红外测温系统
- 格式:ppt
- 大小:609.50 KB
- 文档页数:12
基于自动校准的人体红外测温系统研制摘要:本文对人体红外测温系统的误差影响因素进行了分析,并设计了基于高精度黑体进行温度校准的测温系统。
通过识别黑体所在区域,计算并校准温度偏差,系统可在无人操作情况下,实时自动完成温度校准。
使测温系统的使用更为便捷,提高了系统的测温准确率。
关键词:红外成像;人体测温;自动校准人体红外测温系统可以实现无接触式快速测温,使用方便、快捷。
但是红外测温系统易受到环境温度等因素的影响,造成温度测量不准确。
使用过程中,随着天气或气温的变化,往往需要专门安排人员,进行温度偏差校准,造成很大不便,也影响了温度测量的准确性。
本文首先分析了标准黑体的灰度测量值与设定温度之间的关系,以及环境温度对红外测温结果的影响,建立温度值-灰度值拟合关系。
进而设计了一种自动校准算法,可在图像中自动识别黑体所在区域,并完成温度校准。
一、系统硬件设计本文设计的基于自动校准的人体红外测温系统,以红外传感器为核心,结合外置高精度校准黑体、视频采集卡、显控计算机组成。
由系统硬件完成视频采集功能,由系统软件实现视频显示、人脸识别、温度测量、自动校准、超温报警、数据记录等功能。
实现无接触、高精度、智能化的人体红外测温方案。
高精度黑体安装于三脚架上,并放置于红外传感器的视场中。
红外传感器采集图像数据,并通过cameralink视频线将视频输出到视频采集卡。
视频采集卡与显控计算机通过雷电3接口连接,显控计算机上的综合处理软件可通过采集卡SDK接口获取图像数据。
二、系统关键算法设计2.1灰度映射温度红外传感器可以获取原始图像数据,即传感器采集到的灰度值。
为了获取灰度值到温度值的映射关系,需要进行数据采集、数据拟合和误差分析。
2.1.1灰度值与黑体设定温度的关系环境温度不变,将黑体设置到不同温度,记录红外传感器采集的灰度值。
测量并拟合出红外传感器采集灰度值与黑体设定温度之间的关系。
因人体的辐射率大约为0.98左右,因此分别采集辐射率为1.0以及辐射率为0.97的黑体数据。
基于红外线测温技术的温度监控系统设计与实现温度监控系统是一种广泛应用于各个领域的重要设备,它能够实时监测环境温度,并通过数据分析和处理,提供准确、稳定的温度信息,帮助人们进行有效的温度控制和管理。
基于红外线测温技术的温度监控系统是一种先进、高精度的监测方法,具有非接触、无干扰等优点,逐渐成为温度监控领域的首选技术。
本文将围绕基于红外线测温技术的温度监控系统的设计和实现展开,主要包括以下几个方面的内容:系统架构设计、硬件选型与搭建、软件开发与实现、系统测试与性能评估。
首先,系统架构设计是整个温度监控系统的核心。
在选择合适的硬件平台和软件框架之前,我们需要明确系统的功能需求和技术要求,包括测量范围、精度要求、温度分辨率等。
针对不同的应用场景和实际需求,我们可以选择合适的红外线测温传感器和控制器,搭建一个高效、可靠的系统架构。
其次,硬件选型与搭建是系统实现的重要步骤。
基于红外线测温技术的温度监控系统需要选择合适的红外线测温传感器,并配合适当的信号放大电路和AD转换器,实现对温度信号的采集和处理。
同时,我们还需要选用适合的微控制器或单片机作为系统控制单元,通过编程和通信接口设计,实现对传感器和其他外设的控制和数据传输。
然后,软件开发与实现是温度监控系统的关键环节。
通过合理的软件设计和编程,我们可以实现对传感器和外设的控制,并将采集到的温度数据进行预处理、存储和显示等功能。
在软件开发过程中,除了基本功能的实现,还可以考虑一些额外的功能,如数据传输和存储、报警机制、远程监控和控制等,以满足用户的特定需求。
最后,系统测试与性能评估能够反映温度监控系统的稳定性和准确性。
通过对系统的功能性测试和性能测试,包括对不同温度环境下的测量误差、响应时间、稳定性和重复性等指标进行评估和分析,以确保系统的可靠性和精确性。
同时,我们还可以对系统的实时性、功耗、稳定性等方面进行考察,以进一步优化系统的性能。
综上所述,基于红外线测温技术的温度监控系统设计与实现需要从系统架构设计、硬件选型与搭建、软件开发与实现、系统测试与性能评估等方面入手。
基于红外线测温技术的智能温控系统设计与实施智能温控系统是一种利用先进的技术手段来监测和调节室内温度的系统。
基于红外线测温技术的智能温控系统能够通过红外线感应器实时测量人体温度,并自动调节环境温度,为用户提供一个舒适的室内环境。
在设计和实施基于红外线测温技术的智能温控系统时,我们需要考虑以下几个方面:1. 红外线测温技术的选择在选择红外线测温技术时,我们需要考虑其准确度、响应速度和稳定性。
高准确度的红外线测温技术能够提供可靠的数据,快速响应速度可以及时感知到人体温度变化,而稳定性可以确保长时间的可靠运行。
2. 温度感应器的布置在室内的不同区域布置红外线温度感应器是非常重要的。
合理的布置可以确保系统能够准确地感知到人体温度,并进行及时的调节。
一般而言,温度感应器可以布置在入口、会议室、办公区和共用设施等频繁出入的区域,以确保及时监测到人体温度的变化。
3. 温度数据的处理和分析系统需要具备处理和分析红外线测温数据的能力。
温控系统可以通过将红外线测温数据与预设的温度阈值进行比对,从而判断当前环境是否需要进行温度调节。
同时,系统也可以将温度数据进行存储和分析,以便用户后续参考和分析。
4. 温度调节的方式基于红外线测温技术的智能温控系统可以通过多种方式进行温度调节。
例如,可以通过控制空调系统、暖气系统或者通风系统来实现温度的调节。
在温度过高或过低时,系统可以及时发出信号,触发相应的设备进行温度调节,以保持室内环境的舒适度。
5. 用户交互界面的设计为了方便用户操作和监控温度调节情况,智能温控系统需要拥有友好的用户交互界面。
用户可以通过界面进行温度设定、监测室内温度以及查看历史数据等操作。
同时,系统还可以提供报警功能,当温度异常或超过设定的范围时,系统会自动发出报警提醒,提醒用户及时采取措施。
总结而言,基于红外线测温技术的智能温控系统设计与实施需要考虑红外线测温技术的选择、温度感应器的布置、温度数据的处理和分析、温度调节的方式以及用户交互界面的设计。
红外热像在线测温系统的设计与实现讲解红外热像在线测温系统是一种利用红外热像仪进行温度测量的系统。
该系统可以广泛应用于工业、医疗、安防等领域,可以实现对目标物体的非接触式温度监测,并通过可视化界面显示测量结果。
下面将对红外热像在线测温系统的设计与实现进行详细讲解。
首先,红外热像在线测温系统的设计需要明确需求和目标。
需要考虑的因素包括:测温范围、测温精度、测温速度、实时显示和记录功能等。
其次,系统设计需要选取合适的红外热像仪。
选择红外热像仪时需要考虑以下几个指标:像素分辨率、测温范围、测温精度、测温速度、镜头类型、系统接口等。
根据具体需求和预算情况选择合适的红外热像仪。
接下来是系统的硬件设计。
系统硬件包括:红外热像仪、显示屏、控制主板和其他相关电路。
红外热像仪通过接口与控制主板连接,将采集到的红外图像数据传送给主板处理。
显示屏用于实时显示测温结果。
控制主板负责数据处理、界面控制和数据传输等功能。
然后是系统的软件设计。
软件设计主要包括测温算法的实现和界面设计。
测温算法设计要考虑实时性、准确性和效率。
常见的测温算法包括最大值、最小值和平均值等。
界面设计要直观易用,可以显示测温结果、调整参数和保存数据等功能。
最后是系统的实现和测试。
根据设计方案完成系统的搭建和调试。
包括硬件的连接和软件的安装与配置。
测试要验证系统的测温精度、测温范围和实时性等指标,同时进行界面操作和数据保存等功能的测试。
总结起来,红外热像在线测温系统的设计与实现过程主要包括明确需求和目标、选择合适的红外热像仪、进行系统硬件设计、实现测温算法和界面设计、最后完成系统的搭建和测试。
在实际应用中,可以根据具体需求进行改进和优化,满足不同场景下的测温需求。
一.系统功能:监控机车车轮对的实时温度并自动记录在u盘或存储卡上,为技术人员根据历史数据分析判断出轮对工作状态是否正常。
技术人员可以根据历史数据设定出轮对正常工作温度范围,当轮对温度超出即可报警二.系统组成系统由P L C,人机界面,红外测温传感器组成。
系统框图如下:机车红外测温监控系统采用D E L T A P L C通过R S-485通讯方式采集各个红外测温传感器的状态,经过P L C对采集回来的数据判断和运算来对机车轮对的运行状态进行监控。
并将接收到的各检测量的数据保存在大容量存储介质中为技术人员科学系统的分析机车轮对的温度运行趋势提供帮助。
1.采用D e l t a S S系列P L C主机,其主要功能为(1)采用R S485通讯的方式来采集各红外温度传感器的检测值,通讯协议采用为通用的M O D B U S R T U模式。
(2)通过D e l t a S S P L C对各红外温度传感器的检测值进行运算和判断,当温度超出设定范围则报警输出至人机界面显示。
2.采用D e l t a D O P B系列人机界面与P L C通讯显示,(1)实时显示各轮对工作温度。
(2)在D e l t a D O P-B系列人机界面增加数据存储介质:U盘或S D卡,便于转储信息,可对检测到的数据进行保存,为实现轮对进行的运行趋势判断提供必要的历史数据。
现在系统设定为每个月在工作状态下自动存储一次,并形成E X C E L文件。
(3)技术人员可根据历史经验和轮对的具体工作环境对轮对的温度范围进行设定。
(4)当轮对的工作温度超出设定上限,人机界面根据P L C 的判断输出报警画面,显示温度异常的轮对位置。
3.采用H B I R系列在线式红外测温传感器。
(1)测试温度范围为-20°C--300°C,距离系数为5:1。
(2)测试精度为设定范围的±2%。
(3)输出形式为R S485,通讯协议为M O D B U S R T U.三.系统特点本系统特点有以下几方面1.采用通讯方式来采集检测值。
红外测温方案摘要:红外测温技术是一种无接触、非接触的测温方法,通过测量目标物体的红外辐射能量,可以准确、快速地获取目标物体的温度信息。
本文将介绍红外测温的原理、应用场景以及常见的红外测温方案。
引言:在工业生产、医疗保健、安防等领域,准确测量目标物体的温度是非常重要的。
传统的接触式温度测量方法存在着接触不便、测量不准确、易受干扰等问题。
而红外测温技术的出现,有效地解决了这些问题,成为了温度测量领域的一项重要技术。
一、红外测温的原理红外测温的原理基于物体辐射能量与其温度之间的关系。
根据斯蒂法-玻尔兹曼定律,物体的辐射能量与其温度的四次方成正比。
因此,通过测量物体的红外辐射能量,可以推算出其温度值。
红外测温仪器主要由红外传感器、辐射率校正器、信号处理器等组成。
二、红外测温的应用场景红外测温技术在多个领域有着广泛的应用。
1. 工业生产领域在工业生产过程中,温度的控制对于产品质量和生产效率至关重要。
红外测温技术可以用于监测和控制各种设备的温度,例如锅炉、热交换器、熔炉等。
通过及时掌握设备的温度信息,可以预防设备故障和生产事故的发生,确保生产的顺利进行。
2. 医疗保健领域红外测温技术在医疗保健领域有着重要的应用。
例如,在体温测量中,传统的接触式温度计需要与人体直接接触,不仅不够方便,还可能交叉感染。
而使用红外测温仪,只需对准人体额头进行测量,即可获取准确的体温数值,非常适合用于公共场所的体温筛查。
3. 安防领域红外测温技术在安防领域也有着重要的应用。
例如,使用红外测温技术可以对人流密集的场所进行快速测温,及时发现患者,控制疫情传播。
此外,红外测温技术还可以用于火灾、燃气泄漏等安全监测,及时发现和处理潜在危险。
三、常见的红外测温方案目前市场上存在多种红外测温方案,下面介绍几种常见的方案。
1. 手持式红外测温仪手持式红外测温仪是最常见的红外测温设备之一。
它小巧便携,操作简单,适用于不同的场景。
用户只需将测温仪对准目标物体,按下测量键,即可在显示屏上看到目标物体的温度数值。
湘潭大学毕业设计论文开题报告题目:红外测温系统的设计姓名:李良川学号:2007550922专业:电子信息工程指导老师:鲁光德一、红外测温仪概述红外测温仪由光学系统,光电探测器,信号放大器及信号处理.显示输出等部分组成。
光学系统汇聚其视场内的目标红外辐射能量,红外能量聚焦在光电探测器上并转变为相应的电信号。
红外测温系统对该电信号进行相应处理的并将其显示为被测目标的温度值。
具体包括对该电信号进行放大,检波,滤波,变换,A/D转换传到单片机上进行各种处理,如显示为温度值,语音播报温度值,与标准温度对比,超出标准范围后报警等等。
非接触式红处测温仪与传统的接触式测温仪相比,有以下特点:目前红外测温产品主要有两类:点式红外测温仪和面式红外测温义,面式红外测仪即热像仪。
现在点式红外测温仪性能及其辅助功能不如红外热像仪,主要缺点如下:i. 远距离、小目标难以对准,人为因素影响较大,从而影响测温精度;ii. 测温结果不利于保存分析,限于局部没有全局效果,从而有时不利于发现问题;iii. 不利于远程遥控,自动化、智能化程度较低;由于红外热像仪价格昂,国产产品价格在20~30万左右,进品产品价格更是在70~80万左右,这大大限制了它的推广应用。
而点式红外测温仪价格相比只有一两万左右。
就测温精度来说,点工红外测温仪和红外热像仪相比精度相当,并且很多应用场合精度要求也不是很高,可以采取一定措施弥补其缺点,而又不太大的增加其成本。
红外测温技术因为以上特点,可用于产品质量控制与监测,设备在线故障诊断,安全保护以及节约能源等方面,逐淅被广泛应用于电力、食品加工、冶金、石化、医疗、科研等多种行业中,并发挥了重要作用。
二、红外测温原理红外测温仪接收物体自身发射出的不可见红外辐射能量。
红外辐射是电磁频谱的一部分,电磁频谱包括无线电波、微波、红外线、可见光、紫外光、X-射线和伽马射线等。
红外线位于可见光和无线电波之间的区域,其波长为0.75~1000 μm。