电气自动化专业英语第六七八章翻译
- 格式:docx
- 大小:46.73 KB
- 文档页数:39
第一章电路基本原理第一节电流与电压u(t)和i(t)这两个变量是电路中最基本的概念,描述了电路中各种不同的关系。
电荷与电流电荷与电流的概念是解释一切电气现象的基础原则。
而电荷也是电路的最基本的量。
电荷是构成物质的原子的电气属性,单位是库仑(C)。
通过基础物理学,我们了解到一切物质都是由被称为原子的基本粒子构造而成的,每个原子中都包含电子、质子和中子。
我们还知道电子上的电荷带负电,每个电子上的电量是1.60210×10-19库仑。
质子带与电子相等的正电荷。
原子上质子与电子的数目相等,使其呈中性。
我们来考虑电荷的运动。
电或电荷的独特之处就是它们可以移动,也就是说电荷可以从一个地方移动到另一个地方,从而转换成另外一种形式的能量。
当把一根导线接在电池(一种电源)的两端时,电荷受迫而运动;正电荷与负电荷分别向相反的两个方向移动。
这种电荷的移动产生了电流。
习惯上,我们把正电荷移动的方向或负电荷移动的反方向称为电流的方向,如图1-1所示。
这种说法是由美国科学家、发明家本杰明·富兰克林提出的。
即使我们知道金属导体中的电流是由于带负电荷的电子(运动)而产生的,(我们)也使用默认的习惯,将正电荷运动的方向定义为电流的方向。
因此,电流是单位时间内电荷的变化率,单位是安培(ampere,A)。
在数学上,电流i、电荷q和时间t的关系为dq(1-1)i=dt将等式的两边同时进行积分,则可得到电荷在时间t和t0之间的变化。
有idt(1-2)q== 0tt在等式(1-1)中我们给电流i的定义表现了电流不是一个定值量,电荷随时间的变化不同,电流也与之呈不同的函数关系。
电压、电能与电功率使电子在导体中定向运动需要做功或能量转换。
功由外电动势提供,最典型的就是图1-1中的电池。
外电动势也可理解为电压或电位差。
电路中,a、b两点之间的电压U ab等于从a到b移动单位电荷所需能量(所做的功),有dw(1-3)U ab=dqw代表电能,单位是焦耳(J);q代表电量。
Section 3 Operation and Control of Power SystemsThe purpose of a power system is to deliver the power the customers require in real time, on demand, within acceptable voltage and frequency limits, and in a reliable and economic manner. In normal operation of a power system, the total power generation is balanced by the total load and transmission losses. The system frequency and voltages on all the buses are within the required limits, while no overloads on lines or equipment are resulted. However, loads are constantly changed in small or large extents, so some control actions must be applied to maintain the power system in the normal and economic operation state.Optimal economic operationIt is an important problem how to operate a power system to supply all the (complex) loads at minimum cost. The basic task is to consider the cost of generating the power and to assign the allocation of generation ( P Gi) to each generator to minimize the total "production cost" while satisfying the loads and the losses on the transmission lines. The total cost of operation includes fuel, labor, and mainte nance costs, but for simplicity the only variable costs usually considered are fuel costs. The fuel-cost curves for each generating unit are specified, the cost of the fuel used per hour is defined as a function of the generator power output. When hydro-generation is not considered, it is reasonable to choose the PGi on an instantaneous basis (ie always to minimize the present production cost rate). With hydro-generation, however, in dry periods, the replenishment of the water supply may be a problem. The water used today may not be available in the future when its use might be more advantageous. Even without the element of the prediction involved, the problem of minimizing production cost over time becomes much more complicated.It should be mentioned that economy of operation is not the only possible consideration. If the "optimal" economic dispatch requires all the power to be imported from a neighboring utility through a single transmission link, considerations of system security might preclude that solution . When water used for hydro-generation is also used for irrigation, nonoptimal releases of water may be required. Under adverse atmospheric conditions it may be necessary to limit generation at certain fossil-fuel plants to reduce emissions.In general, costs, security and emissions are all areas of concern in power plant operation, and in practice the system is operated to effect a compromise between the frequently conflicting requirements.Power system controlPower system control is very important issue to maintain the normal operation of a system. System voltage levels, frequency, tie-line flows, line currents, and equipment loading must be kept within limits determined to be safe in order to provide satisfactory service to the power system customers.V oltage levels, line currents, and equipment loading may vary from location to location within a system, and control is on a relatively l ocal basis. For example, generator voltage is determined by the field current of each particular generating unit; however, if the generator voltages are not coordinated, excess var flows will result. Similarly, loading on individual generating units is determined by the throttle control on thermal units or the gate controls on hydro-units. Each machine will respond individually to the energy input to its prime mover. Transmission line loadings are affected by power input from generating units and their loadings, the connected loads, parallel paths for power to flow on other lines, and their relative impedances.Active power and frequency controlFor satisfactory operation of a power system, the frequency should remain nearly constant. Relatively close control of frequency ensures constancy of speed of induction and synchronous motors. Constancy of speed of motor drives is particularly important for satisfactory performance of all the auxiliary drives associated with the fuel, the feed-water and the combustion air supply systems. In a network, considerable drop in frequency could result in high magnetizing currents in induction motors and transfor mers . The extensive use of electric clocks and the use of frequency for other timing purpose require accurate maintenance of synchronous time which is proportional to integral of frequency. As a consequence, it is necessary to regulate not only the frequency itself but also its integral. The frequency of a system is dependant on active power balance. As frequency is a common factor throughout the system, a change in active power demand at one point is reflected throughout the system by a change in frequency. Because there are many generators supplying power into the system, some means must be provided to allocate change in demand to the generators. A speed governor on each generating unit provides the primary speed control function, while supplementary control originating at a central control center allocates generation.In an interconnected system with two or more independently controlled areas, in addition to control of frequency, the generation within each area has to be controlled so as to maintain scheduled power interchange. The control of generation and frequency is commonly referred to as load-frequency control (LFC).The control measures of power and frequency include:(1)Regulation of the generator's speed governor(2)Underfrequency load shedding(3)Automatic generation control (AGC)AGC is an effective means for power and frequency control in large-scale power systems. In an interconnected power system, the primary objectives of AGC are to regulate frequency to the specified nominal value and to maintain the interchange power between control areas at the scheduled values by adjusting the output of the selected generators. This function is commonly referred to as load-frequency control . A secondary objective is to distribute the required change in generation among units to minimize operating costs.In an isolated power system, maintenance of interchange power is not an issue. Therefore, the function of AGC is to restore frequency to the specified nominal value. This is accomplished by adding a reset or integral control which acts on the load reference setting of the governors of unit on AGC. The integral control action ensures zero frequency error in the steady state. The supplementary generation control action is much slower than the primary speed control action. As such it takes effect after the primary speed control (which acts on all units on regulation) has stabilized the system frequency. Thus, AGC adjusts load reference settings of selected units, and hence their output power, to override the effects of the composite frequency regulation characteristics of the power system In so doing, it restores the generation of all other units not on AGC to scheduled values.Reactive power and voltage controlFor efficient and reliable operation of power systems, the control of voltage and reactive power should satisfy the following objectives:(1)V oltages at the terminals of all equipment in the system are within acceptable limits. Both utilityequipment and customer equipment are designed to operate at a certain voltage rating. Prolonged operation of the equipment at voltages outside the allowable range could adversely affect their performance and possibly cause them damage.(2)System stability is enhanced to maximize utilization of the transmission system.(3)The reactive power flow is minimized so as to reduce RI2 and XI2 losses to a practical minimum. This ensures that the transmission system operates efficiently, ie mainly for active power transfer.The problem of maintaining voltages within the required limits is complicated by the fact that the power system supplies power to a vast number of loads and is fed from many generating units. As loads vary, the reactive power requirements of the transmission system vary. Since reactive power can not transmitted over long distances, voltage control has to be effected by using special devices disper sed throughout the system. This is in contrast to the control of frequency which depends on the overall system active power balance.The proper selection and coordination of equipment for controlling reactive power and voltage are among the major challenges of power system engineering.The control of voltage levels is accomplished by controlling the production, absorption, and flow of reactive power at all levels in the system. The generating units provide the basic means of voltage control; the automatic voltage regulators control field excitation to maintain a scheduled voltage level at the terminals of the generators. Additional means are usually required to control voltage throughout the system. The devices used for this purpose may be classified as follows:(1)Sources or sinks of reactive power, such as shunt capacitors, shunt reactors, synchro- nous condensers, and static var compensators (SVCs). ((2)Line reactance compensators, such as series capacitors.。
电气自动化专业英语(翻译1-3)默认分类2008-06-19 16:46 阅读471 评论0字号:大中小第一部分:电子技术第一章电子测量仪表电子技术人员使用许多不同类型的测量仪器。
一些工作需要精确测量面另一些工作只需粗略估计。
有些仪器被使用仅仅是确定线路是否完整。
最常用的测量测试仪表有:电压测试仪,电压表,欧姆表,连续性测试仪,兆欧表,瓦特表还有瓦特小时表。
所有测量电值的表基本上都是电流表。
他们测量或是比较通过他们的电流值。
这些仪表可以被校准并且设计了不同的量程,以便读出期望的数值。
1.1安全预防仪表的正确连接对于使用者的安全预防和仪表的正确维护是非常重要的。
仪表的结构和操作的基本知识能帮助使用者按安全工作程序来对他们正确连接和维护。
许多仪表被设计的只能用于直流或只能用于交流,而其它的则可交替使用。
注意:每种仪表只能用来测量符合设计要求的电流类型。
如果用在不正确的电流类型中可能对仪表有危险并且可能对使用者引起伤害。
许多仪表被设计成只能测量很低的数值,还有些能测量非常大的数值。
警告:仪表不允许超过它的额定最大值。
不允许被测的实际数值超过仪表最大允许值的要求再强调也不过分。
超过最大值对指针有伤害,有害于正确校准,并且在某种情况下能引起仪表爆炸造成对作用者的伤害。
许多仪表装备了过载保护。
然而,通常情况下电流大于仪表设计的限定仍然是危险的。
1.2基本仪表的结构和操作许多仪表是根据电磁相互作用的原理动作的。
这种相互作用是通过流过导体的电流引起的(导体放置在永久磁铁的磁极之间)。
这种类型的仪表专门适合于直流电。
不管什么时候电流流过导体,磁力总会围绕导体形成。
磁力是由在永久磁铁力的作用下起反应的电流引起。
这就引起指针的移动。
导体可以制成线圈,放置在永久磁铁磁极之间的枢钮(pivot中心)上。
线圈通过两个螺旋型弹簧连在仪器的端子上。
这些弹簧提供了与偏差成正比的恢复力。
当没有电流通过时,弹簧使指针回复到零。
表的量程被设计来指明被测量的电流值。
第一章u(t)和i(t)这两个变量是电路中最基本的两个变量,它们刻划了电路的各种关系。
电荷和电流电荷的概念是用来解释所有电气现象的基本概念。
也即,电路中最基本的量是电荷。
电荷是构成物质的原子微粒的电气属性,它是以库仑为单位来度量的。
我们从基础物理得知一切物质是由被称为原子的基本构造部分组成的,并且每个原子是由电子,质子和中子组成的。
我们还知道电子的电量是负的并且在数值上等于1.602100×10-12C ,而质子所带的正电量在数值上与电子相等。
质子和电子数量相同使得原子呈现电中性。
让我们来考虑一下电荷的流动。
电荷或电的特性是其运动的特性,也就是,它可以从一个地方被移送到另一个地方,在此它可以被转换成另外一种形式的能量。
当我们把一根导线连接到某一电池上时(一种电动势源),电荷被外力驱使移动;正电荷朝一个方向移动而负电荷朝相反的方向移动。
这种电荷的移动产生了电流。
我们可以很方便地把电流看作是正电荷的移动,也即,与负电荷的流动方向相反,如图1-1所示。
这一惯例是由美国科学家和发明家本杰明-富兰克林引入的。
虽然我们现在知道金属导体中的电流是由负电荷引起的,但我们将遵循通用的惯例,即把电流看作是正电荷的单纯的流动。
于是电流就是电荷的时率,它是以安培为单位来度量的。
从数学上来说,电流i 、电荷q 以及时间t 之间的关系是:从时间t0到时间t 所移送的电荷可由方程(1-1)两边积分求得。
我们算得:我们通过方程(1-1)定义电流的方式表明电流不必是一个恒值函数,电荷可以不同的方式随时间而变化,这些不同的方式可用各种数学函数表达出来。
电压,能量和功率在导体中朝一个特定的方向移动电荷需要一些功或者能量的传递,这个功是由外部的电动势来完成的。
图1-1所示的电池就是一个典型的例子。
这种电动势也被称为电压或电位差。
电路中a 、b 两点间的电压等于从a 到b 移动单位电荷所需的能量(或所需做的功)。
数学表达式为:式中w 是单位为焦耳的能量而q 是单位为库仑的电荷。
《自动化专业英语教程》-王宏文主编-全文翻译PART 1Electrical and Electronic Engineering BasicsUNIT 1A Electrical Networks ————————————3B Three-phase CircuitsUNIT 2A The Operational Amplifier ———————————5B TransistorsUNIT 3A Logical Variables and Flip-flop ——————————8B Binary Number SystemUNIT 4A Power Semiconductor Devices ——————————11B Power Electronic ConvertersUNIT 5A Types of DC Motors —————————————15B Closed-loop Control of DC DriversUNIT 6A AC Machines ———————————————19B Induction Motor DriveUNIT 7A Electric Power System ————————————22B Power System AutomationPART 2Control TheoryUNIT 1A The World of Control ————————————27B The Transfer Function and the Laplace Transformation —————29 UNIT 2A Stability and the Time Response —————————30B Steady State—————————————————31 UNIT 3A The Root Locus —————————————32B The Frequency Response Methods: Nyquist Diagrams —————33 UNIT 4A The Frequency Response Methods: Bode Piots —————34B Nonlinear Control System 37UNIT 5 A Introduction to Modern Control Theory 38B State Equations 40UNIT 6 A Controllability, Observability, and StabilityB Optimum Control SystemsUNIT 7 A Conventional and Intelligent ControlB Artificial Neural NetworkPART 3 Computer Control TechnologyUNIT 1 A Computer Structure and Function 42B Fundamentals of Computer and Networks 43UNIT 2 A Interfaces to External Signals and Devices 44B The Applications of Computers 46UNIT 3 A PLC OverviewB PACs for Industrial Control, the Future of ControlUNIT 4 A Fundamentals of Single-chip Microcomputer 49B Understanding DSP and Its UsesUNIT 5 A A First Look at Embedded SystemsB Embedded Systems DesignPART 4 Process ControlUNIT 1 A A Process Control System 50B Fundamentals of Process Control 52UNIT 2 A Sensors and Transmitters 53B Final Control Elements and ControllersUNIT 3 A P Controllers and PI ControllersB PID Controllers and Other ControllersUNIT 4 A Indicating InstrumentsB Control PanelsPART 5 Control Based on Network and InformationUNIT 1 A Automation Networking Application AreasB Evolution of Control System ArchitectureUNIT 2 A Fundamental Issues in Networked Control SystemsB Stability of NCSs with Network-induced DelayUNIT 3 A Fundamentals of the Database SystemB Virtual Manufacturing—A Growing Trend in AutomationUNIT 4 A Concepts of Computer Integrated ManufacturingB Enterprise Resources Planning and BeyondPART 6 Synthetic Applications of Automatic TechnologyUNIT 1 A Recent Advances and Future Trends in Electrical Machine DriversB System Evolution in Intelligent BuildingsUNIT 2 A Industrial RobotB A General Introduction to Pattern RecognitionUNIT 3 A Renewable EnergyB Electric VehiclesUNIT 1A 电路电路或电网络由以某种方式连接的电阻器、电感器和电容器等元件组成。
1```In the generator mode ,it,s operating speed isslightly higger than it,s synchronous speed and ie needs magnetizing revctive pover form the symtem that it is connected to in order to suuply pover .在发电方式下他的工作速度比同步转速稍高些,并了解供电力,他需要他所连接的系统吸收磁化无功功率。
2```in the barking mode of operyetion ,a three –phase indection motor running at a steady –speedcan be brought to a quick stop by interchanging two of stator leads感应电机运行电动状态时,其转速低于同步转速,运行在发电状态时,其转速高于同步转速,这就需要从与之间相连的系统电源提供励磁的无功功率。
3```obviously ,dc machine applications are very significant,but the advantages of the dc machinemmust be weighed against its greatr initial investment cost and the maintenance problems associated with its brush-commutator system..同步是指状态运行时点击以恒定的转速和频率运行。
4```with a cylindyical rotor the reluctance of the magnetic circuit of the field is independent of itsactual diretion and relative to the direct axis.圆柱形转子的磁场磁路的磁阻与直轴有关,而与磁场的实际方向无关。
电气自动化专业英语翻译.txt43风帆,不挂在桅杆上,是一块无用的布;桅杆,不挂上风帆,是一根平常的柱;理想,不付诸行动是虚无缥缈的雾;行动,而没有理想,是徒走没有尽头的路。
44成功的门往往虚掩着,只要你勇敢去推,它就会豁然洞开。
本文由chhuach2005贡献doc文档可能在WAP端浏览体验不佳。
建议您优先选择TXT,或下载源文件到本机查看。
电气自动化专业英语(翻译1-3)默认分类 2008-06-19 16:46 阅读471 字号:大评论0 中小第一部分:电子技术第一章电子测量仪表电子技术人员使用许多不同类型的测量仪器。
一些工作需要精确测量面另一些工作只需粗略估计。
有些仪器被使用仅仅是确定线路是否完整。
最常用的测量测试仪表有:电压测试仪,电压表,欧姆表,连续性测试仪,兆欧表,瓦特表还有瓦特小时表。
所有测量电值的表基本上都是电流表。
他们测量或是比较通过他们的电流值。
这些仪表可以被校准并且设计了不同的量程,以便读出期望的数值。
1.1安全预防仪表的正确连接对于使用者的安全预防和仪表的正确维护是非常重要的。
仪表的结构和操作的基本知识能帮助使用者按安全工作程序来对他们正确连接和维护。
许多仪表被设计的只能用于直流或只能用于交流,而其它的则可交替使用。
注意:每种仪表只能用来测量符合设计要求的电流类型。
如果用在不正确的电流类型中可能对仪表有危险并且可能对使用者引起伤害。
许多仪表被设计成只能测量很低的数值,还有些能测量非常大的数值。
警告:仪表不允许超过它的额定最大值。
不允许被测的实际数值超过仪表最大允许值的要求再强调也不过分。
超过最大值对指针有伤害,有害于正确校准,并且在某种情况下能引起仪表爆炸造成对作用者的伤害。
许多仪表装备了过载保护。
然而,通常情况下电流大于仪表设计的限定仍然是危险的。
1.2基本仪表的结构和操作许多仪表是根据电磁相互作用的原理动作的。
这种相互作用是通过流过导体的电流引起的(导体放置在永久磁铁的磁极之间)。
电气工程及其自动化专业英语翻译(精选多篇)第一篇:电气工程及其自动化专业英语翻译Electric Power Systems.The modern society depends on the electricity supply more heavily than ever before.It can not be imagined what the world should be if the electricity supply were interrupted all over the world.Electric power systems(or electric energy systems), providing electricity to the modern society, have become indispensable components of the industrial world.The first complete electric power system(comprising a generator, cable, fuse, meter, and loads)was built by Thomas Edison – the historic Pearl Street Station in New York City which began operation in September 1882.This was a DC system consisting of a steam-engine-driven DC generator supplying power to 59 customers within an area roughly 1.5 km in radius.The load, which consisted entirely of incandescent lamps, was supplied at 110 V through an underground cable system..Within a few years similar systems were in operation in most large cities throughout the world.With the development of motors by Frank Sprague in 1884, motor loads were added to such systems.This was the beginning of what would develop into one of the largest industries in the world.In spite of the initial widespread use of DC systems, they were almost completely superseded by AC systems.By 1886, the limitations of DC systems were becoming increasingly apparent.They could deliver power only a short distance from generators.To keep transmission power losses(I 2 R)and voltage drops to acceptable levels, voltage levels had to be high for long-distance power transmission.Such high voltages were not acceptable for generation and consumption of power;therefore, a convenient means for voltage transformationbecame a necessity.The development of the transformer and AC transmission by L.Gaulard and JD Gibbs of Paris, France, led to AC electric power systems.In 1889, the first AC transmission line in North America was put into operation in Oregon between Willamette Falls and Portland.It was a single-phase line transmitting power at 4,000 V over a distance of 21 km.With the development of polyphase systems by Nikola Tesla, the AC system became even more attractive.By 1888, Tesla held several patents on AC motors, generators, transformers, and transmission systems.Westinghouse bought the patents to these early inventions, and they formed the basis of the present-day AC systems.In the 1890s, there was considerable controversy over whether the electric utility industry should be standardized on DC or AC.By the turn of the century, the AC system had won out over the DC system for the following reasons:(1)Voltage levels can be easily transformed in AC systems, thusproviding the flexibility for use of different voltages for generation, transmission, and consumption.(2)AC generators are much simpler than DC generators.(3)AC motors are much simpler and cheaper than DC motors.The first three-phase line in North America went into operation in 1893——a 2,300 V, 12 km line in southern California.In the early period of AC power transmission, frequency was not standardized.This poses a problem for interconnection.Eventually 60 Hz was adopted as standard in North America, although 50 Hz was used in many other countries.The increasing need for transmitting large amounts of power over longer distance created an incentive to use progressively high voltage levels.To avoid the proliferation of anunlimited number of voltages, the industry has standardized voltage levels.In USA, the standards are 115, 138, 161, and 230 kV for the high voltage(HV)class, and 345, 500 and 765 kV for the extra-high voltage(EHV)class.In China, the voltage levels in use are 10, 35, 110 for HV class, and 220, 330(only in Northwest China)and500 kVforEHVclass.Thefirst750kVtransmission line will be built in the near future in Northwest China.With the development of the AC/DC converting equipment, high voltage DC(HVDC)transmission systems have become more attractive and economical in special situations.The HVDC transmission can be used for transmission of large blocks of power over long distance, and providing an asynchronous link between systems where AC interconnection would be impractical because of system stability consideration or because nominal frequencies of the systems are different.The basic requirement to a power system is to provide an uninterrupted energy supply to customers with acceptable voltages and frequency.Because electricity can not be massively stored under a simple and economic way, the production and consumption of electricity must be done simultaneously.A fault or misoperation in any stages of a power system may possibly result in interruption of electricity supply to the customers.Therefore, a normal continuous operation of the power system to provide a reliable power supply to the customers is of paramount importance.Power system stability may be broadly defined as the property of a power system that enables it to remain in a state of operating equilibrium under normal operating conditions and to regain an acceptable state of equilibrium after being subjected to a disturbance..Instability in a power system may be manifested in many different ways depending on the system configurationand operating mode.Traditionally, the stability problem has been one of maintaining synchronous operation.Since power systems rely on synchronous machines for generation of electrical power, a necessary condition for satisfactory system operation is that all synchronous machines remain in synchronism or, colloquially “in step”.This asp ect of stability is influenced by the dynamics of generator rotor angles and power-angle relationships, and then referred to “ rotor angle stability ”译文:电力系统现代社会比以往任何时候更多地依赖于电力供应。
2.1翻译:电子系统基于模拟原则形成一个重要的类的电子设备。
模拟电子系统在调频接收器(FM)是一个常见的例子,尽管现代接收器包含当然数码组件,传播信号模拟。
输入一个调频接收器是一个调频信号。
信号是一个模拟,也就是说,它是一个连续函数的时间和可以有任何振幅。
许多信号电仪器,如。
电压表,电流表,瓦特计和示波器也利用模拟技术,至少在这部分。
反馈是一个重要的概念在模拟电子。
反馈是一种技术,通过获得的模拟系统可以交换其他等受欢迎的品质更广泛的带宽和线性。
没有反馈,模拟系统如FM或电视接收机,最多也只能提供性能较差。
运算放大器是一种重要的组件在模拟电子。
基本的构建块模拟电路的加上运算放大器。
在这一章中,我们将介绍一些常见的应用程序的运算放大器。
理解反馈的好处提供了基础的欣赏许多使用放大器在模拟电子。
2.21:许多制造商市场放大系统在积体电路包。
许多不同的集成电路(ic)是可用的。
其中的一些被设计用来执行一个特定的系统功能。
这包括诸如照看作为放大器,线性信号放大器,和功率放大器。
其他ICs可能执行作为一个完整的系统。
电力经营只有有限数量的外部组件都需要完整的系统,低功率音频放大器和兴奋剂放大器是这些设备的例子。
一个运算放大器或运算放大器是一种高性能、直接耦合放大器电路包含几个晶体管设备。
整个组装是建立在一个小硅衬底和打包作为一个集成电路。
ICs的这种类型能够高增益信号放大从直流至几百万赫兹。
一个运放是模块化的,多级放大装置。
操作放大提供了基本的建筑模块。
这种类型的集成电路能够高增益信号放大从直流至几百万赫兹。
一个运放是模块化的,多级放大装置。
操作放大提供了基本的建筑模块模拟电路以同样的方式,也没有和NAND 盖茨是数字电路基本构建块。
2.2.2运算放大器有几个重要属性。
他们的开环增益的能力范围,在200000年与一个输入阻抗约2 mΩ。
输出阻抗是相当低的,数值范围50Ω或更少。
他们的带宽,或者能够放大,是相当不同的频率。
电气自动化专业英语第六,七,八章翻译第六章的参考译文:仅供参考,不恰当的地方,请自行修改补充,欢迎通过Email(qiulk@)进行讨论和交流。
?6.1?直流电动机的类型?市场上可购买到的电动机基本上分为四种类型:①永磁直流电机;②串励直流电机;③并励直流电机;④复励直流电机。
因其电路布局和物理性质,使得每一种电机具有不同的特点。
?6.1.1?永磁直流电机?永磁直流电机,如图6.1所示,其结构与相对应的直流发电机的结构相同。
永磁直流电机用于低力矩的应用场合。
当使用此种电机时,通过电刷-换向器装置,直接将电源连接到电枢导体上。
磁场由安装在定子上的永磁体产生,永磁直流电机的转子是一个绕线式电枢。
?该类型电机通常采用铝镍钴合金或陶瓷永磁体,而不是励磁线圈。
铝镍钴合金永磁体用于大马力的应用场合。
陶瓷永磁体通常用于小马力低转速的电机。
陶瓷永磁体具有较高的抗去磁能力,但磁通水平相对较低。
这些磁体通常安装在电机的机壳上,并在电枢绕组插入之前进行磁化。
?永磁直流电机与传统的直流电机相比有几个优点,一个优点是降低了运行成本;永磁电机的速度特性与并励直流电机的速度特性相似;永磁电机的旋转方向可以通过调换两根电源线而实现反转。
?6.1.2?串励直流电机?直流电机电枢和励磁电路的接线方式决定了电机的基本特性。
每一种类型的直流电机具有与之对应类型的直流发电机相似的结构,在多数情况下,唯一的区别在于发电机是作为一个电压源,而电动机是一个机械能转换装置。
?串励直流电机,如图6.2所示,其电枢和励磁电路以串联的方式连接起来。
只有一条从直流电压源的电流通路。
因而,励磁线圈由大线径导线、以相对少的匝数绕制而成的,使得励磁绕组的电阻较小。
施加到电机轴上电机负载的变化导致流经励磁线圈的电流发生变化。
如果机械负载增加,则电流也增大。
增大的电流产生一个更强的磁场。
串励电机的转速在空载下的很快与重载下的很慢之间变化。
由于大电流流过励磁线圈,所以串励电机可产生大力矩输出。
串励电机多用于重载和速度调节要求低的场合。
一个典型的应用是汽车启动电机。
?6.1.3?并励直流电机?并励直流电机比其它类型的直流电机应用更广。
如图6.3所示,并励电机的励磁线圈与电枢以并联的形式连接到直流电源。
这种类型直流电机的励磁线圈由细径导线绕制多圈而制成,具有相对较高的电阻。
由于励磁绕组是并励电机的高阻并联电路,所以,流经励磁绕组的电流较小。
但是,由于磁场绕组的匝数很多,所以,仍然产生一个强大的电磁场。
?绝大多数(约95%)的并励电机电流是流过电枢电路的(意味着只有约5%的电流流过励磁电路,也就是说该电流的大小变化不是很大,对磁场强度的影响就会很小)。
因为励磁电流对磁场强度影响很小,所以电机转速受负载电流变化的影响很小。
流过并励电机的电流关系如下所示:IL=Ia+If其中,IL-是从电源流出的总电流;Ia是电枢电流;If是励磁电流。
励磁电流可以通过在励磁绕组电路上串联一个可变电阻而改变,因为励磁电流很小,所以采用一个低功率的变阻箱,通过励磁电阻的改变以改变电机的转速。
当励磁电阻增大时,励磁电流减小。
励磁电流减小,导致电磁场强度的下降。
当磁场磁通下降是,电枢会转得更快一些,归因于磁场交互作用的减弱。
这样,通过应用励磁变阻箱的方法,直流并励电机的转速可以很容易地发生变化。
并励绕线式直流电机具有非常好的速度调节特性。
当负载增加时,电机转速有轻微的下降,其原因是电枢两端电压降增加。
正是因为其良好的速度调节特性和易于速度控制的特点,直流并励电机通常应用于工业应用,许多类型的变速机床均由直流并励电机所驱动。
6.1.4 复励绕线式直流电机复励绕线式直流电机如图6.4所示,拥有两组励磁绕组,一个与电枢串联,另一个与电枢并联。
此种电机结合了串励电机和并励电机的优点。
复励电机的连接方式有两种:积复励和差复励。
积复励直流电机的串联和并联励磁线圈是互相增强的,而差复励直流电机的串联和并联励磁线圈是互相减弱的。
串联励磁线圈的放置位置有两种方式,一种方式称之为短并励(如图6.4所示),在这种方式中,并励励磁线圈直接跨接在电枢绕组两端;而在长并励方式中,并励励磁线圈跨接在电枢绕组和串联励磁线圈的两端(如图6.4所示)。
复励电机具有与串励电机相似的大力矩特点,同时也具有与并励电机相似的良好的速度调节特性的特点。
因此,当需要大力矩和良好速度调节特性时,可以选用复励直流电机。
复励直流电机的缺点是它的成本较高。
6.2 直流电机分析一个直流电机是一个功率流向相反的直流发电机。
在直流电机中,电能被转化成机械能。
基于前面的讨论,有三种类型的直流电机:并励、积复励和串励。
积复励电机前面加了一个“积”字,用以强调所串联的励磁线圈的方式确保串励磁通是增强并励磁通的。
不象串励发电机那样,串励电机有着广泛地用途,尤其是在牵引类负载。
因此本书后续部分给予此种电机应有的关注。
(也可以翻译成:“因此,本书后续部分给予此种电机相当的笔墨。
”)根据其等效电路、一组性能方程、一个功率流向图和磁化曲线,三种之中的任何一种直流电机的运行性能均可方便的加以描述。
等效电路如图6.5所示,值得注意的是:在这里,电枢感应电压被看作一个反电动势Ea。
通过添加适当的约束,我们可以得到各种理想运行模式的等效电路。
例如,对于串励电机,其恰当的等效电路是将图6.5所示等效电路中的Rf去掉。
计算运行性能所需的一组方程如下所示:(式:6.1-6.4,省略)注意最后的两个方程做了相应的修改,对以下事实做出解释:对于电动机来说,Ut是施加电压或电源电压,必须等于电压降之和;同样地,线电流等于电枢电流和励磁电流之和,而不是二者之差。
功率流向图如图6.6所示,来自于电网的电能UtIL提供了用于建立磁通的磁场能量和维持电流Ia的电枢电路铜损。
流过位于磁场内的电枢导体的电流导致了力矩的产生(F=BIL)。
根据能量守恒定律可知:电磁功率EaIa应等于TWm,其中Wm是稳态运行速度。
从电机所产生的机械功率中去除旋转损失就是(系统的)机械输出功率。
直流电机经常被用来做一些工业上非常苛刻的工作,因为其高度的灵活性和易于控制的特点。
这些优点是其他电磁能量转换装置所能比拟的。
直流电机具有一个宽泛的速度控制和力矩控制,以及突出的加速和减速特性。
例如,通过接入一个合适的电枢电路电阻,在启动时,可以在不超过额定电流的情况下,得到额定转矩;还有,通过对并励励磁线圈的特殊设计,可以轻松得到超过4:1的速度调节。
如果辅助以电枢电压控制,速度调节范围可达6:1。
在某些提供电枢和励磁电路直流能量的电子控制装置中,能达到的速度调节范围是40:1,不过,能够控制的电机的尺寸是有限的。
6.3 直流电动机的速度-力矩特性(机械特性)直流电机如何对施加到电机轴上负载做出反应?直流电机自适应地向负载提供所需能量的机理是什么?这些问题的答案可以通过对性能方程组的推导而得出。
首先,我们的注意力放在并励直流电机上,但是,类似的推导思路可以应用到其它类型的直流电机上。
为了我们的目标,两个相关的描述力矩和电流的方程,即:T=KT*Phi*Ia和XXX (6.5式省略)。
注意最后一个表达式是由式6.1替代式6.3中的Ea所得到的。
当空载时,唯一所需力矩用于克服旋转损失。
因为并励电机运行在恒定的磁通下,式T=KT*Phi*Ia(6.2)表明:与额定值相比,只需要一个很小的电枢电流以提供那些(旋转)损失。
式(6.5)揭示了电枢电流到达所需数值的方式。
在这个表达式中,Ut、Ra、KE和Phi均为固定值,因此,转速n就是一个关键变量。
对于某一瞬间,如果假设转速低于某一数值,那么式(6.5)的分子项呈现一个较大数值,反过来使得电流Ia为一个较大的值。
从这一点上来说,电机做出反应来改正这一情形。
大的电枢电流Ia产生一个超过摩擦力和风阻的力矩,该力矩将增加转速到一个与电枢电流平衡值相对应的水平上。
换句话说,只有在转速到达这样的一个水平上--由公式(6.5)所产生的电枢电流足以克服旋转损失,加速力矩才变成零。
接下来考虑这样一个情形:当一个需要额定力矩的负载突然施加到电机转轴上。
很清楚,因为在这一瞬间,电机所产生的而力矩只能够克服摩擦力和风阻,而不足以克服负载力矩,所以,电机的第一个反应是失速(速度下降)。
这样,正如式(6.5)所示的那样,电枢电流增大,反过来使得电磁力矩增大。
事实上,施加力矩导致电机在某个转速下运转,此时电机的电流足以产生力矩以克服所施加的力矩和摩擦力矩。
达到所谓的功率平衡,此时,达到一个平衡条件:电磁功率EaIa 等于机械功率TWm。
直流电机与三相感应电机的对比表明:从施加到转轴上的负载的响应来看,两者都是速度敏感型装置。
然而,一个本质的区别在于对于三相感应电机来说,所产生的力矩与电枢电流的功率因数角大小成反比。
当然,对于直流电机来说,没有类似的情形。
基于上述讨论,很明显,直流电机的速度-力矩特性曲线是一个重要的性质。
图 6.7所示是用于并励、复励和串励电机的速度-力矩特性的一般形状。
为了便于比较,这些曲线通过了一个共同的额定力矩和额定转速点。
要理解为什么曲线的形状和相对位置会如图6.7所示,可以从式(6.1)中得到答案,其含有速度项。
对于并励直流电机来说,速度方程可以记作:(6.6)式子中的变量只有转速n和电枢电流Ia。
在额定输出力矩情况下,电枢电流为额定值,转速也为额定值。
当负载去除后,电枢电流相应地变小,使得式(6.6)的分子项变大,其结果是导致较高的转速。
转速增高的程度取决于电枢电阻压降与端电压相比有多大,通常约为5%-10%。
因而,我们可以想象出并励电机的转速变化百分比大致为这一量级。
速度变化用一个称为转速变化率的品质因数来表示,其定义如下:(6.7)当速度方程应用于积复励电机时,其形式为:(6.8)将其与并励电机的类似表达式比较可以得出两点不同:1)分子项中包含除电枢绕组之外的串励励磁绕组的电压降;2)分母项增加串励磁通量Phis。
假设从额定力矩和转速处开始,从式(6.8)可以清楚地看出:当负载力矩减小为零时,分子项有一个增长,该增长大于并励电机情况下的增长,而且,与此同时,分母项有所减小,因为当转矩为零时,Phis也为零。
两种因素同时作用使得转速有一个大的增长。
因此,积复励电机的转速变化率大于并励电机的转速变化率。
图6.7图示地描述了该信息。
串励电机的速度-力矩特性情况有很大的不同,因为它没有并励的励磁绕组。
牢记:在串励电机中,磁场磁通的建立完全来自电枢电流流过串励励磁线圈。
那么,据此而论,串励电机的速度方程变为:(6.9)其中表示一个新的比例因子,使得可以由电枢电流Ia所代替。
当额定力矩产生时,电枢电流为额定电流,因而,磁场磁通是足够的。
然而,当负载力矩撤销时,电枢电流就小于额定值。