运动,所以橡皮做曲线运动,故A、B错误;因橡皮在竖直方向做加速度减小的加速运动,故线中拉力T>mg,且逐渐减小,故C正确;根据平行四边形定则可知橡皮在图示位置时的速度大小为v2+(v sin θ)2=v1+sin2θ,故D错误.答案:C4.有一条两岸平直、河水均匀流动、流速恒为v的大河.小明驾着小船渡河,去程时船头指向始终与河岸垂直,回程时行驶路线与河岸垂直.去程与回程所用时间的比值为k,船在静水中的速度大小相同,则小船在静水中的速度大小为()A.k vk2-1B.v1-k2C.k v1-k2D.vk2-1解析:设大河宽度为d,小船在静水中的速度为v0,则去程渡河所用时间t1=dv0,回程渡河所用时间t2=dv20-v2.由题知t1t2=k,联立以上各式得v0=v1-k2.选项B正确,选项A、C、D错误.5.(2018·四川成都诊断)质量为m 的物体P 置于倾角为θ1的固定光滑斜面上,轻细绳跨过光滑定滑轮分别连接着P 与小车,P 与滑轮间的细绳平行于斜面,小车以速率v 水平向右做匀速直线运动.当小车与滑轮间的细绳和水平方向的夹角为θ2时(如图),下列判断正确的是( )A .P 的速率为vB .P 的速率为v cos θ2C .绳的拉力等于mg sin θ1D .绳的拉力小于mg sin θ1 解析:将小车速度沿绳子和垂直绳子方向分解为v 1、v 2,P 的速率v 1=v cos θ2,A 错误,B 正确;小车向右做匀速直线运动,θ减小,P 的速率增大,绳的拉力大于mg sin θ1,C 、D 错误.答案:B二、多项选择题6.质量为m 的物体,在F 1、F 2、F 3三个共点力的作用下做匀速直线运动,保持F 1、F 2不变,仅将F 3的方向改变90°(大小不变)后,物体可能做( )A .加速度大小为F 3m 的匀变速直线运动B .加速度大小为2F 3m 的匀变速直线运动C .加速度大小为2F 3m 的匀变速曲线运动D .匀速直线运动解析:物体在F 1、F 2、F 3三个共点力作用下做匀速直线运动,必有F 3与F 1、F 2的合力等大反向,当F 3大小不变,方向改变90°时,F 1、F 2的合力大小和方向不变,与改变方向后的F 3夹角为90°,故F 合=2F 3,加速度a =F 合m =2F 3m .若原速度方向与F 合方向共线,则物体做匀变速直线运动;若原速度方向与F 合方向不共线,则物体做匀变速曲线运动,综上所述选B 、C.7.(2018·山东潍坊统考)如图所示,河水由西向东流,河宽为800 m ,河中各点的水流速度大小v 水与各点到较近河岸的距离x 的关系为v 水=3400x (m/s)(x 的单位为m),让小船船头垂直河岸由南向北渡河,小船划水速度大小恒为v 船=4 m/s ,则下列说法正确的是( )A .小船渡河的轨迹为直线B .小船在河水中的最大速度是5 m/sC .小船在距南岸200 m 处的速度小于在距北岸200 m 处的速度D .小船渡河的时间是200 s解析:小船在南北方向上为匀速直线运动,在东西方向上先加速,到达河中间后再减速,小船的合运动是曲线运动,A 错误.当小船运动到河中间时,东西方向上的分速度最大,此时小船的合速度最大,最大值v m =5 m/s ,B 正确.小船在距南岸200 m 处的速度等于在距北岸200 m 处的速度,C 错误.小船的渡河时间t =200 s ,D 正确.答案:BD8.(2018·天津实验中学模拟)如图所示,将质量为2m 的重物悬挂在轻绳的一端,轻绳的另一端系一质量为m 的小环,小环套在竖直固定的光滑直杆上,光滑定滑轮与直杆的距离为d .现将小环从与定滑轮等高的A 处由静止释放,当小环沿直杆下滑距离也为d 时(图中B 处),下列说法正确的是(重力加速度为g )( )A .小环刚释放时轻绳中的张力一定大于2mgB .小环到达B 处时,重物上升的高度为(2-1)dC .小环在B 处的速度与重物上升的速度大小之比等于22D .小环在B 处的速度与重物上升的速度大小之比等于 2解析:小环释放后,v 增加,而v 1=v cos θ,v 1增大,由此可知小环刚释放时重物具有向上的加速度,故绳中张力一定大于2mg ,A 项正确;小环到达B 处时,绳与直杆间的夹角为45°,重物上升的高度h =(2-1)d ,B 项正确;如图所示,将小环速度v 进行正交分解,其分速度v 1与重物上升的速度大小相等,v 1=v cos 45°=22v ,所以,小环在B 处的速度与重物上升的速度大小之比等于2,C 项错误,D 项正确.答案:ABD[能力题组]一、选择题9.质量为m =4 kg 的质点静止在光滑水平面上的直角坐标系的原点O 处,先用沿+x 轴方向的力F 1=8 N 作用了2 s ,然后撤去F 1;再用沿+y 轴方向的力F 2=24 N 作用了1 s ,则质点在这3 s 内的轨迹为( )解析:由F 1=ma x 得a x =2 m/s 2,质点沿x 轴匀加速直线运动了2 s ,x 1=12a x t 21=4 m ,v x 1=a x t 1=4 m/s ;之后质点受F 2作用而做类平抛运动,a y =F 2m =6 m/s 2,质点再经过1 s ,沿x 轴运动的位移x 2=v x 1t 2=4 m ,沿+y 方向运动位移y 2=12a y t 22=3 m ,对应图线可知D 项正确.答案:D10.如图所示,甲、乙两同学从河中O 点出发,分别沿直线游到A 点和B 点后,立即沿原路线返回到O 点,OA 、OB分别与水流方向平行和垂直,且OA =OB .若水流速度不变,两人在静水中游速相等,则他们从O 点出发再返回O 点所用时间t 甲、t 乙的大小关系为( )A .t 甲<t 乙B .t 甲=t 乙C .t 甲>t 乙D .无法确定解析:设水速为v 0,人在静水中的速度为v ,OA =OB =x .对甲,O →A阶段人对地的速度为(v +v 0),所用时间t 1=x v +v 0;A →O 阶段人对地的速度为(v -v 0),所用时间t 2=x v -v 0.所以甲所用时间t 甲=t 1+t 2=x v +v 0+x v -v 0=2v x v 2-v 20.对乙,O →B 阶段和B →O 阶段的实际速度v ′为v 和v 0的合成,如图所示.由几何关系得,实际速度v ′=v 2-v 20,故乙所用时间t 乙=2x v ′=2x v 2-v 20.t 甲t 乙=v v 2-v 20>1,即t 甲>t 乙,故C 正确.选C.答案:C11.(多选)(2018·江苏南通模拟)如图所示,A 、B 两球分别套在两光滑的水平直杆上,两球通过一轻绳绕过一定滑轮相连.现在使A球以速度v 向左匀速移动,某时刻连接两球的轻绳与水平方向的夹角为α、β,下列说法正确的是( )A .此时B 球的速度为v cos αcos βB .此时B 球的速度为v sin αsin βC .在β增大到90°的过程中,B 球做匀速运动D .在β增大到90°的过程中,B 球做加速运动解析:由于绳连接体沿绳方向的速度大小相等,因此v cos α=v B cos β,故v B =v cos αcos β,A 正确,B 错误.在β增大到90°的过程中,α在减小,因此B 球的速度在增大,B 球做加速运动,C 错误,D 正确.答案:AD二、非选择题12.小船匀速横渡一条河流,当船头垂直对岸方向时,在出发后10 min到达对岸下游120 m处.若船头保持与河岸成θ角向上游航行,在出发后12.5 min到达正对岸(已知sin 37°=0.6,sin 53°=0.8),求:(1)水流速度大小v1;(2)河的宽度d及船头与河岸的夹角θ.解析:设船在静水中速度大小为v2.(1)当船头垂直对岸方向航行时,如图甲所示,水流速度大小v1=BCt1=12010×60m/s=0.2 m/s.(2)若船头保持与河岸成θ角向上游航行,如图乙所示,由题意得t2=dv2sin θv2cos θ=v1v2=dt1解得d=200 m,θ=53°.答案:(1)0.2 m/s(2)200 m53°13.如图所示,在竖直平面的xOy坐标系中,Oy竖直向上,Ox水平.设平面内存在沿x轴正方向的恒定风力.一小球从坐标原点沿Oy方向竖直向上抛出,初速度为v0=4 m/s,不计空气阻力,到达最高点的位置如图中M点所示,(坐标格为正方形,g取10 m/s2)求:(1)小球在M点的速度大小v1.(2)在图中定性画出小球的运动轨迹并标出小球落回x轴时的位置N.(3)小球到达N点的速度v2的大小.解析:(1)设正方形的边长为s0.竖直方向做竖直上抛运动,v0=gt1,2s0=v02t1,解得s0=0.4 m.水平方向做匀加速直线运动,3s0=v12t1,解得v1=6 m/s.(2)由竖直方向的对称性可知,小球再经过t1到x轴,水平方向做初速度为零的匀加速直线运动,由x1∶x2=1∶22可知,小球回到x轴时落到x=12处,位置N 的坐标为(12,0).(3)到N点时竖直分速度大小为v0=4 m/s,水平分速度v x=a水平t N=2v1=12 m/s,故v2=v20+v2x=410 m/s.答案:(1)6 m/s(2)图见解析(3)410 m/s。
[课时作业] 单独成册 方便使用一、单项选择题1.如图所示的曲线是某个质点在恒力作用下的一段运动轨迹.质点从M 点出发经P 点到达N 点,已知弧长MP 大于弧长PN ,质点由M 点运动到P 点与从P 点运动到N 点的时间相等.下列说法中正确的是( )A .质点从M 到N 过程中速度大小保持不变B .质点在这两段时间内的速度变化量大小相等,方向相同C .质点在这两段时间内的速度变化量大小不相等,但方向相同D .质点在MN 间的运动是变加速运动解析:由题中可知弧长MP 大于弧长PN ,t MP =t PN ,A 错误.质点始终受恒力作用,由牛顿第二定律得a =F m ,加速度恒定,则质点在这两段时间内的速度变化量大小相等,方向相同,且质点做匀变速曲线运动,B 正确,C 、D 错误.答案:B2.(2018·山东东营一中质检)如图所示,长为L 的直棒一端可绕固定轴O 转动,另一端放在升降平台上,平台以速度v 匀速上升.当棒与竖直方向的夹角为α时,棒的角速度为( )A.v sin αLB.v L sin αC.v cos αLD.v L cos α解析:棒与平台接触点的实际运动即合运动,其方向垂直棒指向左上,如图所示,合速度v 实=ωL ,沿竖直方向的速度分量等于v ,即ωL sin α=v ,所以ω=v L sin α,B 正确.答案:B3.如图所示,在不计滑轮摩擦和绳子质量的条件下,当小车匀速向左运动时,物体M 的受力和运动情况是( )A .绳的拉力等于M 的重力B .绳的拉力大于M 的重力C .物体M 向上做匀速运动D .物体M 向上做匀加速运动解析:当小车匀速向左运动时,沿绳子方向的速度v cos θ增大,物体M 向上做变加速运动,绳的拉力大于M 的重力,选项B 正确.答案:B二、多项选择题4.(2018·山东潍坊统考)如图所示,河水由西向东流,河宽为800 m,河中各点的水流速度大小v水与各点到较近河岸的距离x 的关系为v 水=3400x (m/s)(x 的单位为m),让小船船头垂直河岸由南向北渡河,小船划水速度大小恒为v 船=4 m/s,则下列说法正确的是( )A .小船渡河的轨迹为直线B .小船在河水中的最大速度是5 m/sC .小船在距南岸200 m 处的速度小于在距北岸200 m 处的速度D .小船渡河的时间是200 s解析:小船在南北方向上为匀速直线运动,在东西方向上先加速,到达河中间后再减速,小船的合运动是曲线运动,A 错误.当小船运动到河中间时,东西方向上的分速度最大,此时小船的合速度最大,最大值v m =5 m/s,B 正确.小船在距南岸200 m 处的速度等于在距北岸200 m 处的速度,C 错误.小船的渡河时间t =200 s,D 正确.答案:BD5.(2018·天津实验中学模拟)如图所示,将质量为2m的重物悬挂在轻绳的一端,轻绳的另一端系一质量为m 的小环,小环套在竖直固定的光滑直杆上,光滑定滑轮与直杆的距离为d .现将小环从与定滑轮等高的A 处由静止释放,当小环沿直杆下滑距离也为d 时(图中B 处),下列说法正确的是(重力加速度为g )( )A .小环刚释放时轻绳中的张力一定大于2mgB .小环到达B 处时,重物上升的高度为(2-1)dC .小环在B 处的速度与重物上升的速度大小之比等于22D .小环在B 处的速度与重物上升的速度大小之比等于 2解析:小环释放后,v 增加,而v1=v cos θ,v 1增大,由此可知小环刚释放时重物具有向上的加速度,故绳中张力一定大于2mg ,A 项正确;小环到达B 处时,绳与直杆间的夹角为45°,重物上升的高度h =(2-1)d ,B 项正确;如图所示,将小环速度v 进行正交分解,其分速度v 1与重物上升的速度大小相等,v 1=v cos 45°=22v ,所以,小环在B 处的速度与重物上升的速度大小之比等于2,C 项错误,D 项正确.答案:ABD6.(2018·江苏南通模拟)如图所示,A 、B 两球分别套在两光滑的水平直杆上,两球通过一轻绳绕过一定滑轮相连.现在使A 球以速度v 向左匀速移动,某时刻连接两球的轻绳与水平方向的夹角为α、β,下列说法正确的是( )A .此时B 球的速度为v cos αcos βB .此时B 球的速度为v sin αsin βC .在β增大到90°的过程中,B 球做匀速运动D .在β增大到90°的过程中,B 球做加速运动解析:由于绳连接体沿绳方向的速度大小相等,因此v cos α=v B cos β,故v B =v cos αcos β,A 正确,B 错误.在β增大到90°的过程中,α在减小,因此B 球的速度在增大,B 球做加速运动,C 错误,D 正确.答案:AD三、非选择题7.小船匀速横渡一条河流,当船头垂直对岸方向时,在出发后10 min 到达对岸下游120 m 处.若船头保持与河岸成θ角向上游航行,在出发后12.5 min 到达正对岸(已知sin 37°=0.6,sin 53°=0.8),求:(1)水流速度大小v 1;(2)河的宽度d 及船头与河岸的夹角θ.解析:设船在静水中速度大小为v 2.(1)当船头垂直对岸方向航行时,如图甲所示,水流速度大小v 1=BC t 1=12010×60 m/s =0.2 m/s.(2)若船头保持与河岸成θ角向上游航行,如图乙所示,由题意得t2=dv2sin θv2cos θ=v1v2=d t1解得d=200 m,θ=53°.答案:(1)0.2 m/s(2)200 m53°。
第1讲曲线运动运动的合成与分解板块一主干梳理·夯实基础【知识点1】曲线运动1.速度的方向:质点在某一点的速度方向,沿曲线上该点的切线方向。
2.运动性质:做曲线运动的物体,速度的方向时刻改变,故曲线运动一定是变速运动,即必然具有加速度。
3.物体做曲线运动的条件(1)运动学角度:物体的加速度方向跟速度方向不在同一条直线上。
(2)动力学角度:物体所受合外力的方向跟速度方向不在同一条直线上。
【知识点2】运动的合成与分解Ⅱ1.基本概念(1)分运动和合运动:一个物体同时参与几个运动,参与的这几个运动即分运动,物体的实际运动即合运动。
(2)运动的合成:已知分运动求合运动,包括位移、速度和加速度的合成。
(3)运动的分解:已知合运动求分运动,解题时应按实际效果分解,或正交分解。
2.遵循的规律:位移、速度、加速度都是矢量,故它们的合成与分解都遵循平行四边形法则。
3.合运动的性质(1)两个匀速直线运动的合运动一定是匀速直线运动。
(2)一个匀速直线运动、一个匀变速直线运动的合运动不一定(选填“一定”或“不一定”)是直线运动。
(3)两个匀变速直线运动的合运动,□10不一定(选填“一定”或“不一定”)是匀变速直线运动。
板块二考点细研·悟法培优考点1 合运动的性质和轨迹[拓展延伸]1.运动类型的判断(1)判断物体是否做匀变速运动,要分析合力是否为恒力。
(2)判断物体是否做曲线运动,要分析合力方向是否与速度方向成一定夹角。
①当合力方向与速度方向的夹角为锐角时,物体的速率增大;②当合力方向与速度方向的夹角为钝角时,物体的速率减小;③当合力方向与速度方向垂直时,物体的速率不变。
2.合运动的性质和轨迹的判断(1)根据加速度判定合运动的性质:若合加速度不变,则为匀变速运动;若合加速度(大小或方向)变化,则为非匀变速运动。
(2)根据合加速度的方向与合初速度的方向判定合运动的轨迹:若合加速度的方向与合初速度的方向在同一直线上则为直线运动,否则为曲线运动。
基础课3 圆周运动知识排查匀速圆周运动1.定义:做圆周运动的物体,若在相等的时间内通过的圆弧长相等,就是匀速圆周运动。
2.特点:加速度大小不变,方向始终指向圆心,是变加速运动。
3.条件:合外力大小不变、方向始终与速度方向垂直且指向圆心。
角速度、线速度、向心加速度匀速圆周运动的向心力1.作用效果:向心力产生向心加速度,只改变速度的方向,不改变速度的大小。
2.大小:F =ma =m v 2r =mω2r =m 4π2T 2r =mωv =4π2mf 2r 。
3.方向:始终沿半径指向圆心方向,时刻在改变,即向心力是一个变力。
4.来源:向心力可以由一个力提供,也可以由几个力的合力提供,还可以由一个力的分力提供。
离心现象1.定义:做圆周运动的物体,在所受合外力突然消失或不足以提供圆周运动所需向心力的情况下,就做逐渐远离圆心的运动。
备课札记小题速练1.思考判断(1)做匀速圆周运动的物体所受合外力是保持不变的。
()(2)做匀速圆周运动的物体向心加速度与半径成反比。
()(3)随圆盘一起匀速转动的物体受重力、支持力和向心力的作用。
()(4)做圆周运动的物体所受合外力突然消失,物体将沿圆周切线方向做匀速直线运动。
()答案(1)×(2)×(3)×(4)√2.[鲁科版必修2·P 70·T 6拓展](多选)如图1所示,有一皮带传动装置,A 、B 、C 三点到各自转轴的距离分别为R A 、R B 、R C ,已知R B =R C =R A 2,若在传动过程中,皮带不打滑。
则( )图1A.A 点与C 点的角速度大小相等B.A 点与C 点的线速度大小相等C.B 点与C 点的角速度大小之比为2∶1D.B 点与C 点的向心加速度大小之比为1∶4解析 处理传动装置类问题时,对于同一根皮带连接的传动轮边缘的点,线速度大小相等;同轴转动的点,角速度相等。
对于本题,显然v A =v C ,ωA =ωB ,选项B 正确;根据v A =v C 及关系式v =ωR ,可得ωA R A =ωC R C ,又R C =R A 2,所以ωA=ωC 2,选项A 错误;根据ωA =ωB ,ωA =ωC 2,可得ωB =ωC 2,即B 点与C 点的角速度大小之比为1∶2,选项C 错误;根据ωB =ωC 2及关系式a =ω2R ,可得a B =a C 4,即B 点与C 点的向心加速度大小之比为1∶4,选项D 正确。
[课时作业] 单独成册 方便使用[基础题组]一、单项选择题1.对于环绕地球做圆周运动的卫星来说,它们绕地球做圆周运动的周期会随着轨道半径的变化而变化,某同学根据测得的不同卫星做圆周运动的半径r 与周期T 的关系作出如图所示图象,则可求得地球质量为(已知引力常量为G )( ) A.4π2aGb B.4π2b Ga C.Ga 4π2bD.Gb 4π2a解析:由GMm r 2=m 4π2T 2·r 可得r 3T 2=GM 4π2,结合题图图线可得,a b =GM 4π2,故M =4π2aGb ,A正确、 答案:A2、长期以来“卡戎星(Charon)”被认为是冥王星唯一的卫星,它的公转轨道半径r 1=19 600 km ,公转周期T 1=6.39天.2006年3月,天文学家新发现两颗冥王星的小卫星,其中一颗的公转轨道半径r 2=48 000 km ,则它的公转周期T 2最接近于( ) A 、15天 B 、25天 C 、35天D 、45天解析:由开普勒第三定律T 2∝r 3有r 31T 21=r 32T 22,代入数据解得T 2最接近于25天,本题只有选项B 正确、 答案:B3、假设地球是一半径为R 、质量分布均匀的球体、一矿井深度为d .已知质量分布均匀的球壳对壳内物体的引力为零、矿井底部和地面处的重力加速度大小之比为( ) A 、1-dR B 、1+dR C 、(R -d R )2D 、(R R -d)2解析:设位于矿井底部的小物体的质量为m ,则地球对它的引力为半径为(R -d )的部分“地球”对它的引力,地球的其他部分对它的引力为零,有mg ′=GM ′m(R -d )2;对位于地球表面的物体m 有mg =GMmR 2,根据质量分布均匀的物体的质量和体积成正比可得M ′M =(R -d )3R 3,由以上三式可得g ′g =1-dR ,选项A 正确、 答案:A4、有一星球的密度跟地球密度相同,但它表面处的重力加速度是地球表面处重力加速度的4倍,则该星球的质量将是地球质量的(忽略其自转影响)( ) A.14 B 、4倍 C 、16倍D 、64倍解析:天体表面的重力加速度g =GM R 2,又知ρ=M V =3M 4πR 3,所以M =9g 316π2ρ2G 3,故M 星M 地=(g 星g 地)3=64. 答案:D5、(2018·山东高密模拟)据报道,科学家们在距离地球20万光年外发现了首颗系外“宜居”行星、假设该行星质量约为地球质量的6.4倍,半径约为地球半径的2倍、那么,一个在地球表面能举起64 kg 物体的人在这个行星表面能举起的物体的质量约为多少(地球表面重力加速度g =10 m/s 2)( ) A 、40 kg B 、50 kg C 、60 kgD 、30 kg解析:根据万有引力等于重力G Mm R 2=mg 得g =GMR 2,因为行星质量约为地球质量的6.4倍,其半径是地球半径的2倍,则行星表面重力加速度是地球表面重力加速度的1.6倍,而人的举力认为是不变的,则人在行星表面所举起的重物质量为m =m 01.6=641.6 kg =40 kg ,故A 正确、 答案:A 二、多项选择题6、(2016·高考海南卷)通过观测冥王星的卫星,可以推算出冥王星的质量、假设卫星绕冥王星做匀速圆周运动,除了引力常量外,至少还需要两个物理量才能计算出冥王星的质量、这两个物理量可以是( ) A 、卫星的速度和角速度B 、卫星的质量和轨道半径C 、卫星的质量和角速度D 、卫星的运行周期和轨道半径解析:根据线速度和角速度可以求出半径r =v ω,根据万有引力提供向心力,则有G Mmr 2=m v 2r ,整理可得M =v 3Gω,故选项A 正确;由于卫星的质量m 可约掉,故选项B 、C 错误;若知道卫星的运行周期和轨道半径,则G Mm r 2=m (2πT )2r ,整理得M =4π2r 3GT 2,故选项D 正确、 答案:AD7、宇航员在地球表面以一定初速度竖直上抛一小球,经过时间t 小球落回原地、若他在某星球表面以相同的初速度竖直上抛同一小球,需经过时间5t 小球落回原处、已知该星球的半径与地球半径之比为R 星∶R 地=1∶4,地球表面重力加速度为g ,设该星球表面附近的重力加速度为g ′,空气阻力不计、则( ) A 、g ′∶g =1∶5 B 、g ′∶g =5∶2 C 、M 星∶M 地=1∶20D 、M 星∶M 地=1∶80解析:由速度对称性知竖直上抛的小球在空中运动时间t =2v 0g ,因此得g ′g =t 5t =15,A 正确,B 错误;由G Mm R 2=mg 得M =gR 2G ,因而M 星M 地=g ′R 2星gR 2地=15×(14)2=180,C 错误,D 正确、 答案:AD8.如图所示,两星球相距为l ,质量之比为mA ∶mB =1∶9,两星球半径远小于l .沿A 、B 连线从星球A 向B 以某一初速度发射一探测器,只考虑星球A 、B 对探测器的作用、下列说法正确的是( ) A 、探测器的速度一直减小B 、探测器在距星球A 为l4处加速度为零C 、若探测器能到达星球B ,其速度可能恰好为零D 、若探测器能到达星球B ,其速度一定大于发射时的初速度解析:设探测器距星球A 的距离为x 时,两星球对探测器的引力相等,即G m A mx 2=Gm B m (l -x )2,解得x =14l ,根据牛顿第二定律可得,此时探测器的加速度为零,选项B正确;探测器从A向B运动,所受的万有引力合力先向左再向右,则探测器先减速后加速,故选项A错误;探测器到达星球B的过程中,因为A的质量小于B的质量,从A到B万有引力的合力做正功,则动能增加,所以探测器到达星球B的速度一定大于发射时的初速度,故选项C错误,选项D正确、答案:BD[能力题组]一、选择题9.如图所示,“嫦娥三号”的环月轨道可近似看成是圆轨道,观察“嫦娥三号”在环月轨道上的运动,发现每经过时间t通过的弧长为l,该弧长对应的圆心角为θ弧度、已知万有引力常量为G,则月球的质量是()A.l2Gθ3t B.θ3Gl2tC.l3Gθt2 D.t2Gθl3解析:因为每经过时间t通过的弧长为l,故卫星的线速度为v=lt,角速度为ω=θt,卫星的运行半径为R=vω=lθ,则根据万有引力定律及牛顿第二定律得:GMmR2=m v2R,则月球的质量M=R v2G=l3Gθt2,选项C正确、答案:C10、若在某行星和地球上相对于各自的水平地面附近相同的高度处,以相同的速率平抛一物体,它们在水平方向运动的距离之比为2∶7.已知该行星质量约为地球的7倍,地球的半径为R.由此可知,该行星的半径约为()A.12R B.72R C、2R D.72R解析:平抛运动在水平方向上做匀速直线运动,即x=v0t,在竖直方向上做自由落体运动,即h=12gt2,所以x=v2hg,两种情况下,抛出的速度相同,高度相同,所以g行g地=74,根据公式GMmR2=mg可得g=GMR2,故g行g地=M行R2行M地R2地=74,解得R行=2R,故C正确、 答案:C11、为了测量某行星的质量和半径,宇航员记录了登陆舱在该行星表面做圆周运动的周期T ;登陆舱在行星表面着陆后,宇航员又用弹簧测力计称量一质量为m 的砝码,读数为F .已知引力常量为G .则下列选项错误的是( ) A 、该行星的质量为F 3T 416π4Gm 3 B 、该行星的半径为4π2FT 2m C 、该行星的密度为3πGT 2D 、该行星的第一宇宙速度为FT2πm解析:据F =mg 0=m 4π2T 2R ,得R =FT 24π2m ,B 选项符合题意;由G Mm R 2=m 4π2T 2R ,得M =4π2R 3GT 2,又R =FT 24π2m ,则M =F 3T 416π4Gm 3,A 不符合题意;密度ρ=M V =3πGT 2,C 不符合题意;第一宇宙速度v =g 0R =FT2πm ,D 不符合题意、故选B. 答案:B12、(多选)某物理兴趣小组通过查资料得到以下量的具体数据(用字母表示):地球半径R ,地球质量m ,日地中心距离r ,地球的近地卫星绕地球运行的周期T 1,地球的同步卫星绕地球运行的周期T 0,地球绕太阳运行的周期T .由此可知( ) A 、太阳质量为r 3T 21mR 3T 2 B 、太阳质量为R 3T 2mr 3T 20C 、地球同步卫星离地面的高度为 (3T 2T 21-1)RD 、地球同步卫星离地面的高度为 (3T 21T 20-1)R解析:设太阳质量为M ,由万有引力提供向心力有G Mm r 2=m 4π2T 2r ,在地球表面有G mm ′R 2=m ′4π2T 21R ,得M =r 3T 21m R 3T 2,A 正确,B 错误;由开普勒第三定律有R 3T 21=(R +h )3T 20,可得地球同步卫星离地面的高度为h=( 3T2T21-1)R,C正确,D错误、答案:AC二、非选择题13、一宇航员到达半径为R、密度均匀的某星球表面,做如下实验:用不可伸长的轻绳拴一质量为m的小球,上端固定在O点,如图甲所示,在最低点给小球某一初速度,使其绕O点在竖直面内做圆周运动,测得绳的拉力大小F随时间t的变化规律如图乙所示、F1、F2已知,引力常量为G,忽略各种阻力、求:(1)星球表面的重力加速度;(2)星球的密度、解析:(1)最高点绳对小球的拉力小于最低点绳对小球的拉力,从乙图可得最低点绳的拉力为F1,最高点绳的拉力为F2.设小球在最低点的速度为v1,最高点的速度为v2,绳长为L.根据牛顿第二定律和向心力公式得最低点:F1-mg=m v21 L最高点:F2+mg=m v22 L从最低点到最高点,只有重力对小球做功,根据机械能守恒定律得2mgL=12m v21-12m v22由以上三式得g=F1-F2 6m.(2)在星球表面处有mg=GMmR2,则M=gR2G.密度ρ=MV,而V=4πR33,所以密度ρ=3g4GπR.将(1)中g代入得ρ=F1-F2 8πGRm.答案:(1)F1-F26m(2)F1-F28πGRm14、(2018·山西省实验中学月考)土星拥有许多卫星,至目前为止所发现的卫星数已经有30多个、土卫一是土星8个大的、形状规则的卫星中最小且最靠近土星的一个,直径为392千米,与土星平均距离约1.8×105千米,公转周期为23小时,正好是土卫三公转周期的一半,这两个卫星的轨道近似于圆形、已知引力常量为G=6.67×10-11 N·m2/kg2,求:(1)土卫三的轨道半径(已知32=1.26,结果保留两位有效数字);(2)土星的质量(结果保留一位有效数字)、解析:(1)根据开普勒第三定律R3T2=k,可知土卫一的轨道半径r1、周期T1与土卫三的轨道半径r2、周期T2满足R31T21=R32T22,所以R2=3T22T21R1=(32)2×1.8×105 km=2.9×105km.(2)根据土卫一绕土星运动有G MmR21=mR14π2T21,可得土星质量M=4π2R31GT21=4×3.142×(1.8×108)36.67×10-11×(23×3 600)2kg=5×1026 kg. 答案:(1)2.9×105 km(2)5×1026 kg。
课时作业15 曲线运动运动的合成与分解时间:45分钟1.关于物体的受力和运动,下列说法中正确的是(D)A.物体在不垂直于速度方向的合力作用下,速度大小可能一直不变B.物体做曲线运动时,某点的加速度方向就是通过这一点曲线的切线方向C.物体受到变化的合力作用时,它的速度大小一定改变D.做曲线运动的物体,一定受到与速度不在同一直线上的外力作用解析:本题考查曲线运动的条件.如果合力与速度方向不垂直,必然有沿速度方向的分力,速度大小一定改变,故A错误;物体做曲线运动时,通过某一点的曲线的切线方向是该点的速度方向,而不是加速度方向,比如平抛运动,故B错误;物体受到变化的合力作用时,它的速度大小可以不改变,比如匀速圆周运动,故C错误;物体做曲线运动的条件是一定受到与速度不在同一直线上的外力作用,故D正确.2.质点仅在恒力F的作用下,在xOy平面内由坐标原点运动到A点的轨迹如图所示,经过A点时速度的方向与x轴平行,则恒力F的方向可能沿(D)A.x轴正方向B.x轴负方向C.y轴正方向D.y轴负方向解析:曲线运动的轨迹夹在v0与力中间,所以B、C错误;曲线运动的切线速度方向无限趋近力的方向,但永远不能达到力的方向,故A错误.选D。
3.如图所示,当汽车静止时,车内乘客看到窗外雨滴沿竖直方向OE匀速运动.从t=0时汽车由静止开始做甲、乙两种匀加速启动,甲种状态启动后t1时刻,乘客看到雨滴从B处离开车窗,乙种状态启动后t2时刻,乘客看到雨滴从F处离开车窗,F 为AB的中点.则t1t2为(A)A.2 1 B.1错误!C.1错误!D.1(错误!-1)解析:雨滴在竖直方向的分运动为匀速直线运动,其速度大小与水平方向的运动无关,故t1t2=错误!错误!=21,选项A正确.4.某质点在几个恒力作用下做匀速直线运动,现突然将与质点速度方向相反的一个力旋转90°,则关于质点运动状态的叙述正确的是(C)A.质点的速度一定越来越小B.质点的速度可能先变大后变小C.质点一定做匀变速曲线运动D.因惯性质点继续保持匀速直线运动解析:将与质点速度方向相反的作用力F旋转90°时,该力与其余力的合力夹角为90°,这时质点所受的合力大小为错误!F,方向与速度的夹角为45°,质点受力的方向与运动的方向之间的夹角是锐角,所以质点做速度增大的曲线运动,故A、B错误;根据牛顿第二定律得加速度a=错误!,所以质点做匀变速曲线运动,故C正确,D错误.5.“嫦娥一号”探月卫星在由地球飞向月球时,沿曲线从M点向N点飞行的过程中,速度逐渐减小.在此过程中探月卫星所受合力的方向可能的是(C)解析:卫星运动的速度方向沿其轨迹的切线方向,由于速度逐渐减小,则合力方向与速度方向间的夹角大于90°,由轨迹的弯曲方向知,合力必指向其弯曲方向.故选C.6.质量为2 kg的质点在直角坐标系xOy平面内做曲线运动,在x轴方向的速度—时间图象和y轴方向的位移—时间图象分别如图甲、乙所示,下列说法正确的是(B)A.质点的初速度大小为3 m/sB.质点所受的合外力大小为3 NC.质点初速度的方向与合外力方向垂直D.2 s末质点速度大小为6 m/s解析:本题借助v.t图象和s-t图象分析运动的合成问题.当t=0时通过图甲可以看出质点在x轴方向的分运动为匀加速直线运动,初速度为v x=3 m/s,通过图乙可以看出质点在y轴方向的分运动为匀速直线运动,速度大小为v y=4 m/s,因此质点的初速度为v0=错误!=5 m/s,故A错误;质点在y轴方向上做匀速运动,所受合力为零,在x轴方向加速度为a x=错误!=错误!m/s2=1.5 m/s2,由牛顿第二定律可知质点在x轴方向所受合力为F x =ma x=3 N,所以质点所受合外力为3 N,故B正确;质点初速度方向与x轴方向成锐角,与合外力方向不垂直,故C错误;在2 s末质点在x轴方向分速度为6 m/s,y轴方向分速度为4 m/s,合速度为2错误!m/s,故D错误.7。
[课时作业]单独成册方便使用[基础题组]一、单项选择题1.对质点运动来讲,以下说法中正确的是()A.加速度恒定的运动可能是曲线运动B.运动轨迹对任何观察者来说都是不变的C.当质点的加速度逐渐减小时,其速度也一定逐渐减小D.作用在质点上的所有力消失后,质点运动的速度将不断减小解析:加速度恒定的运动可能是曲线运动,如平抛运动,A正确;运动轨迹对不同的观察者来说可能不同,如匀速水平飞行的飞机上落下的物体,相对地面做平抛运动,相对飞机上的观察者做自由落体运动,B错误;当质点的速度方向与加速度方向同向时,即使加速度减小,速度仍增加,C错误;作用于质点上的所有力消失后,质点的速度将不变,D错误.答案:A2.如图所示的曲线是某个质点在恒力作用下的一段运动轨迹.质点从M点出发经P点到达N点,已知弧长MP大于弧长PN,质点由M点运动到P点与从P点运动到N 点的时间相等.下列说法中正确的是()A.质点从M到N过程中速度大小保持不变B.质点在这两段时间内的速度变化量大小相等,方向相同C.质点在这两段时间内的速度变化量大小不相等,但方向相同D.质点在MN间的运动是变加速运动解析:由题中可知弧长MP大于弧长PN,t MP=t PN,A错误.质点始终受恒力作用,由牛顿第二定律得a=Fm,加速度恒定,则质点在这两段时间内的速度变化量大小相等,方向相同,且质点做匀变速曲线运动,B正确,C、D错误.答案:B3.(2018·成都外国语高三质检)如图所示,一块橡皮用细线悬挂于O点,现用一支铅笔贴着细线的左侧水平向右以速度v匀速移动,运动过程中保持铅笔的高度不变,悬挂橡皮的那段细线保持竖直,则在铅笔未碰到橡皮前,下列说法正确的是(不计一切摩擦)()A.橡皮的运动轨迹是一条直线B.橡皮在竖直方向上做匀加速运动C.绳中拉力T>mg且逐渐减小D.橡皮在图示位置时的速度大小为v cos2θ+1解析:将铅笔与细线接触的点的速度分解为沿细线方向和垂直于细线方向,则沿细线方向上的分速度为v sin θ,因为沿细线方向上的分速度等于橡皮在竖直方向上的分速度,所以橡皮在竖直方向上速度为v sin θ,因为θ逐渐增大,所以橡皮在竖直方向上做变加速运动,不是匀加速运动,橡皮在水平方向上做匀速运动,竖直方向做加速运动,所以橡皮做曲线运动,故A、B错误;因橡皮在竖直方向做加速度减小的加速运动,故线中拉力T>mg,且逐渐减小,故C正确;根据平行四边形定则可知橡皮在图示位置时的速度大小为v2+(v sin θ)2=v1+sin2θ,故D错误.答案:C4.有一条两岸平直、河水均匀流动、流速恒为v的大河.小明驾着小船渡河,去程时船头指向始终与河岸垂直,回程时行驶路线与河岸垂直.去程与回程所用时间的比值为k,船在静水中的速度大小相同,则小船在静水中的速度大小为()A.k vk2-1B.v1-k2C.k v1-k2D.vk2-1解析:设大河宽度为d,小船在静水中的速度为v0,则去程渡河所用时间t1=dv0,回程渡河所用时间t2=dv20-v2.由题知t1t2=k,联立以上各式得v0=v1-k2.选项B正确,选项A、C、D错误.答案:B5.(2018·四川成都诊断)质量为m的物体P置于倾角为θ1的固定光滑斜面上,轻细绳跨过光滑定滑轮分别连接着P与小车,P与滑轮间的细绳平行于斜面,小车以速率v水平向右做匀速直线运动.当小车与滑轮间的细绳和水平方向的夹角为θ2时(如图),下列判断正确的是()A.P的速率为v B.P的速率为v cos θ2C.绳的拉力等于mg sin θ1D.绳的拉力小于mg sin θ1解析:将小车速度沿绳子和垂直绳子方向分解为v1、v2,P的速率v1=v cos θ2,A错误,B正确;小车向右做匀速直线运动,θ减小,P的速率增大,绳的拉力大于mg sin θ1,C、D错误.答案:B二、多项选择题6.质量为m的物体,在F1、F2、F3三个共点力的作用下做匀速直线运动,保持F1、F2不变,仅将F3的方向改变90°(大小不变)后,物体可能做()A .加速度大小为F 3m 的匀变速直线运动B .加速度大小为2F 3m 的匀变速直线运动C .加速度大小为2F 3m 的匀变速曲线运动D .匀速直线运动解析:物体在F 1、F 2、F 3三个共点力作用下做匀速直线运动,必有F 3与F 1、F 2的合力等大反向,当F 3大小不变,方向改变90°时,F 1、F 2的合力大小和方向不变,与改变方向后的F 3夹角为90°,故F 合=2F 3,加速度a =F 合m =2F 3m .若原速度方向与F 合方向共线,则物体做匀变速直线运动;若原速度方向与F 合方向不共线,则物体做匀变速曲线运动,综上所述选B 、C.答案:BC7.(2018·山东潍坊统考)如图所示,河水由西向东流,河宽为800 m,河中各点的水流速度大小v 水与各点到较近河岸的距离x 的关系为v 水=3400x (m/s)(x 的单位为m),让小船船头垂直河岸由南向北渡河,小船划水速度大小恒为v 船=4 m/s,则下列说法正确的是( )A .小船渡河的轨迹为直线B .小船在河水中的最大速度是5 m/sC .小船在距南岸200 m 处的速度小于在距北岸200 m 处的速度D .小船渡河的时间是200 s解析:小船在南北方向上为匀速直线运动,在东西方向上先加速,到达河中间后再减速,小船的合运动是曲线运动,A 错误.当小船运动到河中间时,东西方向上的分速度最大,此时小船的合速度最大,最大值v m =5 m/s,B 正确.小船在距南岸200 m 处的速度等于在距北岸200 m 处的速度,C 错误.小船的渡河时间t =200 s,D 正确.答案:BD8.(2018·天津实验中学模拟)如图所示,将质量为2m的重物悬挂在轻绳的一端,轻绳的另一端系一质量为m 的小环,小环套在竖直固定的光滑直杆上,光滑定滑轮与直杆的距离为d .现将小环从与定滑轮等高的A 处由静止释放,当小环沿直杆下滑距离也为d 时(图中B 处),下列说法正确的是(重力加速度为g )( )A .小环刚释放时轻绳中的张力一定大于2mgB .小环到达B 处时,重物上升的高度为(2-1)dC .小环在B 处的速度与重物上升的速度大小之比等于22D .小环在B 处的速度与重物上升的速度大小之比等于 2解析:小环释放后,v 增加,而v 1=v cos θ,v 1增大,由此可知小环刚释放时重物具有向上的加速度,故绳中张力一定大于2mg ,A 项正确;小环到达B 处时,绳与直杆间的夹角为45°,重物上升的高度h =(2-1)d ,B 项正确;如图所示,将小环速度v 进行正交分解,其分速度v 1与重物上升的速度大小相等,v 1=v cos 45°=22v ,所以,小环在B 处的速度与重物上升的速度大小之比等于2,C 项错误,D 项正确.答案:ABD[能力题组] 一、选择题9.质量为m =4 kg 的质点静止在光滑水平面上的直角坐标系的原点O 处,先用沿+x 轴方向的力F 1=8 N 作用了2 s,然后撤去F 1;再用沿+y 轴方向的力F 2=24 N 作用了1 s,则质点在这3 s 内的轨迹为( )解析:由F 1=ma x 得a x =2 m/s 2,质点沿x 轴匀加速直线运动了2 s,x 1=12a x t 21=4 m,v x 1=a x t 1=4 m/s;之后质点受F 2作用而做类平抛运动,a y =F 2m =6m/s 2,质点再经过1 s,沿x 轴运动的位移x 2=v x 1t 2=4 m,沿+y 方向运动位移y 2=12a y t 22=3 m,对应图线可知D 项正确.答案:D10.如图所示,甲、乙两同学从河中O 点出发,分别沿直线游到A 点和B 点后,立即沿原路线返回到O点,OA 、OB 分别与水流方向平行和垂直,且OA =OB .若水流速度不变,两人在静水中游速相等,则他们从O 点出发再返回O 点所用时间t 甲、t 乙的大小关系为( )A .t 甲<t 乙B .t 甲=t 乙C .t 甲>t 乙D .无法确定解析:设水速为v 0,人在静水中的速度为v ,OA =OB =x .对甲,O →A 阶段人对地的速度为(v +v 0),所用时间t 1=x v +v 0;A →O 阶段人对地的速度为(v -v 0),所用时间t 2=x v -v 0.所以甲所用时间t 甲=t 1+t 2=x v +v 0+x v -v 0=2v x v 2-v 20.对乙,O →B 阶段和B →O 阶段的实际速度v ′为v 和v 0的合成,如图所示.由几何关系得,实际速度v ′=v 2-v 20,故乙所用时间t 乙=2x v ′=2x v 2-v 20.t 甲t 乙=v v 2-v 20>1,即t 甲>t 乙,故C 正确.选C.答案:C11.(多选)(2018·江苏南通模拟)如图所示,A 、B 两球分别套在两光滑的水平直杆上,两球通过一轻绳绕过一定滑轮相连.现在使A 球以速度v 向左匀速移动,某时刻连接两球的轻绳与水平方向的夹角为α、β,下列说法正确的是( )A .此时B 球的速度为v cos αcos βB .此时B 球的速度为v sin αsin βC .在β增大到90°的过程中,B 球做匀速运动D .在β增大到90°的过程中,B 球做加速运动解析:由于绳连接体沿绳方向的速度大小相等,因此v cos α=v B cos β,故v B =v cos αcos β,A 正确,B 错误.在β增大到90°的过程中,α在减小,因此B 球的速度在增大,B 球做加速运动,C 错误,D 正确.答案:AD二、非选择题12.小船匀速横渡一条河流,当船头垂直对岸方向时,在出发后10 min 到达对岸下游120 m 处.若船头保持与河岸成θ角向上游航行,在出发后12.5 min 到达正对岸(已知sin 37°=0.6,sin 53°=0.8),求:(1)水流速度大小v1;(2)河的宽度d及船头与河岸的夹角θ.解析:设船在静水中速度大小为v2.(1)当船头垂直对岸方向航行时,如图甲所示,水流速度大小v1=BCt1=12010×60m/s=0.2 m/s.(2)若船头保持与河岸成θ角向上游航行,如图乙所示,由题意得t2=dv2sin θ,v2cos θ=v1,v2=dt1解得d=200 m,θ=53°.答案:(1)0.2 m/s(2)200 m53°13.如图所示,在竖直平面的xOy坐标系中,Oy竖直向上,Ox水平.设平面内存在沿x轴正方向的恒定风力.一小球从坐标原点沿Oy方向竖直向上抛出,初速度为v0=4 m/s,不计空气阻力,到达最高点的位置如图中M点所示,(坐标格为正方形,g取10 m/s2)求:(1)小球在M点的速度大小v1.(2)在图中定性画出小球的运动轨迹并标出小球落回x轴时的位置N.(3)小球到达N点的速度v2的大小.解析:(1)设正方形的边长为s0.竖直方向做竖直上抛运动,v0=gt1,2s0=v02t1,解得s0=0.4 m.水平方向做匀加速直线运动,3s0=v12t1,解得v1=6 m/s.(2)由竖直方向的对称性可知,小球再经过t1到x轴,水平方向做初速度为零的匀加速直线运动,由x1∶x2=1∶22可知,小球回到x轴时落到x=12处,位置N的坐标为(12,0).(3)到N点时竖直分速度大小为v0=4 m/s,水平分速度v x=a水平t N=2v1=12 m/s,故v2=v20+v2x=410 m/s.答案:(1)6 m/s(2)图见解析(3)410 m/s。