2014年普通高等学校招生统一考试数学试卷(新课标Ⅰ理)已校对,无错误
- 格式:doc
- 大小:794.64 KB
- 文档页数:12
2014年普通高等学校招生全国统一考试(新课标全国卷Ⅰ)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分,考试时间120分钟。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{}{}22|,032|2<≤-=≥--=x x B x x x A ,则=B AA.]1,2[--B.]1,1[-C.)2,1[-D.)2,1[(2)=-+23)1()1(i i A.1+i B.-1+i C.1-i D.-1-i (3)设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是A.)()(x g x f 是偶函数B.|)(|)(x g x f 是奇函数C.)(|)(|x g x f 是奇函数D.|)()(|x g x f 是奇函数 (4)已知F 为双曲线C :)0(322>=-m m my x 的一个焦点,则点F 到C 的一条渐近线的距离为A.3B.m 3C.3D.m 3 (5)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为A.81 B.85 C.83 D.87(6)如图,图O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示成x 的函数)(x f ,则],0[)(π在x f y =的图像大致为(7)执行右面的程序框图,若输入的k b a ,,分别为1,2,3,则输出的M=A.320 B.516 C.27 D.815 (8)设(0,),(0,),22ππαβ∈∈且1sin tan ,cos βαβ+=则 A.32παβ-=B.22παβ-= C.32παβ+=D.22παβ+=(9)不等式组1,24,x y x y +≥⎧⎨-≤⎩的解集为D ,有下面四个命题:1:(x,y)D,x 2y 2p ∀∈+≥-, 2:(x,y)D,x 2y 2p ∃∈+≥, 3:(x,y)D,x 2y 3p ∀∈+≤ 4:(x,y)D,x 2y 1p ∃∈+≤-,其中的真命题是A.23,p pB.14,p pC.12,p pD.13,p p (10)已知抛物线C :x y 82=的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 得一个焦点,若FQ PF 4=,则=QFA.27B.25 C.3 D.2 (11)已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是A.()2,+∞B.(),2-∞-C.()1,+∞D.(),1-∞- (12)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为A.B.第Ⅱ卷二、填空题:本大题共4小题,每小题5分(13)()()8x y x y -+的展开式中27x y 的系数为________.(用数字填写答案)(14)甲、乙、丙三位同学被问到是否去过C B A ,,三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市. 丙说:我们三个去过同一城市. 由此可判断乙去过的城市为__________ (15)已知C B A ,,为圆O 上的三点,若()+=21,则AB 与的夹角为_______.(16)已知c b a ,,分别为ABC ∆三个内角C B A ,,的对边,2=a ,且()C b c B A b sin )()sin (sin 2-=-+,则A B C ∆面积的最大值为____________.三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知数列{}n a 的前n 项和为n S ,11a =,0n a ≠,11n n n a a S λ+=-,其中λ为常数,(Ⅰ)证明:2n n a a λ+-=;(Ⅱ)是否存在λ,使得{}n a 为等差数列?并说明理由.从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下图频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均值x 和样本方差2s (同一组的数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标Z 服从正态分布()2,N μσ,其中μ近似为样本平均数x ,2σ近似为样本方差2s .(i )利用该正态分布,求()187.8212.2P Z <<;(ii )某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值位于区间()187.8,212.2的产品件数.利用(i )的结果,求EX .12.2≈若()2~,Z N μσ则()0.6826P Z μσμσ-<<+=,()220.9544P Z μσμσ-<<+=。
2014年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题(共12小题,每小题5分)1.(5分)=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i2.(5分)已知集合A={x|x2﹣2x﹣3≥0},B={x|﹣2≤x<2},则A∩B=()A.[1,2)B.[﹣1,1]C.[﹣1,2)D.[﹣2,﹣1] 3.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是()A.f(x)?g(x)是偶函数B.|f(x)|?g(x)是奇函数C.f(x)?|g(x)|是奇函数D.|f(x)?g(x)|是奇函数4.(5分)已知F为双曲线C:x2﹣my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为()A.B.3C.m D.3m5.(5分)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为()A.B.C.D.6.(5分)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P作直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在[0,π]的图象大致为()A.B.C.D.7.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.8.(5分)设α∈(0,),β∈(0,),且tanα=,则()A.3α﹣β=B.3α+β=C.2α﹣β=D.2α+β=9.(5分)不等式组的解集记为D,有下列四个命题:p1:?(x,y)∈D,x+2y≥﹣2 p2:?(x,y)∈D,x+2y≥2p3:?(x,y)∈D,x+2y≤3p4:?(x,y)∈D,x+2y≤﹣1其中真命题是()A.p2,p3B.p1,p4C.p1,p2D.p1,p310.(5分)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=()A.B.3C.D.211.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)12.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.6B.6C.4D.4二、填空题(共4小题,每小题5分)13.(5分)(x﹣y)(x+y)8的展开式中x2y7的系数为.(用数字填写答案)14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为.15.(5分)已知A,B,C为圆O上的三点,若=(+),则与的夹角为.16.(5分)已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2且(2+b)(sinA﹣sinB)=(c﹣b)sinC,则△ABC面积的最大值为.三、解答题17.(12分)已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λSn﹣1,其中λ为常数.(Ⅰ)证明:a n+2﹣a n=λ(Ⅱ)是否存在λ,使得{a n}为等差数列?并说明理由.18.(12分)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.(i)利用该正态分布,求P(187.8<Z<212.2);(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX.附:≈12.2.若Z~N(μ,σ2)则P(μ﹣σ<Z<μ+σ)=0.6826,P(μ﹣2σ<Z<μ+2σ)=0.9544.19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(Ⅰ)证明:AC=AB1;(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.20.(12分)已知点A(0,﹣2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆的右焦点,直线AF的斜率为,O为坐标原点.(Ⅰ)求E的方程;(Ⅱ)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l 的方程.21.(12分)设函数f(x)=ae x lnx+,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x﹣1)+2.(Ⅰ)求a、b;(Ⅱ)证明:f(x)>1.选修4-1:几何证明选讲22.(10分)如图,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE.(Ⅰ)证明:∠D=∠E;(Ⅱ)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.选修4-4:坐标系与参数方程23.已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.选修4-5:不等式选讲24.若a>0,b>0,且+=.(Ⅰ)求a3+b3的最小值;(Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由.2014年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分)1.(5分)=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i【考点】A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】由条件利用两个复数代数形式的乘除法,虚数单位i的幂运算性质,计算求得结果.【解答】解:==﹣(1+i)=﹣1﹣i,故选:D.【点评】本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题.2.(5分)已知集合A={x|x2﹣2x﹣3≥0},B={x|﹣2≤x<2},则A∩B=()A.[1,2)B.[﹣1,1]C.[﹣1,2)D.[﹣2,﹣1]【考点】1E:交集及其运算.【专题】5J:集合.【分析】求出A中不等式的解集确定出A,找出A与B的交集即可.【解答】解:由A中不等式变形得:(x﹣3)(x+1)≥0,解得:x≥3或x≤﹣1,即A=(﹣∞,﹣1]∪[3,+∞),∵B=[﹣2,2),∴A∩B=[﹣2,﹣1].故选:D.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.3.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是()A.f(x)?g(x)是偶函数B.|f(x)|?g(x)是奇函数C.f(x)?|g(x)|是奇函数D.|f(x)?g(x)|是奇函数【考点】3K:函数奇偶性的性质与判断.【专题】51:函数的性质及应用.【分析】根据函数奇偶性的性质即可得到结论.【解答】解:∵f(x)是奇函数,g(x)是偶函数,∴f(﹣x)=﹣f(x),g(﹣x)=g(x),f(﹣x)?g(﹣x)=﹣f(x)?g(x),故函数是奇函数,故A错误,|f(﹣x)|?g(﹣x)=|f(x)|?g(x)为偶函数,故B错误,f(﹣x)?|g(﹣x)|=﹣f(x)?|g(x)|是奇函数,故C正确.|f(﹣x)?g(﹣x)|=|f(x)?g(x)|为偶函数,故D错误,故选:C.【点评】本题主要考查函数奇偶性的判断,根据函数奇偶性的定义是解决本题的关键.4.(5分)已知F为双曲线C:x2﹣my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为()A.B.3C.m D.3m【考点】KC:双曲线的性质.【专题】11:计算题;5D:圆锥曲线的定义、性质与方程.【分析】双曲线方程化为标准方程,求出焦点坐标,一条渐近线方程,利用点到直线的距离公式,可得结论.【解答】解:双曲线C:x2﹣my2=3m(m>0)可化为,∴一个焦点为(,0),一条渐近线方程为=0,∴点F到C的一条渐近线的距离为=.故选:A.【点评】本题考查双曲线的方程与性质,考查点到直线的距离公式,属于基础题.5.(5分)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为()A.B.C.D.【考点】C6:等可能事件和等可能事件的概率.【专题】11:计算题;5I:概率与统计.【分析】求得4位同学各自在周六、周日两天中任选一天参加公益活动、周六、周日都有同学参加公益活动的情况,利用古典概型概率公式求解即可.【解答】解:4位同学各自在周六、周日两天中任选一天参加公益活动,共有24=16种情况,周六、周日都有同学参加公益活动,共有24﹣2=16﹣2=14种情况,∴所求概率为=.故选:D.【点评】本题考查古典概型,是一个古典概型与排列组合结合的问题,解题时先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数.6.(5分)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P作直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在[0,π]的图象大致为()A.B.C.D.【考点】3P:抽象函数及其应用.【专题】57:三角函数的图像与性质.【分析】在直角三角形OMP中,求出OM,注意长度、距离为正,再根据直角三角形的锐角三角函数的定义即可得到f(x)的表达式,然后化简,分析周期和最值,结合图象正确选择.【解答】解:在直角三角形OMP中,OP=1,∠POM=x,则OM=|cosx|,∴点M到直线OP的距离表示为x的函数f(x)=OM|sinx|=|cosx|?|sinx|=|sin2x|,其周期为T=,最大值为,最小值为0,故选:C.【点评】本题主要考查三角函数的图象与性质,正确表示函数的表达式是解题的关键,同时考查二倍角公式的运用.7.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.【考点】EF:程序框图.【专题】5I:概率与统计.【分析】根据框图的流程模拟运行程序,直到不满足条件,计算输出M的值.【解答】解:由程序框图知:第一次循环M=1+=,a=2,b=,n=2;第二次循环M=2+=,a=,b=,n=3;第三次循环M=+=,a=,b=,n=4.不满足条件n≤3,跳出循环体,输出M=.故选:D.【点评】本题考查了当型循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.8.(5分)设α∈(0,),β∈(0,),且tanα=,则()A.3α﹣β=B.3α+β=C.2α﹣β=D.2α+β=【考点】GF:三角函数的恒等变换及化简求值.【专题】56:三角函数的求值.【分析】化切为弦,整理后得到sin(α﹣β)=cosα,由该等式左右两边角的关系可排除选项A,B,然后验证C满足等式sin(α﹣β)=cosα,则答案可求.【解答】解:由tanα=,得:,+cosα,即sinαcosβ=cosαsinβsin(α﹣β)=cosα=sin(),∵α∈(0,),β∈(0,),∴当时,sin(α﹣β)=sin()=cosα成立.故选:C.【点评】本题考查三角函数的化简求值,训练了利用排除法及验证法求解选择题,是基础题.9.(5分)不等式组的解集记为D,有下列四个命题:p1:?(x,y)∈D,x+2y≥﹣2 p2:?(x,y)∈D,x+2y≥2p3:?(x,y)∈D,x+2y≤3p4:?(x,y)∈D,x+2y≤﹣1其中真命题是()A.p2,p3B.p1,p4C.p1,p2D.p1,p3【考点】2K:命题的真假判断与应用;7A:二元一次不等式的几何意义.【专题】59:不等式的解法及应用;5L:简易逻辑.【分析】作出不等式组的表示的区域D,对四个选项逐一分析即可.【解答】解:作出图形如下:由图知,区域D为直线x+y=1与x﹣2y=4相交的上部角型区域,p1:区域D在x+2y≥﹣2 区域的上方,故:?(x,y)∈D,x+2y≥﹣2成立;p2:在直线x+2y=2的右上方和区域D重叠的区域内,?(x,y)∈D,x+2y≥2,故p2:?(x,y)∈D,x+2y≥2正确;p3:由图知,区域D有部分在直线x+2y=3的上方,因此p3:?(x,y)∈D,x+2y ≤3错误;p4:x+2y≤﹣1的区域(左下方的虚线区域)恒在区域D下方,故p4:?(x,y)∈D,x+2y≤﹣1错误;综上所述,p1、p2正确;故选:C.【点评】本题考查命题的真假判断与应用,着重考查作图能力,熟练作图,正确分析是关键,属于难题.10.(5分)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=()A.B.3C.D.2【考点】K8:抛物线的性质.【专题】11:计算题;5D:圆锥曲线的定义、性质与方程.【分析】求得直线PF的方程,与y2=8x联立可得x=1,利用|QF|=d可求.【解答】解:设Q到l的距离为d,则|QF|=d,∵=4,∴|PQ|=3d,∴不妨设直线PF的斜率为﹣=﹣2,∵F(2,0),∴直线PF的方程为y=﹣2(x﹣2),与y2=8x联立可得x=1,∴|QF|=d=1+2=3,故选:B.【点评】本题考查抛物线的简单性质,考查直线与抛物线的位置关系,属于基础题.11.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)【考点】53:函数的零点与方程根的关系.【专题】11:计算题;51:函数的性质及应用;53:导数的综合应用.【分析】由题意可得f′(x)=3ax2﹣6x=3x(ax﹣2),f(0)=1;分类讨论确定函数的零点的个数及位置即可.【解答】解:∵f(x)=ax3﹣3x2+1,∴f′(x)=3ax2﹣6x=3x(ax﹣2),f(0)=1;①当a=0时,f(x)=﹣3x2+1有两个零点,不成立;②当a>0时,f(x)=ax3﹣3x2+1在(﹣∞,0)上有零点,故不成立;③当a<0时,f(x)=ax3﹣3x2+1在(0,+∞)上有且只有一个零点;故f(x)=ax3﹣3x2+1在(﹣∞,0)上没有零点;而当x=时,f(x)=ax3﹣3x2+1在(﹣∞,0)上取得最小值;故f()=﹣3?+1>0;故a<﹣2;综上所述,实数a的取值范围是(﹣∞,﹣2);故选:D.【点评】本题考查了导数的综合应用及分类讨论的思想应用,同时考查了函数的零点的判定的应用,属于基础题.12.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.6B.6C.4D.4【考点】L!:由三视图求面积、体积.【专题】5F:空间位置关系与距离.【分析】画出图形,结合三视图的数据求出棱长,推出结果即可.【解答】解:几何体的直观图如图:AB=4,BD=4,C到BD的中点的距离为:4,∴.AC==6,AD=4,显然AC最长.长为6.故选:B.【点评】本题考查三视图求解几何体的棱长,考查计算能力.二、填空题(共4小题,每小题5分)13.(5分)(x﹣y)(x+y)8的展开式中x2y7的系数为﹣20 .(用数字填写答案)【考点】DA:二项式定理.【专题】11:计算题;5P:二项式定理.【分析】由题意依次求出(x+y)8中xy7,x2y6,项的系数,求和即可.【解答】解:(x+y)8的展开式中,含xy7的系数是:8.含x2y6的系数是28,∴(x﹣y)(x+y)8的展开式中x2y7的系数为:8﹣28=﹣20.故答案为:﹣20【点评】本题考查二项式定理系数的性质,二项式定理的应用,考查计算能力.14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为 A .【考点】F4:进行简单的合情推理.【专题】5M:推理和证明.【分析】可先由乙推出,可能去过A城市或B城市,再由甲推出只能是A,B中的一个,再由丙即可推出结论.【解答】解:由乙说:我没去过C城市,则乙可能去过A城市或B城市,但甲说:我去过的城市比乙多,但没去过B城市,则乙只能是去过A,B中的任一个,再由丙说:我们三人去过同一城市,则由此可判断乙去过的城市为A.故答案为:A.【点评】本题主要考查简单的合情推理,要抓住关键,逐步推断,是一道基础题.15.(5分)已知A,B,C为圆O上的三点,若=(+),则与的夹角为90°.【考点】9S:数量积表示两个向量的夹角.【专题】5A:平面向量及应用.【分析】根据向量之间的关系,利用圆直径的性质,即可得到结论.【解答】解:在圆中若=(+),即2=+,即+的和向量是过A,O的直径,则以AB,AC为邻边的四边形是矩形,则⊥,即与的夹角为90°,故答案为:90°【点评】本题主要考查平面向量的夹角的计算,利用圆直径的性质是解决本题的关键,比较基础.16.(5分)已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2且(2+b)(sinA﹣sinB)=(c﹣b)sinC,则△ABC面积的最大值为.【考点】HP:正弦定理;HR:余弦定理.【专题】11:计算题;35:转化思想;48:分析法;58:解三角形.【分析】由正弦定理化简已知可得2a﹣b2=c2﹣bc,结合余弦定理可求A的值,由基本不等式可求bc≤4,再利用三角形面积公式即可计算得解.【解答】解:因为:(2+b)(sinA﹣sinB)=(c﹣b)sinC?(2+b)(a﹣b)=(c﹣b)c?2a﹣2b+ab﹣b2=c2﹣bc,又因为:a=2,所以:,△ABC面积,而b2+c2﹣a2=bc?b2+c2﹣bc=a2?b2+c2﹣bc=4?bc≤4所以:,即△ABC面积的最大值为.故答案为:.【点评】本题主要考查了正弦定理,余弦定理,基本不等式,三角形面积公式在解三角形中的应用,考查了计算能力和转化思想,属于中档题.三、解答题17.(12分)已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λSn﹣1,其中λ为常数.(Ⅰ)证明:a n+2﹣a n=λ(Ⅱ)是否存在λ,使得{a n}为等差数列?并说明理由.【考点】83:等差数列的性质;8H:数列递推式.【专题】54:等差数列与等比数列.【分析】(Ⅰ)利用a n a n+1=λSn﹣1,a n+1a n+2=λSn+1﹣1,相减即可得出;(Ⅱ)假设存在λ,使得{a n}为等差数列,设公差为d.可得λ=a n+2﹣a n=(a n+2﹣a n+1)+(a n+1﹣a n)=2d,.得到λSn=,根据{a n}为等差数列的充要条件是,解得λ即可.【解答】(Ⅰ)证明:∵a n a n+1=λSn﹣1,a n+1a n+2=λSn+1﹣1,∴a n+1(a n+2﹣a n)=λan+1∵a n+1≠0,∴a n+2﹣a n=λ.(Ⅱ)解:假设存在λ,使得{a n}为等差数列,设公差为d.则λ=a n+2﹣a n=(a n+2﹣a n+1)+(a n+1﹣a n)=2d,∴.∴,,∴λSn=1+=,根据{a n}为等差数列的充要条件是,解得λ=4.此时可得,a n=2n﹣1.因此存在λ=4,使得{a n}为等差数列.【点评】本题考查了递推式的意义、等差数列的通项公式及其前n项和公式、等差数列的充要条件等基础知识与基本技能方法,考查了推理能力和计算能力、分类讨论的思想方法,属于难题.18.(12分)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.(i)利用该正态分布,求P(187.8<Z<212.2);(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX.附:≈12.2.若Z~N(μ,σ2)则P(μ﹣σ<Z<μ+σ)=0.6826,P(μ﹣2σ<Z<μ+2σ)=0.9544.【考点】CH:离散型随机变量的期望与方差;CP:正态分布曲线的特点及曲线所表示的意义.【专题】11:计算题;5I:概率与统计.【分析】(Ⅰ)运用离散型随机变量的期望和方差公式,即可求出;(Ⅱ)(i)由(Ⅰ)知Z~N(200,150),从而求出P(187.8<Z<212.2),注意运用所给数据;(ii)由(i)知X~B(100,0.6826),运用EX=np即可求得.【解答】解:(Ⅰ)抽取产品的质量指标值的样本平均数和样本方差s2分别为:=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200,s2=(﹣30)2×0.02+(﹣20)2×0.09+(﹣10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.(Ⅱ)(i)由(Ⅰ)知Z~N(200,150),从而P(187.8<Z<212.2)=P(200﹣12.2<Z<200+12.2)=0.6826;(ii)由(i)知一件产品的质量指标值位于区间(187.8,212.2)的概率为0.6826,依题意知X~B(100,0.6826),所以EX=100×0.6826=68.26.【点评】本题主要考查离散型随机变量的期望和方差,以及正态分布的特点及概率求解,考查运算能力.19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(Ⅰ)证明:AC=AB1;(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.【考点】M7:空间向量的夹角与距离求解公式;MJ:二面角的平面角及求法.【专题】5H:空间向量及应用.【分析】(1)连结BC1,交B1C于点O,连结AO,可证B1C⊥平面ABO,可得B1C ⊥AO,B10=CO,进而可得AC=AB1;(2)以O为坐标原点,的方向为x轴的正方向,||为单位长度,的方向为y轴的正方向,的方向为z轴的正方向建立空间直角坐标系,分别可得两平面的法向量,可得所求余弦值.【解答】解:(1)连结BC1,交B1C于点O,连结AO,∵侧面BB1C1C为菱形,∴BC1⊥B1C,且O为BC1和B1C的中点,又∵AB⊥B1C,∴B1C⊥平面ABO,∵AO?平面ABO,∴B1C⊥AO,又B10=CO,∴AC=AB1,(2)∵AC⊥AB1,且O为B1C的中点,∴AO=CO,又∵AB=BC,∴△BOA≌△BOC,∴OA⊥OB,∴OA,OB,OB1两两垂直,以O为坐标原点,的方向为x轴的正方向,||为单位长度,的方向为y轴的正方向,的方向为z轴的正方向建立空间直角坐标系,∵∠CBB1=60°,∴△CBB1为正三角形,又AB=BC,∴A(0,0,),B(1,0,0,),B1(0,,0),C(0,,0)∴=(0,,),==(1,0,),==(﹣1,,0),设向量=(x,y,z)是平面AA1B1的法向量,则,可取=(1,,),同理可得平面A1B1C1的一个法向量=(1,﹣,),∴cos<,>==,∴二面角A﹣A1B1﹣C1的余弦值为【点评】本题考查空间向量法解决立体几何问题,建立坐标系是解决问题的关键,属中档题.20.(12分)已知点A(0,﹣2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆的右焦点,直线AF的斜率为,O为坐标原点.(Ⅰ)求E的方程;(Ⅱ)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l 的方程.【考点】K4:椭圆的性质;KH:直线与圆锥曲线的综合.【专题】5D:圆锥曲线的定义、性质与方程.【分析】(Ⅰ)通过离心率得到a、c关系,通过A求出a,即可求E的方程;(Ⅱ)设直线l:y=kx﹣2,设P(x1,y1),Q(x2,y2)将y=kx﹣2代入,利用△>0,求出k的范围,利用弦长公式求出|PQ|,然后求出△OPQ的面积表达式,利用换元法以及基本不等式求出最值,然后求解直线方程.【解答】解:(Ⅰ)设F(c,0),由条件知,得又,所以,b2=a2﹣c2=1,故E的方程.….(5分)(Ⅱ)依题意当l⊥x轴不合题意,故设直线l:y=kx﹣2,设P(x1,y1),Q(x2,y2)将y=kx﹣2代入,得(1+4k2)x2﹣16kx+12=0,当△=16(4k2﹣3)>0,即时,从而又点O到直线PQ的距离,所以△OPQ的面积=,设,则t>0,,当且仅当t=2,k=±等号成立,且满足△>0,所以当△OPQ的面积最大时,l的方程为:y=x﹣2或y=﹣x﹣2.…(12分)【点评】本题考查直线与椭圆的位置关系的应用,椭圆的求法,基本不等式的应用,考查转化思想以及计算能力.21.(12分)设函数f(x)=ae x lnx+,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x﹣1)+2.(Ⅰ)求a、b;(Ⅱ)证明:f(x)>1.【考点】6E:利用导数研究函数的最值;6H:利用导数研究曲线上某点切线方程.【专题】15:综合题;53:导数的综合应用.【分析】(Ⅰ)求出定义域,导数f′(x),根据题意有f(1)=2,f′(1)=e,解出即可;(Ⅱ)由(Ⅰ)知,f(x)>1等价于xlnx>xe﹣x﹣,设函数g(x)=xlnx,函数h(x)=,只需证明g(x)min>h(x)max,利用导数可分别求得g (x)min,h(x)max;【解答】解:(Ⅰ)函数f(x)的定义域为(0,+∞),f′(x)=+,由题意可得f(1)=2,f′(1)=e,故a=1,b=2;(Ⅱ)由(Ⅰ)知,f(x)=e x lnx+,∵f(x)>1,∴e x lnx+>1,∴lnx>﹣,∴f(x)>1等价于xlnx>xe﹣x﹣,设函数g(x)=xlnx,则g′(x)=1+lnx,∴当x∈(0,)时,g′(x)<0;当x∈(,+∞)时,g′(x)>0.故g(x)在(0,)上单调递减,在(,+∞)上单调递增,从而g(x)在(0,+∞)上的最小值为g()=﹣.设函数h(x)=xe﹣x﹣,则h′(x)=e﹣x(1﹣x).∴当x∈(0,1)时,h′(x)>0;当x∈(1,+∞)时,h′(x)<0,故h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,从而h(x)在(0,+∞)上的最大值为h(1)=﹣.综上,当x>0时,g(x)>h(x),即f(x)>1.【点评】本题考查导数的几何意义、利用导数求函数的最值、证明不等式等,考查转化思想,考查学生分析解决问题的能力.选修4-1:几何证明选讲22.(10分)如图,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE.(Ⅰ)证明:∠D=∠E;(Ⅱ)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.【考点】NB:弦切角;NC:与圆有关的比例线段.【专题】15:综合题;5M:推理和证明.【分析】(Ⅰ)利用四边形ABCD是⊙O的内接四边形,可得∠D=∠CBE,由CB=CE,可得∠E=∠CBE,即可证明:∠D=∠E;(Ⅱ)设BC的中点为N,连接MN,证明AD∥BC,可得∠A=∠CBE,进而可得∠A=∠E,即可证明△ADE为等边三角形.【解答】证明:(Ⅰ)∵四边形ABCD是⊙O的内接四边形,∴∠D=∠CBE,∵CB=CE,∴∠E=∠CBE,∴∠D=∠E;(Ⅱ)设BC的中点为N,连接MN,则由MB=MC知MN⊥BC,∴O在直线MN上,∵AD不是⊙O的直径,AD的中点为M,∴OM⊥AD,∴AD∥BC,∴∠A=∠CBE,∵∠CBE=∠E,∴∠A=∠E,由(Ⅰ)知,∠D=∠E,∴△ADE为等边三角形.【点评】本题考查圆的内接四边形性质,考查学生分析解决问题的能力,属于中档题.选修4-4:坐标系与参数方程23.已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.【考点】KH:直线与圆锥曲线的综合;QH:参数方程化成普通方程.【专题】5S:坐标系和参数方程.【分析】(Ⅰ)联想三角函数的平方关系可取x=2cosθ、y=3sinθ得曲线C的参数方程,直接消掉参数t得直线l的普通方程;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).由点到直线的距离公式得到P到直线l的距离,除以sin30°进一步得到|PA|,化积后由三角函数的范围求得|PA|的最大值与最小值.【解答】解:(Ⅰ)对于曲线C:+=1,可令x=2cosθ、y=3sinθ,故曲线C的参数方程为,(θ为参数).对于直线l:,由①得:t=x﹣2,代入②并整理得:2x+y﹣6=0;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).P到直线l的距离为.则,其中α为锐角.当sin(θ+α)=﹣1时,|PA|取得最大值,最大值为.当sin(θ+α)=1时,|PA|取得最小值,最小值为.【点评】本题考查普通方程与参数方程的互化,训练了点到直线的距离公式,体现了数学转化思想方法,是中档题.选修4-5:不等式选讲24.若a>0,b>0,且+=.(Ⅰ)求a3+b3的最小值;(Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由.【考点】RI:平均值不等式.【专题】59:不等式的解法及应用.【分析】(Ⅰ)由条件利用基本不等式求得ab≥2,再利用基本不等式求得a3+b3的最小值.(Ⅱ)根据ab≥2及基本不等式求的2a+3b>8,从而可得不存在a,b,使得2a+3b=6.【解答】解:(Ⅰ)∵a>0,b>0,且+=,∴=+≥2,∴ab≥2,当且仅当a=b=时取等号.∵a3+b3 ≥2≥2=4,当且仅当a=b=时取等号,∴a3+b3的最小值为4.(Ⅱ)∵2a+3b≥2=2,当且仅当2a=3b时,取等号.而由(1)可知,2≥2=4>6,故不存在a,b,使得2a+3b=6成立.【点评】本题主要考查基本不等式在最值中的应用,要注意检验等号成立条件是否具备,属于基础题.。
2014年普通高等学校招生全国统一考试全国课标1理科数学注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2. 回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮搽干净后,再选涂其他答案标号,写在本试卷上无效.3. 回答第Ⅱ卷时,将答案写在答题卡上,答在本试题上无效.4. 考试结束,将本试题和答题卡一并交回.第Ⅰ卷一.选择题:共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1. 已知集合A ={x |2230x x --≥},B={x |-2≤x <2=,则A B ⋂= A .[-2,-1] B .[-1,2) C .[-1,1] D .[1,2)2. 32(1)(1)i i +-= A .1i + B .1i - C .1i -+ D .1i --3. 设函数()f x ,()g x 的定义域都为R,且()f x 时奇函数,()g x 是偶函数,则下列结论正确的是 A .()f x ()g x 是偶函数 B .|()f x |()g x 是奇函数C .()f x |()g x |是奇函数D .|()f x ()g x |是奇函数4. 已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为 A .3 B .3 C .3m D .3m5. 4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率A .18B .38C .58D .786. 如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为7. 执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =A .203B .165C .72D .1588. 设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则 A .32παβ-= B .22παβ-=C .32παβ+=D .22παβ+= 9. 不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x y D x y ∀∈+≥-,2p :(,),22x y D x y ∃∈+≥,3P :(,),23x y D x y ∀∈+≤,4p :(,),21x y D x y ∃∈+≤-.其中真命题是A .2p ,3PB .1p ,4pC .1p ,2pD .1p ,3P10. 已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个焦点,若4FP FQ =,则||QF =A .72B .52C .3D .2 11. 已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为A .(2,+∞)B .(-∞,-2)C .(1,+∞)D .(-∞,-1)12. 如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为A .62B .42C .6D .4第Ⅱ卷。
2014年普通高等学校招生全国统一考试全国课标1理科数学注意事项:1. 本试卷分第I 卷(选择题)和第n 卷(非选择题)两部分。
答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2. 回答第I 卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮搽干净后,再选涂其他答案标号,写在本试卷上无效 3. 回答第n 卷时,将答案写在答题卡上,答在本试题上无效 4. 考试结束,将本试题和答题卡一并交回•第I 卷•选择题:共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1. 2已知集合A={ x |x 2x 30} , B={ x | — 2< x V 2=,则 A B =2. 3. A .[-2,-1]C .[-1,1]D .[1,2)(1 i)3 (1 i)2A .1 iB .1 iC .D . 1 i设函数f(x) , g(x)的定义域都为 R , 且f (x)时奇函数,g(x)是偶函数,则下列结论正确的是A . f (x) g(x)是偶函数B .| f (x) |g(x)是奇函数C . f (x) |g(x) |是奇函数D .| f (x) g(x)是奇函数 4.已知F 是双曲线C : x 2 my 2 3m(m 0)的一个焦点,则点 F 到C 的一条渐近线的距离为A . 3B .3C . ■3mD . 3m5. 4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率AlB .8 C.86.如图,圆 O 的半径为1, A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线 OP ,过点P 作直线OA 的垂线,垂足为 M , 将点M 至U 直线OP 的距离表示为x 的函数f (x),贝U y = f (x)在[0,]上的图像大致7 5A .B .C .3D .22 21,若f (x)存在唯一的零点x °,且x ° >0,则a 的取值范围为A . (2, +s)B . (-g, -2)C . (1, +s)12.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为a,b,k 分别为1,2,3,则输出的 AB .C .352(o‘2),(0,—),且 tanA ■ 3B .22C .3-D .215』,则cos9.不等式组y 2y 的解集记为 4D •有下面四个命题:Pi:(x,y) D,x 2y 2,P 2 :(x,y) D,x 2y 2 B :(x, y) D, x 2y 3, P 4 :(x,y)D, x 2y其中真命题是A . p 2, l~3B . P 1, P 4C . P 1, P 2D . P 1,P 310.已知抛物线C : UUUT4FQ , Q 是直线PF 与C 的一个焦点,uuu 若FP 则 | QF |= 3211.已知函数f(x)=ax 3x若输入的7.执行下图的程序框图,8.设 F ,准线为,P 是I 上一点,y 28x 的焦点为A.6 2 B .4 2 C.6 D .4本卷包括必考题和选考题两个部分。
绝密☆启用前 6月7日15:0-17:002014年普通高等学校招生全国统一考试数学试卷(理科)(新课标Ⅰ卷) 注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮搽干净后,再选涂其他答案标号,写在本试卷上无效.3. 回答第Ⅱ卷时,将答案写在答题卡上,答在本试题上无效.4. 考试结束,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1.已知集合A={x |2230x x --≥},B={x |-2≤x <2},则A B ⋂=A.[-2,-1]B.[-1,2)C.[-1,1]D.[1,2) 2.32(1)(1)i i +-= A.1i + B.1i - C.1i -+ D.1i --3.设函数()f x ,()g x 的定义域都为R ,且()f x 时奇函数,()g x 是偶函数,则下列结论正确的是A.()f x ()g x 是偶函数B.|()f x |()g x 是奇函数C.()f x |()g x |是奇函数D.|()f x ()g x |是奇函数4.已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为D.3m5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率 A.18 B.38 C.58 D.786.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为7.执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =A.203B.165C.72D.1588.设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则 A.32παβ-= B.32παβ+= C.22παβ-= D.22παβ+=9.不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题: 1p :(,),22x y D x y ∀∈+≥-,2p :(,),22x y D x y ∃∈+≥,3P :(,),23x y D x y ∀∈+≤,4p :(,),21x y D x y ∃∈+≤-.其中真命题是A.2p ,3PB.1p ,4pC.1p ,2pD.1p ,3P10.已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ = ,则||QF = A.72 B.3 C.52D.2 11.已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为A.(2,+∞)B.(1,+∞)C.(-∞,-2)D.(-∞,-1)12.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为A.第Ⅱ卷本卷包括必考题和选考题两个部分.第(13)题-第(21)题为必考题,每个考生都必须作答.第(22)题-第(24)题为选考题,考生根据要求作答.二.填空题:本大题共四小题,每小题5分.13.8()()x y x y -+的展开式中27x y 的系数为 .(用数字填写答案)14.甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时,甲说:我去过的城市比乙多,但没去过B 城市;乙说:我没去过C 城市;丙说:我们三人去过同一个城市.由此可判断乙去过的城市为 .15.已知A ,B ,C 是圆O 上的三点,若1()2AO AB AC =+ ,则AB 与AC 的夹角为 . 16.已知,,a b c 分别为ABC ∆的三个内角,,A B C 的对边,a =2,且(2)(sin sin )()sin b A B c b C +-=-,则ABC ∆面积的最大值为 .三、解答题:解答应写出文字说明,证明过程或演算步骤。
2014年普通高等学校招生全国统一考试一.选择题:共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1. 已知集合A={x |2230x x --≥},B={x |-2≤x <2=,则A B ⋂= A .[-2,-1] B .[-1,2) C .[-1,1] D .[1,2)2. 32(1)(1)i i +-= A .1i + B .1i - C .1i -+ D .1i -- 3. 设函数()f x ,()g x 的定义域都为R ,且()f x 时奇函数,()g x 是偶函数,则下列结论正确的是A .()f x ()g x 是偶函数 B .|()f x |()g x 是奇函数 C .()f x |()g x |是奇函数 D .|()f x ()g x |是奇函数4. 已知F 是双曲线C :223(0)x m y m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为 A .3 B .3 C .3m D .3m5. 4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率A .18 B .38 C .58 D .786. 如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线O A ,终边为射线O P ,过点P 作直线O A 的垂线,垂足为M ,将点M 到直线O P 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为7. 执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =A .203 B .165 C .72 D .1588. 设(0,)2πα∈,(0,)2πβ∈,且1s in ta n c o s βαβ+=,则 A .32παβ-=B .22παβ-=C .32παβ+=D .22παβ+=9. 不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x yD x y ∀∈+≥-,2p :(,),22x y D x y ∃∈+≥, 3P :(,),23x y D x y ∀∈+≤,4p :(,),21x yD x y ∃∈+≤-. 其中真命题是 A .2p ,3P B .1p ,4p C .1p ,2p D .1p ,3P10. 已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个焦点,若4F P F Q=,则||QF =A .72 B .52C .3D .211. 已知函数()f x =3231a x x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为 A .(2,+∞) B .(-∞,-2) C .(1,+∞) D .(-∞,-1)12. 如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为A .62 B .42 C .6 D .4二.填空题:本大题共四小题,每小题5分。
2014年全国⼀卷⾼考理科数学试卷及答案2014年普通⾼等学校招⽣全国统⼀考试全国课标I 理科数学第Ⅰ卷(选择题共60分)⼀.选择题:共12⼩题,每⼩题5分,共60分。
在每个⼩题给出的四个选项中,只有⼀项是符合题⽬要求的⼀项。
1.已知集合A={x |2230x x --≥},B={x |-2≤x <2=,则A B ?=A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2)2.32(1)(1)i i +-= A .1i + B .1i - C .1i -+ D .1i --3.设函数()f x ,()g x 的定义域都为R ,且()f x 时奇函数,()g x 是偶函数,则下列结论正确的是A .()f x ()g x 是偶函数B .|()f x |()g x 是奇函数C .()f x |()g x |是奇函数D .|()f x ()g x |是奇函数4.已知F 是双曲线C :223(0)x my m m -=>的⼀个焦点,则点F 到C 的⼀条渐近线的距离为AB .3CD .3m5.4位同学各⾃在周六、周⽇两天中任选⼀天参加公益活动,则周六、周⽇都有同学参加公益活动的概率A .18B .38C .58D .786.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,⾓x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂⾜为M ,将点M 到直线OP 的距离表⽰为x 的函数()f x ,则y =()f x 在[0,π]上的图像⼤致为7.执⾏下图的程序框图,若输⼊的,,a b k 分别为1,2,3,则输出的M =A .203 B .165 C .72 D .1588.设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则 A .32παβ-=B .22παβ-=C .32παβ+=D .22π9.不等式组124x y x y +≥??-≤?的解集记为D .有下⾯四个命题:1p :(,),22x y D x y ?∈+≥-, 2p :(,),22x y D x y ?∈+≥, 3P :(,),23x y D x y ?∈+≤, 4p :(,),21x y D x y ?∈+≤-.其中真命题是A .2p ,3pB .1p ,4pC .1p ,2pD .1p ,3p10.已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上⼀点,Q 是直线PF 与C 的⼀个焦点,若4FP FQ =,则||QF =A .72 B .52C .3D .2 11.已知函数()f x =3231ax x -+,若()f x 存在唯⼀的零点0x ,且0x >0,则a 的取值范围为A .(2,+∞)B .(-∞,-2)C .(1,+∞)D .(-∞,-1)12.如图,⽹格纸上⼩正⽅形的边长为1,粗实线画出的是某多⾯体的三视图,则该多⾯体的个条棱中,最长的棱的长度为A .B .D .4第Ⅱ卷(⾮选择题共90分)本卷包括必考题和选考题两个部分。
2014年普通高等学校招生全国统一考试全国课标I 理科数学第♊卷 (选择题 共 分) 一.选择题:共 小题,每小题 分,共 分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
已知集合✌x 2230x x --≥❝, x - ♎x < =,则A B ⋂A☯B☯)C ☯D ☯)32(1)(1)i i +-A 1i +B 1i -C 1i -+D 1i --设函数()f x ,()g x 的定义域都为 ,且()f x 时奇函数,()g x 是偶函数,则下列结论正确的是A ()f x ()g x 是偶函数B ()f x ()g x 是奇函数C ()f x ()g x 是奇函数D ()f x ()g x 是奇函数已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为A 3B C 3mD 3m位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率A18 B 38 C 58 D 78如图,圆 的半径为 ,✌是圆上的定点, 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y ()f x 在☯π 上的图像大致为执行下图的程序框图,若输入的,,a b k 分别为 ,则输出的MA203 B 165 C 72D 158设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则 A 32παβ-=B 22παβ-=C 32παβ+=D 22παβ+=不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D 有下面四个命题:1p :(,),22x y D x y ∀∈+≥-, 2p :(,),22x y D x y ∃∈+≥ 3P :(,),23x y D x y ∀∈+≤, 4p :(,),21x y D x y ∃∈+≤-其中真命题是A 2p ,3pB 1p ,4pC 1p ,2p D 1p ,3p已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个焦点,若4FP FQ =,则||QFA72 B 52C D 已知函数()f x 3231ax x -+,若()f x 存在唯一的零点0x ,且0x > ,则a 的取值范围为 A ( ,) B ( , ) C ( , ) D ( , )如图,网格纸上小正方形的边长为 ,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为A B C D 第♋卷(非选择题 共 分)本卷包括必考题和选考题两个部分。
(直打版)2014年高考全国卷1理科数学试题及答案-(word版)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)2014年高考全国卷1理科数学试题及答案-(word版)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(直打版)2014年高考全国卷1理科数学试题及答案-(word版)(word版可编辑修改)的全部内容。
2014年普通高等学校招生全国统一考试全国课标1理科数学注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、准考证号填写在答题卡上。
2. 回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮搽干净后,再选涂其他答案标号,写在本试卷上无效. 3。
回答第Ⅱ卷时,将答案写在答题卡上,答在本试题上无效. 4。
考试结束,将本试题和答题卡一并交回.第Ⅰ卷一.选择题:共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项.1。
已知集合A={x |2230x x --≥},B={x |-2≤x <2=,则A B ⋂=A 。
[—2,-1] B 。
[-1,2) C .[—1,1] D .[1,2) 2。
32(1)(1)i i +-=A .1i +B 。
1i -C .1i -+D .1i --3. 设函数()f x ,()g x 的定义域都为R ,且()f x 时奇函数,()g x 是偶函数,则下列结论正确的是A 。
()f x ()g x 是偶函数B .|()f x |()g x 是奇函数C .()f x |()g x |是奇函数D 。
2014年普通高等学校招生全国统一考试全国课标1理科数学注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮搽干净后,再选涂其他答案标号,写在本试卷上无效.3. 回答第Ⅱ卷时,将答案写在答题卡上,答在本试题上无效.4. 考试结束,将本试题和答题卡一并交回. 第Ⅰ卷一.选择题:共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1.已知集合A={x |2230x x --≥},B={x |-2≤x <2}=,则A B ⋂=A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2)2.32(1)(1)i i +-= A .1i + B .1i - C .1i -+ D .1i --3.设函数()f x ,()g x 的定义域都为R ,且()f x 时奇函数,()g x 是偶函数,则下列结论正确的是A .()f x ()g x 是偶函数B .|()f x |()g x 是奇函数C .()f x |()g x |是奇函数D .|()f x ()g x |是奇函数4.已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为A .B .3CD .3m5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为A .18B .38C .58D .786.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为7.执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =A .203 B .165 C .72 D .1588.设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则 A .32παβ-=B .22παβ-=C .32παβ+=D .22παβ+=9.不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x y D x y ∀∈+≥-,2p :(,),22x y D x y ∃∈+≥, 3P :(,),23x y D x y ∀∈+≤,4p :(,),21x y D x y ∃∈+≤-.其中真命题是A .2p ,3PB .1p ,4pC .1p ,2pD .1p ,3P10.已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ =,则||QF =A .72 B .52C .3D .2 11.已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为A .(2,+∞)B .(-∞,-2)C .(1,+∞)D .(-∞,-1)12.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各个条棱中,最长的棱的长度为A .B .C .6D .4第Ⅱ卷本卷包括必考题和选考题两个部分。
第(13)题-第(21)题为必考题,每个考生都必须作答。
第(22)题-第(24)题为选考题,考生根据要求作答。
二.填空题:本大题共四小题,每小题5分。
13.8()()x y x y -+的展开式中22x y 的系数为 .(用数字填写答案) 14.甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市; 丙说:我们三人去过同一个城市. 由此可判断乙去过的城市为 .15.已知A ,B ,C 是圆O 上的三点,若1()2AO AB AC =+ ,则AB 与AC的夹角为 .16.已知,,a b c 分别为ABC ∆的三个内角,,A B C 的对边,a =2,且(2)(sin sin )()sin b A B c b C +-=-,则ABC ∆面积的最大值为 .三.解答题:解答应写出文字说明,证明过程或演算步骤。
17.(本小题满分12分)已知数列{n a }的前n 项和为n S ,1a =1,0n a ≠,11n n n a a S λ+=-,其中λ为常数.(Ⅰ)证明:2n n a a λ+-=;(Ⅱ)是否存在λ,使得{n a }为等差数列?并说明理由.18. (本小题满分12分)从某企业的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数x 和样本方差2s (同一组数据用该区间的中点值作代表);(Ⅱ)由频率分布直方图可以认为,这种产品的质量指标值Z 服从正态分布2(,)N μδ,其中μ近似为样本平均数x ,2δ近似为样本方差2s . (i)利用该正态分布,求(187.8212.2)P Z <<;(ii )某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i )的结果,求EX .12.2.若Z ~2(,)N μδ,则()P Z μδμδ-<<+=0.6826,(22)P Z μδμδ-<<+=0.9544.19. (本小题满分12分)如图三棱锥111ABC A B C -中,侧面11BB C C 为菱形,1AB B C ⊥.(Ⅰ) 证明:1AC AB =;(Ⅱ)若1AC AB ⊥,o160CBB ∠=,AB=BC ,求二面角111A A B C --的余弦值.20. (本小题满分12分) 已知点A (0,-2),椭圆E :22221(0)x y a b a b +=>>的离心率为2,F 是椭圆的右焦点,直线AF O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的动直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.21. (本小题满分12分)设函数1()ln -=+x xbe f x ae x x,曲线()y f x =在点(1,(1)f )处的切线为(1)2y e x =-+. (Ⅰ)求,a b ; (Ⅱ)证明:()1f x >.请考生从第(22)、(23)、(24)三题中任选一题作答。
注意:只能做所选定的题目。
如果多做,则按所做的第一个题目计分,作答时请用2B 铅笔在答题卡上将所选题号后的 方框涂黑。
22.(本小题满分10分)选修4—1:几何证明选讲如图,四边形ABCD 是⊙O 的内接四边形,AB 的延长线与DC 的延长线交于点E ,且CB=CE .(Ⅰ)证明:∠D=∠E ;(Ⅱ)设AD 不是⊙O 的直径,AD 的中点为M ,且MB=MC ,证明:△ADE 为等边三角形.23. (本小题满分10分)选修4—4:坐标系与参数方程已知曲线C :22149x y +=,直线l :222x t y t=+⎧⎨=-⎩(t 为 参数). (Ⅰ)写出曲线C 的参数方程,直线l 的普通方程;(Ⅱ)过曲线C 上任一点P 作与l 夹角为o30的直线,交l 于点A ,求||PA 的最大值与最小值.24. (本小题满分10分)选修4—5:不等式选讲若0,0a b >>,且11a b+=. (Ⅰ) 求33a b +的最小值;(Ⅱ)是否存在,a b ,使得236a b +=?并说明理由.理科数学试题答案一、选择题(1)A (2)D (3)B (4)A (5)D (6)B (7)D (8)B (9)C (10)C (11)C (12)C 二、填空题(13)-20 (14)A (15)90° (16三、解答题 (17)解:(I )由题设,11211, 1.n n n n n n a a S a a S λλ++++=-=- 两式相减得 121().n n n a a a a λ+++-= 由于10n a +≠,所以 2.n n a a λ+-= ……6分(II )由题设,11a =,1211a a S λ=-,可得2 1.a λ=- 由(I )知,3 1.a λ=+ 令2132a a a =+,解得 4.λ= 故24n n a a +-=,由此可得{}21n a -是首项为1,公差为4的等差数列,2143n a n -=-; {}2n a 是首项为3,公差为4的等差数列,241n a n =-.所以21n a n =-,12n n a a --=. 因此存在4λ=,使得数列{}n a 为等差数列. ……12分 (18)解:(I )抽取产品的质量指标值的样本平均数x 和样本方差2s 分别为1700.021800.091900.222000.33x =⨯+⨯+⨯+⨯2100.242200.08230+⨯+⨯+⨯=2002222(30)0.02(20)0.09(10)0.22s =-⨯+-⨯+-⨯22200.33100.24200.08300.02150.+⨯+⨯+⨯+⨯= ……6分(II )(i )由(I )知,~(200,150)Z N ,从而(187.8212.2=(20012.220012.2)0.6826.P Z P Z <<-<<+=)……9分(ii )由(i )知,一件产品的质量指标值位于区间(187.8,212.2)的概率为0.682 6, 依题意知X-B(100,0.682 6),所以1000.682668.26.EX =⨯= ……12分 (19)解:(I )连接1BC ,交1BC O 于点,连接AO ,因为侧面11BB C C 为菱形,所以 1111,BC BC O BC BC ⊥且为及的中点. 又111,..AB B C B C ABO AO ABO B C AO ⊥⊥⊂⊥所以平面由于平面,故 又11,=.B O CO AC AB =故(II )因为11,.AC AB O BC AO CO ⊥=且为的中点,所以又因为1,,,,,AB BC BOA BOC OA OB OA OB OB =∆≅∆⊥所以故从而两两相互垂直, 以.O OB x OB O xyz =为坐标原点,的方向为轴正方向,为单位长,建立如图所示的空间直角坐标系因为1160,.CBB CBB AB BC ∠=︒∆=所以为等边三角形又,则111111(00),(100),(0,(0,333(1,0,(1,A B B C AB A B AB B C BC -=====- ,,,,11111(,,)=00,0,0.3n x y z AA B y z n AB n A B x z n =⎧⋅=⎪⎨⎨⋅=⎪⎪⎩-=⎪⎩=设是平面的法向量,则,即所以可取11111110,0,(1,m A B m A B C m B C m ⎧⋅=⎪⎨⋅=⎪⎩=设是平面的法向量,则同理可取 则1111c o s ,.71.7n m n m n m A A B C ⋅==--所以二面角的余弦值为 ……12分 (20)解:222222(c,0)a=2, b 1.1.4F c c c a c a x E y ==-=+=(I )设,由条件知,又所以故的方程为 ……5分112222:=2,(,),(,).214x y kx P x y Q x y x y kx y ιι⊥-=-+=(II )当轴时不合题意,故设将代入得22(14)16120.k x kx +-+=221,221238=16(43)0,441k k k x k PQ x O PQ d OPQ ±∆->>=+=-==∆当即时,从而又点到直线的距离所以的面积21=241OPQ S d PQ k ∆⋅=+ ……9分244,0,.4444,20.2222OPQ t t t S t t tt t k t OPQ y x y x ι∆=>==+++≥==∆>∆=-=--则因为当且仅当,即所以,当的面积最大时,的方程为或 ……12分(21)解:112()'()1.(1)2,'(1).a 1, 2.x x x x a b b f x f x ae nx e e e x x xf f e b ==∞=+-+====(I )函数的定义域为(0,+),由题意可得故 ……5分122()1,()11.()1,'()1.x x x f x e n e f x x nx xe x e g x x nx g x nx =-=+>>-==(II )由(I )知从而等价于设函数则11(0,)'()0;(,)'()0.x g x x g x e e∈<∈+∞>所以当时,当时,11(),()11.g x g x e ee e+∞∞故在(0,)单调递减,在()单调递增,从而在(0,)的最小值为g()=- ……8分2(),'()(1).(0,1)'()0;(1,)'()0.()1()(0,)(1).0()(),() 1.x x h x xe h x e x ex h x x h x h x h x h ex g x h x f x --=-=-∈>∈+∞<∞∞=->>>设函数则所以当时当时,故在(0,1)单调递增,在(1,+)单调递减,从而在的最大值为综上,当时,即……12分(22)解:(I )由题设知,,,=A B C D D CBE CBE E D E ∠∠∠∠∠=∠四点共圆,所以,由已知得=,故。