高效液相串联质谱科普
- 格式:pptx
- 大小:4.46 MB
- 文档页数:48
高效液相-质谱联用技术在药物分析中的应用摘要:高效液相色谱-质谱联用技术具有高分离、高灵敏度和高选择性能等优势,而且操作比较方便快捷,已经成为当前一种重要的分析方法,在食品检测以及药物分析等领域中都有着较高的应用价值。
本文主要是分析了高效液相色谱-质谱联用技术在药物分析领域中的应用,明确了其在化学成分分析、药物代谢研究、药代动力学研究、新药研究等方面的重要贡献,以期能够为当前的药物分析工作提供一定的参考依据。
关键词:液质联用技术;药物;应用引言高效液相-质谱联用技术集合了两种技术分别具有的高分离效能与高灵敏度、高选择性等优点,从而可以使其在各种药物的分析以及代谢产物研究工作中发挥着重要的作用,而且在实际应用,样品的分析也不需要做预处理或衍生化,可分离高极性的和热不稳定的化合物,分析较为快速,具有较高的应用价值。
一、高效液相-质谱联用技术的发展近况高效液相色谱-质谱联用技术最开始出现在20世纪70年代,但是受到研究技术以及先关仪器设备的限制还存在较大的应用难度,直到90年代后,各种商品化仪器的出现为高效液相色谱-质谱联用技术的应用奠定了良好的基础,同时还有大气压电离技术的出现,使得高效液相色谱-质谱联用技术逐渐出现在大众面积,其应用领域也得到进一步的拓宽,并且成为了科研和日常分析的检测工具。
该技术主要是将高效液相色谱与质谱串联成为整机使用的,以高效液相色谱为分离手段,以质谱为鉴定工具的一种分离分析检测技术,其需要用到高效液相色谱仪、接口装置、MS和计算机数据处理系统,因此接口技术的发展也推动了高效液相色谱-质谱联用技术的应用水平。
在药物分析领域中,该技术的应用价值是显而易见的。
二、高效液相-质谱联用技术在药物分析中的应用(一)液质联用在药物化学成分分析方面的应用1、中药、中成药和西药成分分析中药及其制剂成分复杂,传统方法分离提纯工作量大,而利用液质联用技术并不需要提前对样品进行预处理,操作比较便捷,同时还能够得到化合物的保留时间、紫外光谱、分子量及特征结构碎片等丰富信息。
高效液相-质谱联用仪的原理高效液相-质谱联用仪是一种先进的分析技术,它将高效液相层析技术和质谱技术结合起来,可以快速分离并检测复杂混合物中的化合物。
本文将详细介绍高效液相-质谱联用仪的原理。
一、高效液相层析技术高效液相层析技术(HPLC)是一种高效、快速、准确的分离与分析方法,用于检测各种复杂化合物。
它的原理是在高压下,将样品溶液与专用溶剂,即流动相,分别注入到一个装有固定填料的柱子中,通过裂解和重组的过程来将化合物分离出来。
分离的化合物根据它们的亲疏水性和化学反应性,以不同的速度从柱子中流出来,并通过检测器进行检测。
因此,在高效液相层析技术中,填料的种类和流动相的组成都是决定分离性的关键因素。
二、质谱技术质谱技术(MS)是一种依据化合物的分子质量和结构来进行检测的技术,它可以通过离子化将化合物转化为离子,以便以质量-相对丰度分布图(MS图)的形式进行分析。
一般来说,分析样品需要先进行前处理,如萃取、烷基化、水解、脱水等,以便于生成离子,并使质谱仪感应器能够鉴别化合物的原子含量和结构。
质谱仪通常包括离子源、分析器和检测器。
三、高效液相-质谱联用仪高效液相-质谱联用仪(HPLC-MS)是将高效液相层析和质谱技术相结合的分析仪器,可以在一次分离中完成化合物的纯化、分离和检测,具有分离效率高、分析速度快、灵敏度高、检测范围广等优点。
它可以通过电离实现化合物的分析,从而避免了化合物在吸收带宽会形成的谱线重叠和断峰等情况,大大提高了对低浓度化合物的检测能力。
高效液相-质谱联用仪的工作原理如下:1. 样品制备:将待测样品加入到溶剂中,然后通过稀释、萃取等前处理步骤制备样品,并加入内标化合物。
2. 高效液相层析:通过选定的填料、流动相和分离条件进行高效液相层析,将化合物分离出来,并将它们引入质谱模块。
3. 电离:将化合物在离子源中通过电离变为气态离子。
4. 离子输送:将离子送入质量分析器中进行分析。
5. 质谱:根据离子的质量-电荷(m/z)比例,并通过离子检测器生成质谱图,进行化合物的分析和鉴定。
液相色谱串联质谱的小知识一、开机water 2695/micromass zq4000:开机步骤1. 分别打开质谱、液相色谱和计算机电源,此时质谱主机内置的CPU会通过网线与计算机主机建立通讯联系,这个时间大约需要1至2分钟。
2. 等液相色谱通过自检后,进入Idle状态,依照液相色谱操作程序,依次进行操作。
(具体根据液相色谱不同型号来执行,下面以2695为例)。
a.打开脱气机 (Degasser On)。
b.湿灌注(Wet Prime)。
c.Purge Injector。
d.平衡色谱柱。
3.双击桌面上的 MassLynx4.0图标进入质谱软件。
4.检查机械泵的油的状态(每星期),如果发现浑浊、缺油等状况,或者已经累积运行超过3000小时,请及时更换机械泵油。
5.点击质谱调谐图标(MS Tune)进入质谱调谐窗口。
6.选择菜单“Options –Pump”,这时机械泵将开始工作,同时分子涡轮泵会开始抽真空。
几分钟后,ZQ就会达到真空要求,ZQ前面板右上角的状态灯“Vacuum”将变绿。
7.点击真空状态图标,检查真空规的状态,以确认真空达到要求。
8. 确认氮气气源输出已经打开,气体输出压力为90 psi。
9.设置源温度(Source Temp)到目标温度。
关机1.点击质谱调谐图标进入调谐窗口。
2.点击Standby 让MS 进入待机状态时,这时状态灯会由绿变红,这一过程是关质谱高电压的过程。
3.停止液相色谱流速,如果还需要冲洗色谱柱,可以将液相色谱管路从质谱移开到废液瓶。
4.等脱溶剂气温度(ESI)或APCI探头温度降到常温,点击气体图标关闭氮气。
5.逆时针方向拧开机械泵上的Gas Ballast 阀,运行20分钟后关闭(镇气)。
a) 对于ESI源,至少每星期做一次。
b) 对于APCI源,每天做一次。
6.再次确认机械泵的Ballast阀是否已经关闭。
7.选择Option / Vent,这时质谱开始泄真空,ZQ 前面板的状态灯“Vacuum”开始闪烁,几分钟后机械泵会停止运行,这时可以关闭质谱电源。
高效液相色谱—质谱联用技术测定食品中有害物质残留分析方法的研究一、本文概述高效液相色谱—质谱联用技术(HPLCMS)是一种广泛应用于食品安全领域的分析手段,其结合了高效液相色谱的分离能力和质谱的鉴定与定量能力,为食品中有害物质残留的检测提供了一种高效、准确的方法。
本文旨在探讨HPLCMS技术在食品中有害物质残留分析方法研究中的应用和发展。
本文将介绍HPLCMS技术的基本原理及其在食品分析中的重要性。
接着,将详细阐述该技术在检测食品中特定有害物质,如农药残留、重金属、非法添加剂等的应用案例。
本文还将讨论HPLCMS技术在实际应用中面临的挑战,包括样品前处理、方法开发、定量准确性和仪器灵敏度等方面。
文章将展望HPLCMS技术在未来食品安全监测中的潜在发展趋势,以及如何通过技术创新进一步提升分析方法的效能和适用性。
通过对HPLCMS技术在食品中有害物质残留分析方法研究的深入探讨,本文期望为食品安全监管机构、食品生产企业以及相关科研工作者提供有价值的参考和指导,共同促进食品安全保障水平的提升。
二、高效液相色谱—质谱联用技术原理高效液相色谱质谱联用技术(LCMS)是一种将液相色谱(LC)和质谱(MS)技术相结合的分析方法。
它通过液相色谱技术对样品进行分离,然后利用质谱技术对分离后的组分进行检测和分析。
液相色谱分离是基于样品中各组分在流动相和固定相之间的分配差异。
样品溶液通过高压泵进入色谱柱,流动相携带样品通过固定相。
由于不同组分在两相中的分配系数不同,它们在色谱柱中的移动速度也不同,从而实现分离。
分离后的组分按顺序从色谱柱中流出。
分离后的组分进入质谱仪后,首先被离子化,产生带电的离子。
这些离子通过质量分析器,根据质荷比(mz)进行分离。
检测器检测到不同质荷比的离子,并记录其相对丰度。
通过分析质谱图,可以确定样品中各组分的分子质量、结构信息以及相对含量。
LCMS技术具有高分离能力、高灵敏度、高选择性和结构分析能力等特点,可以用于食品中有害物质残留的分析,如农药、兽药残留、违禁物质和有害添加剂等。
液相色谱-质谱联用法液相色谱-质谱联用法是一种用于分离及分析化学分子中微量成分的有效方法。
它是通过在两个色谱电器仪器中,分别对原始样品进行分离和分离后的色谱物质进行定性和定量的分析,来检测微量的化学物质各自的活性分子结构的总体宏观成分。
这种方法不仅可以确定和测定样品中各自的化学成分,而且可以识别组分及其构成以及相对价值,从而得到样品中具体原子和分子的结构信息。
液相色谱-质谱联用法是将液相色谱仪和离子化质谱仪相结合,来分析及鉴定各类样品成分。
在液相色谱-质谱联用法中,液相色谱-质谱联用法是根据样品的分子量和分子结构,把它们进行加速和减速的离子化,由检测系统加以分析,从中获得原子结构的分析数据,也可以进行定量分析。
液相色谱-质谱联用法的优势在于,其能够检测分子中极为微量的成分,比传统的液相色谱能力更 is 。
它可以检测分子的总体特性、反应活性成分和相对价值。
此外,液相色谱-质谱联用法中,质谱仪可以实现样品的细微分离及进一步检测,从而可对样品中的活性分子结构和宏观成分进行定性和定量分析,从而较大限度地判断样品的复杂性、活性及特定分子键的分子结构。
液相色谱-质谱联用法在物质特性分析中的应用,可以更全面、准确的反映样品的总体特征,包括其成分的宏观构成和相对价值、以及分子结构的分布等因素。
另外,该技术也可以获得原子结构、反应活性成分及各类指标的定量数据,这在比较复杂的材料及生物样品中特别有用。
液相色谱-质谱联用法作为一种新兴的分析技术,已广泛应用于食品及制药行业的科学研究,以及汽车、矿山、石油等工业应用。
由于它可以更准确快速地反映样品的化学组成及分布,它也被广泛应用于药物开发、气体分析、生物分析、环境分析等多个领域中,帮助人们更好更准确地分析样品成分,由此发现新物质,为新药物开发和新产品开发提供理论依据。
液相色谱 - 质谱联用法既能够检测出样品中的微量成分,又能够检测出样品中构成其特性和反应活性成分的结构,使更复杂的物质特征分析变得更加可靠准确。
LC液相串联质谱
LC(液相)液相串联质谱是将液相色谱与质谱技术结合起来的分析技术。
在LC液相串联质谱中,样品首先通过液相色谱分离,然后将分离后的化合物引入质谱分析。
液相色谱可以分离出多种化合物,而质谱技术则可以提供高灵敏度和高特异性的检测结果。
因此,LC液相串联质谱是一种非常有用的分析技术,广泛应用于生物化学、药物分析、环境监测等领域。
在LC液相串联质谱中,常用的质谱技术有三重四极杆质谱和高分辨质谱。
三重四极杆质谱是一种常用的质谱技术,可以对复杂样品进行高灵敏度、高特异性的分析,并且可以进行定量分析。
高分辨质谱则可以提供更高的分辨率和更详细的分子信息,可以用于结构鉴定和定量分析。
总的来说,LC液相串联质谱是一种非常有用的技术,可以提供高灵敏度、高特异性的分析结果,并且可以用于复杂样品的定量和结构鉴定。
超高效液相色谱-串联质谱法同时测定水、沉积物和生物样品中57种全-多氟化合物超高效液相色谱-串联质谱法同时测定水、沉积物和生物样品中57种全/多氟化合物概要:全/多氟化合物(PFASs)是一类广泛存在于环境及生物体中的污染物,由于其高毒性、高生物蓄积性和长半衰期,对生态环境和人类健康造成潜在风险。
因此,对于这些化合物的快速、准确测定方法的发展至关重要。
本研究旨在开发一种超高效液相色谱-串联质谱(UPLC-MS/MS)方法,以同时测定水、沉积物和生物样品中57种全/多氟化合物。
引言:全/多氟化合物是一类人工合成的有机污染物,由于其独特的物化特性,被广泛应用于防潮、阻燃、润滑等领域。
然而,由于全/多氟化合物的持久性、生物蓄积性和毒性,它们已成为全球环境污染的重要问题。
目前已经发现的全/多氟化合物超过3,000种,其中包括全氟烷基磺酸盐(PFASs)、全氟烷基胺盐(PFASAs)等。
这些化合物具有高度稳定性和生物传播性,即使在环境中存在很低的浓度,也可能对生态环境和人类健康产生潜在风险。
现有的全/多氟化合物分析方法主要包括气相色谱-质谱法(GC-MS)和液相色谱-质谱法(LC-MS)。
然而,由于PFASs的高亲水性和复杂的基质干扰,传统的液相色谱-质谱方法在样品净化和分离上存在一定的局限性。
因此,开发一种高效准确的测定方法具有重要意义。
方法:本研究选取了57种典型的全/多氟化合物作为目标分析物,包括全氟烷基磺酸盐、全氟烷基胺盐等。
样品净化采用固相萃取(SPE)方法,利用氟化硅固相胶囊柱对样品进行预处理。
色谱分析采用UPLC-MS/MS系统,为了提高色谱分离效果,选择C18色谱柱。
质谱采用电喷雾离子源(ESI)和正离子模式。
结果与讨论:经过方法优化,我们成功开发了一种UPLC-MS/MS方法,可以同时测定水、沉积物和生物样品中的57种全/多氟化合物。
该方法具有高灵敏度、高选择性和较低的方法检出限。
在水样中,该方法的平均回收率在70%-110%之间,相对标准偏差低于15%。
液相色谱串联质谱法
液相色谱串联质谱(Liquid chromatography tandem mass spectrometry,
LC-MS/MS)是一种分离检测技术,被广泛应用于药物化学及药物代谢,生物医药,农药分析等领域,作为一种灵敏的高通量的鉴定和定量分析的手段。
LC-MS/MS的操作困难度略高,但技术表现却非常出色。
它的原理是将待测样
品分解成各组分,然后在液相色谱的的发射机构中排列和分离,得到分离峰后,将每个峰送入质谱计仪器中进行分子结构鉴定。
液相色谱与质谱结合起来,使得被测物质的定量和定性分析变得更加精准,得到了更高的灵敏度与精确度。
LC-MS/MS给人们的生活也带来了不少便利。
它能更有效的检测潜藏在食品中
的有害物质,甚至可以嗅出空气中的重金属物质,以确保食品和空气的安全。
此外,在医学上,LC-MS/MS也可以鉴定出血液中的分子标志物,从而帮助医生诊断乳腺癌、肝癌等,为患者提供更有效的治疗措施。
LC-MS/MS是当今药物及生物医药学研究领域最火热的概念,结合先进的检测
技术,它也为特定领域的研究提供了更大的帮助,尤其是生物和分子诊断研究实验中。
其仅占用少量的样品的前提下,在短时间内,就能最大限度提高检测效率,具有准确率高、重复性好、价格低的明显优势,这也使得它深受生命科学的欢迎。
T logy科技食品科技HPLC-MS/MS全称为种高效液相色谱-串联质谱技术,该技术可对多组分进行定性、定量综合分析,在应用中可以对高沸点、非挥发性等进行准确的分离鉴定。
在分离检测的过程中主要利用电喷雾电离和大气压化学电离技术将待测物中的成分分离出来,在送入质谱检测系统中进行检测,便可以较为精准地测量出母离子的特征碎片。
1 动物药物残留分析简介常用的兽药残留量检测方法有微生物法和色谱法。
前者为筛选方法,该方法的原理是抗原抗体反应,在对动物药物残留进行测定的过程中难以对同类型的药物进行区分。
对于禁用兽药(A类),如硝基呋喃等,残留限度(PED)在4%以下;而禁用兽药 (B类),如磺胺类,残留限度(PED)在3%以下。
质谱分析技术可以准确检测食品中的动物药物残留,进而为解决兽药残留问题提供有效的解决 途径。
2 液相色谱质谱联用技术在兽药残留检测中的应用β-内酰胺类在动物医疗中被广泛应用,这种抗生素可以抑制动物细菌性感染,同时还可以对动物体内的细菌细胞合成、抗革兰氏阳性菌等进行阻断隔离,其主要的代表化合物有青霉素、氨苄青霉素。
徐伟、耿士伟等利用电喷雾离子阱技术,对牛奶中7种β-内酰胺类抗生素进行了检测,用乙腈提取和沉淀蛋白质,经C18柱净化浓缩后供LC-MS/MS分析,再利用正离子模式监测,多级离子捕捉器可以提供更多的碎片离子结构信息,获得高灵敏度。
使用LC-MS/MS测量牛奶中的阿莫西林、邻氯青霉素、青霉素G等,并使用内标物d7-青霉素G,样品经高速离心脱脂后,样品过C18柱(pH值过柱时大于6),每一种药物选择3个离子来提高检测的灵敏度。
然后他们将这一方法运用到生奶检测中,以青霉素V为内标,测定了10种牛乳中β-内酰胺类抗生素的残留检测方法[1]。
郭盈岑教授在负离子扫描模式下监测牛肝、肾和肌肉中的6种青霉素含量,用LC-MS/MS测定,定量限为50 μg/kg。
通过LC-MS/MS法测定β-内酰胺、皮质激素、氯霉素等药物的实验研究发现,认为液质结合技术是解决兽药残留分析的有效手段[2]。