当前位置:文档之家› 绥化市(完整版)动量守恒定律单元测试题

绥化市(完整版)动量守恒定律单元测试题

绥化市(完整版)动量守恒定律单元测试题
绥化市(完整版)动量守恒定律单元测试题

绥化市(完整版)动量守恒定律单元测试题

一、动量守恒定律 选择题

1.如图所示,长木板A 放在光滑的水平面上,质量为6kg m =的小物体B 以水平速度

02m/s v =滑上原来静止的长木板A 的上表面,由于A 、B 间存在摩擦,A 、B 速度随时间

变化情况如图乙所示,取210m/s g =,则下列说法正确的是( )

A .木板A 与物体

B 质量相等 B .系统损失的机械能为6J

C .木板A 的最小长度为1m

D .A 对B 做的功与B 对A 做的功绝对值相等

2.如图甲所示,一轻弹簧的两端与质量分别为1m 、2m 的两物块A 、B 相连接,并静止在光滑水平面上。现使B 获得水平向右、大小为6m/s 的瞬时速度,从此刻开始计时,两物块的速度随时间变化的规律如图乙所示,从图像提供的信息可得( )

A .在1t 、3t 两个时刻,两物块达到共同的速度2m/s ,且弹簧都处于伸长状态

B .在3t 到4t 时刻之间,弹簧由压缩状态恢复到原长

C .两物体的质量之比为1m :2m =2:1

D .运动过程中,弹簧的最大弹性势能与B 的初始动能之比为2:3

3.如图,在光滑的水平面上有一个长为L 的木板,小物块b 静止在木板的正中间,小物块

a 以某一初速度0v 从左侧滑上木板。已知物块a 、

b 与木板间的摩擦因数分别为a μ、

b μ,木块与木板质量均为m ,a 、b 之间的碰撞无机械能损失,滑动摩擦力等于最大静摩

擦力。下列说法正确的是( )

A .若没有物块从木板上滑下,则无论0v 多大整个过程摩擦生热均为2

013

mv B .若

22

a

b a μμμ<≤,则无论0v 多大,a 都不会从木板上滑落

C .若03

2

a v gL μ≤

,则ab 一定不相碰 D .若2b a μμ>,则a 可能从木板左端滑落

4.如图,在光滑水平面上放着质量分别为2m 和m 的A 、B 两个物块,弹簧与A 、B 栓连,现用外力缓慢向左推B 使弹簧压缩,此过程中推力做功W 。然后撤去外力,则( )

A .从撤去外力到A 离开墙面的过程中,墙面对A 的冲量大小为2mW

B .当A 离开墙面时,B 的动量大小为2mW

C .A 离开墙面后,A 的最大速度为

89W

m

D .A 离开墙面后,弹簧的最大弹性势能为

23

W

5.如图所示,将一光滑的、质量为4m 、半径为R 的半圆槽置于光滑水平面上,在槽的左侧紧挨着一个质量为m 的物块.今让一质量也为m 的小球自左侧槽口A 的正上方高为R 处从静止开始落下,沿半圆槽切线方向自A 点进入槽内,则以下结论中正确的是( )

A .小球在半圆槽内第一次由A 到最低点

B 的运动过程中,槽的支持力对小球做负功 B .小球第一次运动到半圆槽的最低点B 时,小球与槽的速度大小之比为41︰

C .小球第一次在半圆槽的最低点B 时对槽的压力为133

mg

D .物块最终的动能为

15

mgR

6.A 、B 两球沿同一直线运动并发生正碰,如图所示为两球碰撞前后的位移—时间(x-t)图像,图中a 、b 分别为A 、B 两球碰撞前的图线,c 为碰撞后两球共同运动的图线.若A 球的质量

2A m kg =,则由图可知下列结论正确的是( )

A .A 、

B 两球碰撞前的总动量为3 kg·m/s B .碰撞过程A 对B 的冲量为-4 N·s

C .碰撞前后A 的动量变化为4kg·m/s

D .碰撞过程A 、B 两球组成的系统损失的机械能为10 J

7.将质量为m 0的木块固定在光滑水平面上,一颗质量为m 的子弹以速度v 0沿水平方向射入木块,子弹射穿木块时的速度为

3

v .现将同样的木块放在光滑的水平桌面上,相同的子弹仍以速度v 0沿水平方向射入木块,设子弹在木块中所受阻力不变,则以下说法正确的是()

A .若m 0=3m ,则能够射穿木块

B .若m 0=3m ,子弹不能射穿木块,将留在木块中,一起以共同的速度做匀速运动

C .若m 0=3m ,子弹刚好能射穿木块,此时子弹相对于木块的速度为零

D .若子弹以3v 0速度射向木块,并从木块中穿出,木块获得的速度为v 1;若子弹以4v 0速度射向木块,木块获得的速度为v 2;则必有v 1<v 2

8.如图所示,两个小球A 、B 在光滑水平地面上相向运动,它们的质量分别为

m A =4kg ,m B =2kg ,速度分别是v A =3m/s (设为正方向),v B =-3m/s .则它们发生正碰后,速度的可能值分别为( )

A .v A ′=1 m/s ,v

B ′=1 m/s B .v A ′=4 m/s ,v B ′=-5 m/s

C .v A ′=2 m/s ,v B ′=-1 m/s

D .v A ′=-1 m/s ,v B ′=-5 m/s

9.如图,斜面体固定在水平面上,斜面足够长,在斜面底端给质量为m 的小球以平行斜面向上的初速度1v ,当小球回到出发点时速率为2v 。小球在运动过程中除重力和弹力外,另受阻力f (包含摩擦阻力),阻力f 大小与速率成正比即f kv =。则小球在斜面上运动总时间t 为( )

A.12

sin

v v

t

+

=

?

B.12

sin

v v

t

-

=

?

C.

12

12

sin

2

mv mv

t

v v

mg k

θ

+

=

+

?+D.

12

12

sin

2

mv mv

t

v v

mg k

θ

-

=

+

?-

10.一物体在外力的作用下从静止开始做直线运动,合外力方向不变,大小随时间的变化如图所示.设该物体在0t和0

2t时刻相对于出发点的位移分别是

1

x和

2

x,速度分别是

1

v和2

v,合外力从开始至

o

t时刻做的功是

1

W,从

t至

2t时刻做的功是

2

W,则

A.21

5

x x

=,

21

3

v v

=B.

1221

,

95

x x v v

==

C.2121

,

58

x x W W

==D.

2121

,

39

v v W W

==

11.如图所示,小球A质量为m,系在细线的一端,线的另一端固定在O点,O点到光滑水平面的距离为h.物块B和C的质量分别是5m和3m,B与C用轻弹簧拴接,置于光滑的水平面上,且B物块位于O点正下方.现拉动小球使细线水平伸直,小球由静止释放,运动到最低点时与物块B发生正碰(碰撞时间极短),反弹后上升到最高点时到水平面的距离

16

h

.小球与物块均视为质点,不计空气阻力,重力加速度为g,则()

A.碰撞后小球A

2gh

B.碰撞过程B物块受到的冲量大小2

m gh

C.碰后轻弹簧获得的最大弹性势能

15

128

mgh

D.小球C

5

2

16

gh

12.如图所示,质量均为m的A、B两物块用轻弹簧连接,放在光滑的水平面上,A与竖直墙面接触,弹簧处于原长,现用向左的推力缓慢推物块B,当B处于图示位置时静止,整个过程推力做功为W,瞬间撤去推力,撤去推力后()

A .当A 对墙的压力刚好为零时,物块

B 的动能等于W B .墙对A 物块的冲量为4mW

C .当B 向右运动的速度为零时,弹簧的弹性势能为零

D .弹簧第一次伸长后具有的最大弹性势能为W

13.一质量为m =6kg 带电量为q =-0.1C 的小球P ,自倾角θ=530的固定光滑斜面顶端由静止开始滑下,斜面高h =6.0m ,斜面底端通过一段光滑小圆弧与一光滑水平面相连。整个装置处在水平向右的匀强电场中,场强E =200N/C ,忽略小球在连接处的能量损失,当小球运动到水平面时,立即撤去电场。水平面上放一质量也为m 静止不动的

1

4

圆槽Q , 圆槽光滑且可沿水平面自由滑动,圆槽的半径R =3m ,如图所示(已知sin53o =0.8,cos53o =0.6,g=10m/s 2)则以下说法正确的是:

A .由静止释放到滑到斜面底端,P 球的电势能增加了90J

B .小球P 运动到水平面时的速度大小为5m/s

C .最终小球将冲出圆槽Q

D .最终小球不会冲出圆槽Q

14.如图(a )所示,一根竖直悬挂的不可伸长的轻绳,下端拴一小物块A ,上端固定在C 点且与一能测量绳的拉力的测力传感器相连.已知有一质量为m 0的子弹B 以水平速度v 0射入A 内(未穿透),接着两者一起绕C 点在竖直面内做圆周运动。在各种阻力都可忽略的条件下测力传感器测得绳的拉力F 随时间t 变化关系如图(b )所示,已知子弹射入的时间极短,且图(b )中t =0为A 、B 开始以相同的速度运动的时刻。下列说法正确的是

A .A 、

B 一起在竖直面内做周期T =t 0的周期性运动 B .A 的质量大小为06m

F m m g

=

-

C.子弹射入木块过程中所受冲量大小为000

(6)

m

m

m v F m g

F

-

D.轻绳的长度为

22

00

2

36

5

m

m v g

F

15.如图甲所示,光滑斜面固定在水平面上,倾角为30°,斜面足够长. 质量为0. 2kg的物块静止在斜面底端,0

t=时刻,物块受到沿斜面方向拉力F的作用,取沿斜面向上为正方向,拉力F随时间t变化的图像如图乙所示,g

取10m/s2。则

A.4s末物体的速度为零

B.3s

t=时物块沿斜面向上运动最远

C.0~4s内拉力对物体做功为20J

D.0~4s内拉力对物体冲量为零

16.如图,为一足够长的光滑水平面,右侧挡板C与轻质弹簧一端相连,接触面均光滑的三角形斜劈A静止放在水平面上,另一可视为质点的小球B从斜劈顶端距地面高h处静止

释放,且3

A

m m

=,

B

m m

=,小球B滑下后与弹簧作用后反向弹回,下列说法正确的有()

A.小球离开斜劈时两者水平位移3

A B

x x

=

B.小球下滑过程中,支持力对小球要做功

C.弹簧可以获得的最大弹性势能为

3

4

mgh

D.小球反向弹回后能追上斜劈,并滑上斜劈端h高处

17.如图所示,质量为2m的物体A放在光滑水平面上,右端与一水平轻质弹簧相连,弹簧另一端固定在墙上,质量为m的物体B以速度0v向右运动,与A相碰后一起压缩弹簧,直至B与A分离的过程中,下列说法正确的是

A .在弹簧被压缩的过程中,物体

B 、A 组成的系统机械能守恒 B .弹簧的最大弹性势能为2016

mv C .物体A 对B 做的功为

2049

mv D .物体A 对B 的冲量大小为

04

3

mv 18.如图所示,水平面(纸面)内有两条足够长的平行光滑金属导轨PQ 、MN ,导轨电阻不计,间距为L ;导轨之间有方向竖直向下(垂直于纸面向里)、大小为B 的匀强磁场;金属杆ab 、cd 质量均为m ,电阻均为R ,两杆静止在水平导轨上,间距为s 0。t =0时刻开始金属杆cd 受到方向水平向右、大小为F 的恒定外力作用。t =t 0时刻,金属杆cd 的速度大小为v ,此时撤去外力F ,下列说法正确的是( )

A .t =t 0时刻,金属杆ab 的速度大小为

Ft v m

- B .从t =0到t =t 0时间内,流过金属杆ab 的电荷量为0

Ft BL

C .最终两金属杆的间距为0

022

2FRt s B L +

D .最终两金属杆的间距为0

022

FRt s B L +

19.如图所示,光滑水平桌面上并排放两个完全相同的可视为质点的物块A 、B ,质量均为m ,其中物块A 被一条遵守胡克定律的弹性绳连接,绳另一端固定在高处O 点,弹性绳的原长为L ,劲度系数为k ,当物块A 在O 点正下方时绳处于原长状态。现使物块A 、B 一起从绳和竖直方向夹角为θ=60°开始释放,下列说法正确的是( )

A.刚一释放时物块A对物块B的推力为

3

4

kL

B.物块A向右运动的最远距离为23L

C.从静止到物块A、B分离,绳对A做的功大于A对B做的功

D.从静止到物块A、B分离,绳对A的冲量大于A对B的冲量

20.如图所示,轻弹簧的一端固定在竖直墙上,一质量为2m的光滑弧形槽静止放在足够长的光滑水平面上,弧形槽底端与水平面相切,一质量为m的小物块从槽上高h处开始下滑,重力加速度为g,下列说法正确的是

A.物体第一次滑到槽底端时,槽的动能为

3

mgh

B.物体第一次滑到槽底端时,槽的动能为

6

mgh

C.在压缩弹簧的过程中,物块和弹簧组成的系统动量守恒

D.物块第一次被弹簧反弹后能追上槽,但不能回到槽上高h处

二、动量守恒定律解答题

21.如图甲所示,足够长的木板A静止在水平面上,其右端叠放着小物块B左端恰好在O 点。水平面以O点为界,左侧光滑、右侧粗糙。物块C(可以看成质点)和D间夹着一根被压缩的轻弹簧,并用细线锁住,两者以共同速度06m/s

v=向右运动某时刻细线突然断开,C和弹簧分离后撤去D,C与A碰撞(碰撞时间极短)并与A粘连,此后1s时间内,A、C及B的速度一时间图象如图乙所示。已知A、B、C、D的质量均为1kg

m=,A、C与粗糙水平面间的动摩擦因数相同,最大静摩擦力等于滑动摩擦力,重力加速度

2

10m/s

g=。求:

(1)木板A与粗糙水平面间的动摩擦因数及B与A间的动摩擦因数;

(2)细线断开之前弹簧的弹性势能。

22.一个光滑直槽长为L,固定在水平面上,直槽两端有竖直挡板,槽内有两个质量相同的光滑小球.设水平向右为x轴正方向,初始时小球1位于0

x=处,速度为v,运动方向向右;小球2位于x L

=处,速度为2v,运动方向向左,如图所示.小球间的碰撞是完全

弹性的(碰撞前后速度交换方向相反),而小球每次与槽壁的碰撞结果都会使小球速度减半的返回,求:在哪些时间段内两小球的速度大小、方向相同?对应这些时间段的速度大小为多少?

23.如图所示,在竖直平面内倾角37θ?=的粗糙斜面AB 、粗糙水平地面BC 、光滑半圆轨道CD 平滑对接,CD 为半圆轨道的竖直直径。BC 长为l ,斜面最高点A 与地面高度差

1.5h l =,轨道CD 的半径4

R l

=

。质量为m 的小滑块P 从A 点静止释放,P 与AB 、BC 轨道间的滑动摩擦因数为1

8

μ=

。在C 点静止放置一个质量也为m 的小球Q ,P 如果能与Q 发生碰撞,二者没有机械能损失。已知重力加速度为g ,sin370.6?=。求

(1)通过计算判断,滑块P 能否与小球Q 发生碰撞;

(2)如果P 能够与Q 碰撞,求碰后Q 运动到D 点时对轨道的压力大小;

(3)如果小球Q 的质量变为km (k 为正数),小球Q 通过D 点后能够落在斜面AB 上,求k 值范围?

24.同学们可能有些人玩过小砂包游戏,如果释放小砂包落到地面上它不会反弹会立刻静止。某同学将质量为m 1砂包用一根不可伸长的轻绳穿过桌子中间的小孔与质量为m 2的砂包相连,如图所示,绳长为L ,桌高为H ,并且H

25.如图,质量为M =4kg 的木板AB 静止放在光滑水平面上,木板右端B 点固定一根轻质弹簧,弹簧自由端在C 点,C 到木板左端的距离L =0.5m ,质量为m =1kg 的小木块(可视为质点)静止放在木板的左端,木块与木板间的动摩擦因数为μ=0.2,木板AB 受到水平向左的恒力F =14N ,作用一段时间后撤去,恒力F 撤去时木块恰好到达弹簧自由端C 处,此后运动过程中弹簧最大压缩量x =5cm ,g =10m/s 2.求:

(1)水平恒力F作用的时间t;

(2)撤去F后,弹簧的最大弹性势能E P;

(3)整个过程产生的热量Q.

26.如图所示,一根劲度系数为k的轻质弹簧竖直放置,上下两端各固定质量均为M的物体A和B(均视为质点),物体B置于水平地面上,整个装置处于静止状态,一个质量

11 2

m M

=的小球P从物体A正上方距其高度h处由静止自由下落,与物体A发生碰撞(碰撞时间极短),碰后A和P粘在一起共同运动,不计空气阻力,重力加速度为g.

(1)求碰撞后瞬间P与A的共同速度大小;

(2)当地面对物体B的弹力恰好为零时,求P和A的共同速度大小.

(3)若换成另一个质量

21 4

m M

=的小球Q从物体A正上方某一高度由静止自由下落,与物体A发生弹性碰撞(碰撞时间极短),碰撞后物体A达到最高点时,地面对物块B的弹力恰好为零.求Q开始下落时距离A的高度.(上述过程中Q与A只碰撞一次)

【参考答案】***试卷处理标记,请不要删除

一、动量守恒定律选择题

1.A

解析:ABC

【解析】

【分析】

【详解】

A.由图示图像可以知道,木板获得的速度为v=1m/s,A、B组成的系统动量守恒,以B的初速度方向为正方向,由动量守恒定律得

()0B A B m v m m v =+

解得

6kg A B m m ==

所以木板A 与物体B 质量相等,故A 正确; B .系统损失的机械能为

()220116J 22

B A B E m v m m v ?=

-+= 故B 正确;

C .木板A 的最小长度就是物块在木板上滑行的距离,由图乙可知,木板A 的最小长度为

211

1m 11m=1m 22

B A x x x +?=-=

?-?? 故C 正确;

D .物块在木板上滑行的过程中,产生了内能,所以A 对B 做功与B 对A 做功的绝对值不相等,故D 错误。 故选ABC 。

2.B

解析:BCD 【解析】 【分析】

两个滑块与弹簧系统机械能守恒、动量守恒,结合图象可以判断它们的能量转化情况和运动情况。 【详解】

A.从图象可以看出,从0到t 1的过程中弹簧被拉伸,t 1时刻两物块达到共同速度2m/s ,此时弹簧处于伸长状态,从t 2到t 3的过程中弹簧被压缩,t 3时刻两物块达到共同速度2m/s ,此时弹簧处于压缩状态,故A 错误;

B.由图示图象可知,从t 3到t 4时间内A 做减速运动,B 做加速运动,弹簧由压缩状态恢复到原长,故B 正确;

C.由图示图象可知,t 1时刻两物体速度相同,都是2m/s ,A 、B 系统动量守恒,以B 的初速度方向为正方向,由动量守恒定律得:

()11122m v m m v =+,

()21262m m m =+?,

解得:

12:2:1m m =,

故C 正确; D.由图示图象可知, 在初始时刻,B 的初动能为:

22KB 20221161822

E m v m m =

=?= 在t 1时刻,A 、B 两物块的速度是2m/s ,A 、B 两物块动能之和为:

()22k 122211

+32622

E m m v m m =

=??= 所以,这时候,最大的弹性势能为

kB k 22218612P E E E m m m =-=-=,

所以:

p KB 2212:182:3E E m m ==:

故D 正确。

3.A

解析:ABD 【解析】 【分析】 【详解】

A .若没有物块从木板上滑下,则三者最后共速,以三者为整体,水平方向动量守恒,

mv 0=3mv 1 ①

则整个过程产生的热量等于动能的变化,有

Q=

12mv 02?1

2

×3mv 12 ② 联立①②,得

Q =

1

3

mv 02 故A 正确;

BD .a 、b 之间的碰撞无机械能损失,故碰撞过程中动量守恒和机械能守恒,设碰前速度分别为v 1、v 2,碰后分别为v 1'、v 2',且有v 1>v 2,以v 1方向为正方向,则有

mv 1+mv 2=mv 1'+mv 2'③

12mv 12+12mv 22=12mv 1′2+1

2

mv 2′2 ④ 联立③④,得

v 1'=v 2,v 2'=v 1

即碰后a 、b 交换速度。

(1)若b 、c 不相对滑动,由牛顿第二定律可得

12a mg ma μ=,2b mg ma μ=,12a a ≤

2

a

b μμ≥

此情况,开始时b 、c 相对静止。碰撞前有

a b c v v v >=

碰撞后a 、b 交换速度,则有

b a

c v v v >=

若a 、c 不相对滑动,此时有:

12'b mg ma μ=,2'a mg ma μ=,12'a a ≤

2b a μμ≤

22

a

b a μμμ≤≤时,碰后a 和木板共速,且不发生相对滑动,无论0v 多大,a 都不会从

木板上滑落,故B 正确;

若μb >2μa , a 相对木板向左运动,故a 可能从木板左端滑落,故D 正确; C .若a 与b 碰前三者已经共速,则ab 一定不相碰,此时有

220111

3222

a m L g

mv mv μ=-? ⑤ 联立①⑤,得

0v =

故若0v >

ab 一定不相碰,故C 错误; 故选ABD 。

4.B

解析:BCD 【解析】 【分析】 【详解】

A .设当A 离开墙面时,

B 的速度大小为v B .根据功能关系知

21

2

B W mv =

B v =

从撤去外力到A 离开墙面的过程中,对A 、B 及弹簧组成的系统,由动量定理得:墙面对A 的冲量大小

0B I mv =-=故A 错误;

B .当A 离开墙面时,B 的动量大小

B B p mv ==

故B 正确;

C .当弹簧再次恢复原长时,A 的速度最大,从A 离开墙壁到AB 共速的过程,系统动量和机械能均守恒,取向右为正方向,由动量守恒有

mv B =2mv A +mv ′B ①

由机械能守恒有

2211

222

A B W mv mv =+'? ②

由①②解得:A 的最大速度为

A v =

故C 正确;

D .B 撤去F 后,A 离开竖直墙后,当两物体速度相同时,弹簧伸长最长或压缩最短,弹性势能最大。设两物体相同速度为v ,A 离开墙时,B 的速度为v 0.根据动量守恒和机械能守恒得

mv B =3mv

231

2

Pm W mv E +?=

联立解得:弹簧的弹性势能最大值为

23

Pm W

E =

故D 正确。 故选BCD 。

5.A

解析:AD 【解析】 【分析】 【详解】

A.小球从A 到B 的过程中,小球对半圆槽的压力方向向左下方,所以半圆槽要向左推动物块一起运动,因而小球参与了两个运动:一个是沿半圆槽的圆周运动,另一个是与半圆槽一起向左运动,小球所受支持力方向与速度方向并不垂直,而是大于90°,故槽的支持力对小球做负功,故A 正确;

B.由小球、半圆槽和物块组成的系统在水平方向不受外力,故球、半圆槽和物块在水平方向动量守恒,取向右为正,则有:mv 1-(4m +m )v 2=0,解得:v 1:v 2=5:1,故B 错误;

C.根据系统机械能守恒得:mg ×2R =

()221211422mv m m v +?+,联立解得:1v

2v 小球第一次在最低点,由牛顿第二定律得:F N ?mg =m ()2

12v v R

-,联立解

得:F N =

49

15

mg ,故C 错误; D.当小球从B 到C 的过程中,小球对半圆槽有向右下方的压力,半圆槽开始减速,与物块

分离,则物块最终以2v 221215mgR E mv ==,故D 正确;

故选AD . 【点睛】

本题考查动量守恒定律与机械能守恒定律.当球下落到最低点过程,由于左侧竖直墙壁作用,小球与槽组成的系统水平方向上的动量不守恒,但小球机械能守恒.当球从最低点上升时,小球与槽组成的系统水平方向上的动量守恒,但小球机械能不守恒,而小球与槽组成的系统机械能守恒.

6.B

解析:BCD 【解析】 【分析】 【详解】

A 、由s-t 图像可以知道:碰撞前A 的速度为410

3/2

A v m s -==- ; 碰撞前

B 的速度40

2/2

B v m s -=

= , 碰撞后AB 的速度为24

1/2

C v m s -=

=- 根据动量守恒可知 ()b B a A a b C m v m v m m v -=-+ 代入速度值可求得:43

b m kg =

所以碰撞前的总动量为 10

/3

b B a A m v m v kg m s -=-

? ,故A 错误; B 、碰撞时A 对B 所施冲量为即为B 的动量变化量4B b C b B P m v m v N s ?=--=-? 故B 正确;

C 、根据动量守恒可知44/A B P P N s kg m s ?=-?=?=? ,故C 正确;

D 、碰撞中A 、B 两球组成的系统损失的动能为()22211110222

a A

b B a b C m v m v m m v J +-+= ,故D 正确, 故选BCD 【点睛】

结合图像求出碰前碰后的速度,利用动量守恒求出B 的质量,然后根据定义求出动量的变

化量.

7.B

解析:B 【解析】 【分析】 【详解】

A 、木块固定时,子弹射穿木块,设子弹在木块中所受阻力为f ,木块长度为d ,对子弹由

动能定理得:fd =12mv 02-12m 2

03v ?? ???=4

9

mv 02;木块放在光滑的水平面上不固定时,子弹射

入木块,系统动量守恒,假设子弹能刚好穿出木块;由动量守恒定律得:mv 0=(m 0+m )

v ,由能量守恒定律得:

12mv 02=1

2

(m 0+m )v 2+Q ,Q =fd ,解得:m 0=8m ,则子弹要穿出木块m 0≥8m ,故A 、C 错误,B 正确;

D 、子弹以3v 0速度射向木块,并从木块中穿出,则子弹以4v 0速度射向木块时,子弹也能从木块中穿出,木块宽度一定,子弹速度越大,子弹穿过木块的时间t 越短,由于子弹穿过木块时受到的阻力f 相同,对木块由动量定理得:ft =m 0v -0,可知时间t 越短,木块获得的速度越小,则v 2<v 1,故D 错误.

8.A

解析:A 【解析】 【分析】 【详解】

碰前系统总动量为34326/kg m s ?-?=?,碰前总动能为2

211

4323272

2

J ??+

??=; 若1m /s 1m /A B v v s ''=

,=,则系统动量守恒,动能3J ,碰撞后A 球速度不大于B 球的速度,符合,故A 可能;

若4m /s /s A B v v ''=,=-5m ,则系统动量守恒,动能大于碰撞前,不符合题意,故B 不可能;

若2m /s 1m /s A B v v ''=,=-

,则系统动量守恒,但不符合碰撞后A 球速度不大于B 球的速度,故C 不可能;

若1m /s 5m /s A B v v ''=-

,=-,则系统动量不守恒,D 不可能. 9.A

解析:A 【解析】 【详解】

设沿斜面方向,最大位移为x ,阻力f 冲量:

0f I kv t kx kx =?=-=∑

则合冲量为sin mg t θ 由动量定理,

21sin mg t mv mv θ=+

则12

sin v v t g θ

+= A. 12

sin v v t g θ

+=?与计算相符,A 正确

B. 12

sin v v t g θ

-=

?与计算不符,B 错误

C.

12

12

sin 2mv mv t v v mg k θ+=

+?+与计算不符,C 错误

D.

12

12

sin 2

mv mv t v v mg k θ-=

+?-与计算不符,D 错误

10.A

解析:AC 【解析】 【分析】 【详解】

根据F -t 图像面积意义和动量定理有m 1v =F 0t 0,m 2v = F 0t 0+2F 0t 0,则213v v =;应用位移公式可知1x =

12v 0t 、2x =122v v +0t +12

v

0t ,则215x x =,B 错、A 对;在第一个o t 内对物体应用动能定理有1W =2

12

mv 、在第二个o t 内对物体应用动能定理有2W =222122mv mv -

,则218W W =,D 错、C 对

11.A

解析:ACD 【解析】 【详解】

A 、设小球运动到最低点与物块

B 碰撞前的速度大小为v 1,取小球运动到最低点时的重力势能为零,根据机械能守恒定律有:2

1

12

mgh mv =

,解得:1v =设碰撞后小球反弹的速度大小为v 1′,同理有:211

162

mgh

mv '=;解得1v '=

,选项A 正确.

B 、设碰撞后物块B 的速度大小为v 2,取水平向右为正方向,由动量守恒定律有:mv 1=-

mv 1′+5mv 2;

解得:2v =

;由动量定理可得,碰撞过程B

物块受到的冲量为:25

54

I mv ==

B 错误.

C 、碰撞后当B 物块与C 物块速度相等时轻弹簧的弹性势能最大,据动量守恒定律有5mv 2=8mv 3;据机械能守恒定律2223115822Pm E mv mv =?-?;解得:15128

Pm E mgh =;选项C 正确.

D 、对B 物块与C 物块在弹簧回到原长时,C 物块有最大速度;据动量守恒和机械能守恒可

解得C v =;选项D 正确. 【点睛】

本题综合考查动量守恒定律、机械能守恒定律,要注意正确分析物理过程,选择合适的物理规律求解.

12.A

解析:AC 【解析】 【详解】

A.根据功能关系,开始时弹簧具有的弹性势能为W ,当A 对墙的压力刚好为零时,弹簧的弹力为零,弹性势能为零,根据能量守恒可知,此时B 的动能为W ,A 项正确;

B.墙对A 的冲量等于A 、B

组成系统的动量的改变量,即I p =?==B

项错误;

C.当B 的速度为零时,弹簧处于原长,即弹簧的弹性势能为零,C 项正确;

D.

根据动量守恒2mv =

2p 11

222

E W mv W =-?=

D 项错误。 故选AC 。

13.A

解析:AD 【解析】 【详解】

A .在整个过程中,电场力对P 球做负功为:

6

0.120090J

J 43

h W qE

tan θ

=-=-??-= 则

△E =-W =90J

选项A 正确; B .根据动能定理得:

21

2

h mgh qE mv tan θ-?

= 代入数据可得:

v =

选项B 错误;

CD .设当两者速度相等时,小球上升的高度为H ,根据水平方向动量守恒得:

mv =2mv ′

代入数据:

'v =

根据机械能守恒得:

2211

222

mv mv mgH ?'+= 代入已知数据得:

H =2.25m <R

所以小球没有冲出圆槽,选项C 错误,D 正确。

14.B

解析:BCD 【解析】 【详解】

A .根据图(b )可以知道A 、

B 一起在竖直面内做周期02T t =的周期性运动,故A 错误; BCD .设子弹打入物块A 后一起运动的速度大小为1v ,AB 一起上到最高点的速度大小为

2v ,细绳的长度为l 。子弹打入物块的瞬间,根据动量守恒定律有:

0001()m v m m v =+

子弹和物块在最低点绳子有最大拉力m F ,根据牛顿第二定律有:

2100()()m v F m m g m m l

-+=+

子弹和物块在最高点绳子有最小拉力0F =,根据牛顿第二定律有:

2

200()()v m m g m m l

+=+

从最高点到最低点,根据动能定理:

220010211

()2()()22

m m l m m v m m v +=+-+

物块A 受到子弹的冲量

1A I mv =

联合解得:

06m F m m g

=-;22

00

2

365m m v l g F =;000(6)m A m m v F m g I F -=。 故BCD 正确。 故选BCD 。

15.B

解析:BC 【解析】 【分析】

根据牛顿第二定律求解加速度,再根据运动学公式求解速度;根据位移公式求解位移,再求出拉力做的功。根据冲量的计算公式求解冲量。 【详解】 AB .0~2s 内

11sin30F mg ma -?=

得2

15m/s a =,在2~4s 内

22sin30F mg ma +?=,

得2

210m/s a =,则物块0~2s 内向上匀加速直线运动,2s ~3内向上匀减速直线运动,3s

时减速为零,3~4s 内向下匀加速直线运动,4~6s 向下匀减速直线运动,6s 时减速为零,以后往复性运动,选项A 错误,选项B 正确。

C .在4s t =和2s t =时物块在同一位置,速度等大反向,所以在0~4s 内拉力对物体做功等于0~2s 内拉力对物体做功,

21

10m 2s at == 120J W F s ==,

选项C 正确。

D .0~4s 内拉力对物体冲量

11222212N s I Ft F t =+=?-=?

选项D 错误。 故选BC 。

16.B

解析:BC 【解析】 【分析】 【详解】

A .小球

B 下落,以AB 为系统,水平方向平均动量守恒:

0A B A

B x x

m m t t

=-, 所以3B A x x =,故A 错误;

B .由功能关系知:支持力对小球做负功,故B 正确;

最新物理动量守恒定律练习题20篇

最新物理动量守恒定律练习题20篇 一、高考物理精讲专题动量守恒定律 1.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A、B、C,三球的质量分别为m A=1kg、m B=2kg、m C=6kg,初状态BC球之间连着一根轻质弹簧并处于静止,B、C连线与杆垂直并且弹簧刚好处于原长状态,A球以v0=9m/s的速度向左运动,与同一杆上的B球发生完全非弹性碰撞(碰撞时间极短),求: (1)A球与B球碰撞中损耗的机械能; (2)在以后的运动过程中弹簧的最大弹性势能; (3)在以后的运动过程中B球的最小速度. 【答案】(1);(2);(3)零. 【解析】 试题分析:(1)A、B发生完全非弹性碰撞,根据动量守恒定律有: 碰后A、B的共同速度 损失的机械能 (2)A、B、C系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大 根据动量守恒定律有: 三者共同速度 最大弹性势能 (3)三者第一次有共同速度时,弹簧处于伸长状态,A、B在前,C在后.此后C向左加速,A、B的加速度沿杆向右,直到弹簧恢复原长,故A、B继续向左减速,若能减速到零则再向右加速. 弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有: 根据机械能守恒定律: 此时A、B的速度,C的速度

可知碰后A 、B 已由向左的共同速度减小到零后反向加速到向右的 ,故B 的最小速度为零 . 考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞. 【名师点睛】A 、B 发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A 球与B 球碰撞中损耗的机械能.当B 、C 速度相等时,弹簧伸长量最大,弹性势能最大,结合B 、C 在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答 2.如图:竖直面内固定的绝缘轨道abc ,由半径R =3 m 的光滑圆弧段bc 与长l =1.5 m 的粗糙水平段ab 在b 点相切而构成,O 点是圆弧段的圆心,Oc 与Ob 的夹角θ=37°;过f 点的竖直虚线左侧有方向竖直向上、场强大小E =10 N/C 的匀强电场,Ocb 的外侧有一长度足够长、宽度d =1.6 m 的矩形区域efgh ,ef 与Oc 交于c 点,ecf 与水平向右的方向所成的夹角为β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m 2=3×10-3 kg 、电荷量q =3×l0-3 C 的带正电小物体Q 静止在圆弧轨道上b 点,质量m 1=1.5×10-3 kg 的不带电小物体P 从轨道右端a 以v 0=8 m/s 的水平速度向左运动,P 、Q 碰撞时间极短,碰后P 以1 m/s 的速度水平向右弹回.已知P 与ab 间的动摩擦因数μ=0.5,A 、B 均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37°=0.6,cos37°=0.8,重力加速度大小g =10 m/s 2.求: (1)碰后瞬间,圆弧轨道对物体Q 的弹力大小F N ; (2)当β=53°时,物体Q 刚好不从gh 边穿出磁场,求区域efgh 内所加磁场的磁感应强度大小B 1; (3)当区域efgh 内所加磁场的磁感应强度为B 2=2T 时,要让物体Q 从gh 边穿出磁场且在磁场中运动的时间最长,求此最长时间t 及对应的β值. 【答案】(1)2 4.610N F N -=? (2)1 1.25B T = (3)127s 360 t π = ,001290143ββ==和 【解析】 【详解】 解:(1)设P 碰撞前后的速度分别为1v 和1v ',Q 碰后的速度为2v

高中物理动量守恒定律练习题及答案及解析

高中物理动量守恒定律练习题及答案及解析 一、高考物理精讲专题动量守恒定律 1.如图所示,在倾角为30°的光滑斜面上放置一质量为m 的物块B ,B 的下端连接一轻质弹簧,弹簧下端与挡板相连接,B 平衡时,弹簧的压缩量为x 0,O 点为弹簧的原长位置.在斜面顶端另有一质量也为m 的物块A ,距物块B 为3x 0,现让A 从静止开始沿斜面下滑,A 与B 相碰后立即一起沿斜面向下运动,但不粘连,它们到达最低点后又一起向上运动,并恰好回到O 点(A 、B 均视为质点),重力加速度为g .求: (1)A 、B 相碰后瞬间的共同速度的大小; (2)A 、B 相碰前弹簧具有的弹性势能; (3)若在斜面顶端再连接一光滑的半径R =x 0的半圆轨道PQ ,圆弧轨道与斜面相切 于最高点P ,现让物块A 以初速度v 从P 点沿斜面下滑,与B 碰后返回到P 点还具有向上的速度,则v 至少为多大时物块A 能沿圆弧轨道运动到Q 点.(计算结果可用根式表示) 【答案】20132v gx =01 4 P E mgx =0(2043)v gx =+【解析】 试题分析:(1)A 与B 球碰撞前后,A 球的速度分别是v 1和v 2,因A 球滑下过程中,机械能守恒,有: mg (3x 0)sin30°= 1 2 mv 12 解得:103v gx = 又因A 与B 球碰撞过程中,动量守恒,有:mv 1=2mv 2…② 联立①②得:21011 322 v v gx == (2)碰后,A 、B 和弹簧组成的系统在运动过程中,机械能守恒. 则有:E P + 1 2 ?2mv 22=0+2mg?x 0sin30° 解得:E P =2mg?x 0sin30°? 1 2?2mv 22=mgx 0?34 mgx 0=14mgx 0…③ (3)设物块在最高点C 的速度是v C ,

四动量守恒定律练习题及答案

四 动量守恒定律 姓名 一、选择题(每小题中至少有一个选项是正确的) 1.在下列几种现象中,动量守恒的有( ) A .原来静止在光滑水平面上的车,从水平方向跳上一个人,人车为一系统 B .运动员将铅球从肩窝开始加速推出,以运动员和球为一系统 C .从高空自由落下的重物落在静止于地面上的车厢中,以重物和车厢为一系统 D .光滑水平面上放一斜面,斜面光滑,一个物体沿斜面滑下,以重物和斜面为一系统 2.两物体组成的系统总动量守恒,这个系统中( ) A .一个物体增加的速度等于另一个物体减少的速度 B .一物体受的冲量与另一物体所受冲量相同 C .两个物体的动量变化总是大小相等,方向相反 D .系统总动量的变化为零 3.砂子总质量为M 的小车,在光滑水平地面上匀速运动,速度为v 0,在行驶途中有质量为m 的砂子从车上漏掉,砂子漏掉后小车的速度应为 ( ) A .v 0 B .m M Mv -0 A .m M mv -0 A .M v m M 0)(- 、B 两个相互作用的物体,在相互作用的过程中合外力为0,则下述说法中正确的是( ) A .A 的动量变大, B 的动量一定变大 B .A 的动量变大,B 的动量一定变小 C .A 与B 的动量变化相等 D .A 与B 受到的冲量大小相等 5.把一支枪水平固定在小车上,小车放在光滑的水平地面上,枪发射子弹时,关于枪、子弹、车的下列说法正确的有( ) A. 枪和子弹组成的系统动量守恒 B.枪和车组成的系统动量守恒 C .枪、弹、车组成的系统动量守恒 D .若忽略不计弹和枪筒之间的摩擦,枪、车组成的系统动量守恒 6.两球相向运动,发生正碰,碰撞后两球均静止,于是可以判定,在碰撞以前( ) A .两球的质量相等 B .两球的速度大小相同 C .两球的动量大小相等 D .以上都不能断定 7.一只小船静止在水面上,一个人从小船的一端走到另一端,不计水的阻力,以下说法正确的是( ) A .人在小船上行走,人对船的冲量比船对人的冲量小,所以 人向前运动得快,小船后退得慢 B .人在小船上行走时,人的质量比船的质量小,它们受到的 冲量大小是一样的,所以人向前运动得快,船后退得慢 C .当人停止走动时,因为小船惯性大,所以小船要继续后退 D .当人停止走动时,因为总动量守恒,所以小船也停止后退 8.如图所示,在光滑水平面上有一静止的小车,用线系一小球, 将球拉开后放开,球放开时小车保持静止状态,当小球落下以后 与固定在小车上的油泥沾在一起,则从此以后,关于小车的运动状态是 ( ) A .静止不动 B .向右运动 C .向左运动 D .无法判断 *9.木块a 和b 用一根轻弹簧连接起来,放在光滑水平面上,a 紧靠在墙壁上,在b 上施加向左的水平力使弹簧压缩,如图所示,当撤去外力后,下列说法中正确的是( ) A .a 尚未离开墙壁前,a 和b 系统的动量守恒 B .a 尚未离开墙壁前,a 与b 系统的动量不守恒 C .a 离开墙后,a 、b 系统动量守恒 D .a 离开墙后,a 、b 系统动量不守恒 *10.向空中发射一物体.不计空气阻力,当物体的速度恰好沿水平方向 时,物体炸裂为a,b 两块.若质量较大的a 块的速度方向仍沿原来的方向则 ( ) A .b 的速度方向一定与原速度方向相反 B .从炸裂到落地这段时间里,a 飞行的水平距离一定比b 的大

动量、冲量及动量守恒定律

动量、冲量及动量守恒定律

动量和动量定理 一、动量 1.定义:运动物体的质量和速度的乘积叫动量;公式p=m v; 2.矢量性:方向与速度的方向相同.运算遵循平行四边形定则. 3.动量的变化量 (1)定义:物体在某段时间内末动量与初动量的矢量差(也是矢量),Δp=p′-p(矢量式). (2)动量始终保持在一条直线上时的运算:选定一个正方向,动量、动量的变化量用带有正负号的数值表示,从而将矢量运算简化为代数运算(此时的正负号仅代表方向,不代表大小). 4.与动能的区别与联系: (1)区别:动量是矢量,动能是标量. (2)联系:动量和动能都是描述物体运动状态的物 理量,大小关系为E k=p2 2m或p=2mE k. 二、动量定理 1.冲量 (1)定义:力与力的作用时间的乘积.公式:I=

Ft.单位:牛顿·秒,符号:N·s. (2)矢量性:方向与力的方向相同. 2.动量定理 (1)内容:物体在一个运动过程中始末的动量变化量等于它在这个过程中所受力的冲量. (2)公式:m v′-m v=F(t′-t)或p′-p=I.3.动量定理的应用 碰撞时可产生冲击力,要增大这种冲击力就要设法减少冲击力的作用时间.要防止冲击力带来的危害,就要减小冲击力,设法延长其作用时间.(缓冲) 题组一对动量和冲量的理解 1.关于物体的动量,下列说法中正确的是() A.运动物体在任一时刻的动量方向,一定是该时刻的速度方向 B.物体的动能不变,其动量一定不变 C.动量越大的物体,其速度一定越大 D.物体的动量越大,其惯性也越大 2.如图所示,在倾角α=37°的斜面上, 有一质量为5 kg的物体沿斜面滑下,物 体与斜面间的动摩擦因数μ=0.2,求物体下滑2

高中物理公式大全(全集) 八、动量与能量

八、动量与能量 1.动量 2.机械能 1.两个“定理” (1)动量定理:F ·t =Δp 矢量式 (力F 在时间t 上积累,影响物体的动量p ) (2)动能定理:F ·s =ΔE k 标量式 (力F 在空间s 上积累,影响物体的动能E k ) 动量定理与动能定理一样,都是以单个物体为研究对象.但所描述的物理内容差别极大.动量定理数学表达式:F 合·t =Δp ,是描述力的时间积累作用效果——使动量变化;该式是矢量式,即在冲量方向上产生动量的变化. 例如,质量为m 的小球以速度v 0与竖直方向成θ角 打在光滑的水平面上,与水平面的接触时间为Δt ,弹起 时速度大小仍为v 0且与竖直方向仍成θ角,如图所示.则 在Δt 内: 以小球为研究对象,其受力情况如图所示.可见小球 所受冲量是在竖直方向上,因此,小球的动量变化只能在 竖直方向上.有如下的方程: F ′击·Δt -mg Δt =mv 0cos θ-(-mv 0cos θ) 小球水平方向上无冲量作用,从图中可见小球水平方向动量不变. 综上所述,在应用动量定理时一定要特别注意其矢量性.应用动能定理时就无需作这方 面考虑了.Δt 内应用动能定理列方程:W 合=m υ02/2-m υ02 /2 =0 2.两个“定律” (1)动量守恒定律:适用条件——系统不受外力或所受外力之和为零 公式:m 1v 1+m 2v 2=m 1v 1′+m 2v 2 ′或 p =p ′ (2)机械能守恒定律:适用条件——只有重力(或弹簧的弹力)做功 公式:E k2+E p2=E k1+E p1 或 ΔE p = -ΔE k 3.动量守恒定律与动量定理的关系 一、知识网络 二、画龙点睛 规律

动量守恒定律经典习题(带答案)

动量守恒定律习题(带答案)(基础、典型) 例1、质量为1kg的物体从距地面5m高处自由下落,正落在以5m/s的速度沿水平方向匀速前进的小车上,车上装有砂子,车与砂的总质量为 4kg,地面光滑,则车后来的速度为多少? 例2、质量为1kg的滑块以4m/s的水平速度滑上静止在光滑水平面上的质量为3kg的小车,最后以共同速度运动,滑块与车的摩擦系数为0.2,则此过程经历的时间为多少? 例3、一颗手榴弹在5m高处以v0=10m/s的速度水平飞行时,炸裂成质量比为3:2的两小块,质量大的以100m/s的速度反向飞行,求两块落地 点的距离。(g取10m/s2) 例4、如图所示,质量为0.4kg的木块以2m/s的速度水平地滑上静止的平板小车,车的质量为1.6kg,木块与小车之间的摩擦系数为0.2(g取10m/s2)。设 小车足够长,求: (1)木块和小车相对静止时小车的速度。 (2)从木块滑上小车到它们处于相对静止所经历的时间。 (3)从木块滑上小车到它们处于相对静止木块在小车上滑行的距离。 例5、甲、乙两小孩各乘一辆冰车在水平冰面上游戏,甲和他所乘的冰车的质量共为30kg,乙和他所乘的冰车的质量也为30kg。游戏时,甲推着一个质量为15kg的箱子和甲一起以2m/s的速度滑行,乙以同样大小的速度迎面滑来。为了避免相撞,甲突然将箱子沿冰面推向乙,箱子滑到乙处,乙迅速将它抓住。若不计冰面的摩擦,甲至少要以多大的速度(相对于地面)将箱子推出,才能避免与乙相撞? 答案:1.

h b 分析:以物体和车做为研究对象,受力情况如图所示。 在物体落入车的过程中,物体与车接触瞬间竖直方向具有较大的动量,落入车后,竖直方向上的动量减为0,由动量定理可知,车给重物的作用力远大于物体的重力。因此地面给车的支持力远大于车与重物的重力之和。 系统所受合外力不为零,系统总动量不守恒。但在水平方向系统不受外力作用,所以系统水平方向动量守恒。以车的运动方向为正方向,由动量守恒定律可得: 车 重物初:v 0=5m/s 0末:v v ?Mv 0=(M+m)v ?s m v m N M v /454 14 0=?+=+= 即为所求。 2、分析:以滑块和小车为研究对象,系统所受合外力为零,系统总动量守恒。 以滑块的运动方向为正方向,由动量守恒定律可得 滑块 小车初:v 0=4m/s 0末:v v ?mv 0=(M+m)v ?s m v m M M v /143 11 0=?+=+= 再以滑块为研究对象,其受力情况如图所示,由动量定理可得 ΣF=-ft=mv-mv 0 ?s g v v t 5.110 2.0) 41(0=?--=-=μf=μmg 即为所求。 3、分析:手榴弹在高空飞行炸裂成两块,以其为研究对象,系统合外力不为零,总动量不守恒。但手榴弹在爆炸时对两小块的作用力远大于自身的重力,且水平方向不受外力,系统水平方向动量守恒,以初速度方向为正。 由已知条件:m 1:m 2=3:2 m 1 m 2 初:v 0=10m/s v 0=10m/s

动量守恒定律

动量守恒定律 一.动量和冲量 1.动量:物体的质量和速度的乘积叫做动量:p =mv ⑴动量是描述物体运动状态的一个状态量,它与时刻相对应。 ⑵动量是矢量,它的方向和速度的方向相同。 2.冲量:力和力的作用时间的乘积叫做冲量:I =Ft ⑴冲量是描述力的时间积累效应的物理量,是过程量,它与时间相对应。 ⑵冲量是矢量,它的方向由力的方向决定(不能说和力的方向相同)。如果力的方向在作用时间内保持不变,那么冲量的方向就和力的方向相同。 ⑶高中阶段只要求会用I=Ft 计算恒力的冲量。对于变力的冲量,高中阶段只能利用动量定理通过物体的动量变化来求。 ⑷要注意的是:冲量和功不同。恒力在一段时间内可能不作功,但一定有冲量。 例1. 质量为m 的小球由高为H 的光滑斜面顶端无初速滑到底端过程中,重力、弹力、合力的冲量各是多大 - 解:力的作用时间都是g H g H t 2sin 1 sin 22 α α== ,力的大小依次是mg 、 mg cos α和mg sin α,所以它们的冲量依次是: gH m I gH m I gH m I N G 2,tan 2,sin 2=== 合α α 特别要注意,该过程中弹力虽然不做功,但对物体有冲量。 二、动量定理 1.动量定理:物体所受合外力的冲量等于物体的动量变化。既I =Δp ⑴动量定理表明冲量是使物体动量发生变化的原因,冲量是物体动量变化的量度。这里所说的冲量必须是物体所受的合外力的冲量(或者说是物体所受各外力冲量的矢量和)。 ⑵动量定理给出了冲量(过程量)和动量变化(状态量)间的互求关系。 ⑶现代物理学把力定义为物体动量的变化率:t P F ??=(牛顿第二定律的动量形式)。 ⑷动量定理的表达式是矢量式。在一维的情况下,各个矢量必须以同一个规定的方向为正。 ^ 三.动量守恒定律 1.动量守恒定律的条件 ⑴系统不受外力或者所受外力之和为零; ⑵系统受外力,但外力远小于内力,可以忽略不计; ⑶系统在某一个方向上所受的合外力为零,则该方向上动量守恒。 ⑷全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒。 2.动量守恒定律的表达形式 (1) 即p1 p2=p1/ p2/, (2)Δp1 Δp2=0,Δp1= -Δp2 3.运用动量守恒定律的解题步骤 1.明确研究对象,一般是两个或两个以上物体组成的系统; . 2.分析系统相互作用时的受力情况,判定系统动量是否守恒; 3.选定正方向,确定相互作用前后两状态系统的动量; 4.在同一地面参考系中建立动量守恒方程,并求解.

《动量守恒定律》单元测试题含答案(4)

《动量守恒定律》单元测试题含答案(4) 一、动量守恒定律 选择题 1.两滑块a 、b 沿水平面上同一条直线运动,并发生碰撞,碰撞后两者粘在一起运动.两者的位置x 随时间t 变化的图象如图所示.若a 滑块的质量a m 2kg =,以下判断正确的是 ( ) A .a 、b 碰撞前的总动量为3 kg m /s ? B .碰撞时a 对b 所施冲量为4 N s ? C .碰撞前后a 的动量变化为4 kg m /s ? D .碰撞中a 、b 两滑块组成的系统损失的动能为20 J 2.如图所示,固定的光滑金属水平导轨间距为L ,导轨电阻不计,左端接有阻值为R 的电阻,导轨处在磁感应强度大小为B 、方向竖直向下的匀强磁场中.质量为m 、电阻不计的导体棒ab ,在垂直导体棒的水平恒力F 作用下,由静止开始运动,经过时间t ,导体棒ab 刚好匀速运动,整个运动过程中导体棒始终与导轨垂直并保持良好接触.在这个过程中,下列说法正确的是 A .导体棒ab 刚好匀速运动时的速度22 FR v B L = B .通过电阻的电荷量2Ft q BL = C .导体棒的位移222 44 FtRB L mFR x B L -= D .电阻放出的焦耳热22222 44 232tRF B L mF R Q B L -= 3.将质量为m 0的木块固定在光滑水平面上,一颗质量为m 的子弹以速度v 0沿水平方向射入木块,子弹射穿木块时的速度为 3 v .现将同样的木块放在光滑的水平桌面上,相同的子弹仍以速度v 0沿水平方向射入木块,设子弹在木块中所受阻力不变,则以下说法正确的是()

A.若m0=3m,则能够射穿木块 B.若m0=3m,子弹不能射穿木块,将留在木块中,一起以共同的速度做匀速运动 C.若m0=3m,子弹刚好能射穿木块,此时子弹相对于木块的速度为零 D.若子弹以3v0速度射向木块,并从木块中穿出,木块获得的速度为v1;若子弹以4v0速度射向木块,木块获得的速度为v2;则必有v1<v2 4.在光滑水平面上,有两个小球A、B沿同一直线同向运动(B在前),已知碰前两球的动量分别为pA=10 kg·m/s、pB=13 kg·m/s,碰后它们动量的变化分别为ΔpA、ΔpB.下列数值可能正确的是( ) A.ΔpA=-3 kg·m/s、ΔpB=3 kg·m/s B.ΔpA=3 kg·m/s、ΔpB=-3 kg·m/s C.ΔpA=-20 kg·m/s、ΔpB=20 kg·m/s D.ΔpA=20kg·m/s、ΔpB=-20 kg·m/s 5.如图所示,左图为大型游乐设施跳楼机,右图为其结构简图.跳楼机由静止从a自由下落到b,再从b开始以恒力制动竖直下落到c停下.已知跳楼机和游客的总质量为m,ab 高度差为2h,bc高度差为h,重力加速度为g.则 A.从a到b与从b到c的运动时间之比为2:1 B.从a到b,跳楼机座椅对游客的作用力与游客的重力大小相等 C.从a到b,跳楼机和游客总重力的冲量大小为m gh D.从b到c,跳楼机受到制动力的大小等于2mg 6.如图所示,小车质量为M,小车顶端为半径为R的四分之一光滑圆弧,质量为m的小球从圆弧顶端由静止释放,对此运动过程的分析,下列说法中正确的是(g为当地重力加速度)() A.若地面粗糙且小车能够静止不动,则地面对小车的静摩擦力最大为mg B.若地面粗糙且小车能够静止不动,则地面对小车的静摩擦力最大为3 2 mg

高中物理动量守恒定律练习题

一、系统、内力和外力┄┄┄┄┄┄┄┄① 1.系统:相互作用的两个(或多个)物体组成的一个整体。 2.内力:系统内部物体间的相互作用力。 3.外力:系统以外的物体对系统内部的物体的作用力。 [说明] 1.系统是由相互作用、相互关联的多个物体组成的整体。 2.组成系统的各物体之间的力是内力,将系统看作一个整体,系统之外的物体对这个整体的作用力是外力。 ①[填一填]如图,公路上有三辆车发生了追尾事故,如果把前面两辆车看作一个系统,则前面两辆车之间的撞击力是________,最后一辆车对前面两辆车的撞击力是________(均填“内力”或“外力”)。 答案:内力外力 二、动量守恒定律┄┄┄┄┄┄┄┄② 1.内容:如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变。 2.表达式:对两个物体组成的系统,常写成: p1+p2=或m1v1+m2v2=。 3.适用条件:系统不受外力或者所受外力的矢量和为0。 4.动量守恒定律的普适性 动量守恒定律是一个独立的实验规律,它适用于目前为止物理学研究的一切领域。 [注意] 1.系统动量是否守恒要看研究的系统是否受外力的作用。

2.动量守恒是系统内各物体动量的矢量和保持不变,而不是系统内各物体的动量不变。 ②[判一判] 1.一个系统初、末状态动量大小相等,即动量守恒(×) 2.两个做匀速直线运动的物体发生碰撞,两个物体组成的系统动量守恒(√) 3.系统动量守恒也就是系统的动量变化量为零(√) 1.对动量守恒定律条件的理解 (1)系统不受外力作用,这是一种理想化的情形,如宇宙中两星球的碰撞,微观粒子间的碰撞都可视为这种情形。 (2)系统受外力作用,但所受合外力为零。像光滑水平面上两物体的碰撞就是这种情形。 (3)系统受外力作用,但当系统所受的外力远远小于系统内各物体间的内力时,系统的总动量近似守恒。例如,抛出去的手榴弹在空中爆炸的瞬间,弹片所受火药爆炸时的内力远大于其重力,重力可以忽略不计,系统的动量近似守恒。 (4)系统受外力作用,所受的合外力不为零,但在某一方向上合外力为零,则系统在该方向上动量守恒。 2.关于内力和外力的两点提醒 (1)系统内物体间的相互作用力称为内力,内力会改变系统内单个物体的动量,但不会改变系统的总动量。 (2)系统的动量是否守恒,与系统的选取有关。分析问题时,要注意分清研究的系统,系统的内力和外力,这是正确判断系统动量是否守恒的关键。 [典型例题] 例 1.[多选]如图所示,光滑水平面上两小车中间夹一压缩了的轻弹簧,两手分别按住小车,使它们静止,对两车及弹簧组成的系统,下列说法中正确的是() A.两手同时放开后,系统总动量始终为零

冲量与动量公式汇编

冲量与动量公式汇编 1.动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同} 2.冲量:I=Ft {I:冲量(N s),F:恒力(N),t:力的作用时间(s),方向由F决定} 3.动量定理:I=Δp或Ft=mvt–mvo {Δp:动量变化Δp=mvt–mvo,是矢量式} 4.动量守恒定律:p前总=p后总或p=p’′也可以是m1v1+m2v2=m1v1′+m2v2′ 5.弹性碰撞:Δp=0;ΔEk=0 {即系统的动量和动能均守恒} 6.非弹性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:损失的动能,EKm:损失的最大动能} 7.完全非弹性碰撞Δp=0;ΔEK=ΔEKm {碰后连在一起成一整体} 8.物体m1以v1初速度与静止的物体m2发生弹性正碰:v1′=(m1-m2)v1/(m1+m2) v2′=2m1v1/(m1+m2) 9.由8得的推论——等质量弹性正碰时二者交换速度(动能守恒、动量守恒) 10.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动 时的机械能损失。 E损=mvo2/2-(M+m)vt2/2=fs相对 {vt:共同速度,f:阻力,s相对子弹相对长木块 的位移} 注: (1)正碰又叫对心碰撞,速度方向在它们“中心”的连线上; (2)以上表达式除动能外均为矢量运算,在一维情况下可取正方向化为代数运算; (3)系统动量守恒的条件:合外力为零或系统不受外力,则系统动量守恒(碰撞问题、 爆炸问题、反冲问题等); (4)碰撞过程(时间极短,发生碰撞的物体构成的系统)视为动量守恒,原子核衰变时动量守恒; (5)爆炸过程视为动量守恒,这时化学能转化为动能,动能增加;

动量守恒定律测试题及解析

动量守恒定律测试题及解析 1.(2019·北京海淀一模)如图所示,站在车上的人,用锤子连续敲打小车。 初始时,人、车、锤子都静止。假设水平地面光滑,关于这一物理过程,下列 说法正确的是( ) A .连续敲打可使小车持续向右运动 B .人、车和锤子组成的系统机械能守恒 C .当锤子速度方向竖直向下时,人和车水平方向的总动量为零 D .人、车和锤子组成的系统动量守恒 解析:选C 人、车和锤子整体看做一个处在光滑水平地面上的系统,水平方向上所受合外力为零,故水平方向上动量守恒,总动量始终为零,当锤子有相对地面向左的速度时,车有向右的速度,当锤子有相对地面向右的速度时,车有向左的速度,故车做往复运动,故A 错误;锤子击打小车时,发生的不是完全弹性碰撞,系统机械能有损耗,故B 错误;锤子的速度竖直向下时,没有水平方向速度,因为水平方向总动量恒为零,故人和车水平方向的总动量也为零,故C 正确;人、车和锤子在水平方向上动量守恒,因为锤子会有竖直方向的加速度,故锤子竖直方向上合外力不为零,竖直方向上动量不守恒,系统总动量不守恒,故D 错误。 2.质量为1 kg 的物体从距地面5 m 高处自由下落,落在正以5 m /s 的速度沿水平方向匀速前进的小车上,车上装有砂子,车与砂的总质量为4 kg ,地面光滑,则车后来的速度为(g =10 m/s 2)( ) A .4 m /s B .5 m/s C .6 m /s D .7 m/s 解析:选A 物体和车作用过程中,两者组成的系统水平方向不受外力,水平方向系统的动量守恒。已知两者作用前,车在水平方向的速度v 0=5 m/s ,物体在水平方向的速度v =0;设当物体与小车相对静止后,小车的速度为v ′,取原来小车速度方向为正方向,则根据水平方向系统的动量守恒得:m v +M v 0=(M +m )v ′,解得:v ′=m v +M v 0M +m =4×51+4 m /s =4 m/s ,故选项A 正确,B 、C 、D 错误。 3.[多选](2020·泸州第一次诊断)在2019年世界斯诺克国际锦标赛中,中国选手丁俊晖把质量为m 的白球以5v 的速度推出,与正前方另一静止的相同质量的黄球发生对心正碰,碰撞后黄球的速度为3v ,运动方向与白球碰前的运动方向相同。若不计球与桌面间的摩擦,则( ) A .碰后瞬间白球的速度为2v B .两球之间的碰撞属于弹性碰撞 C .白球对黄球的冲量大小为3m v D .两球碰撞过程中系统能量不守恒 解析:选AC 由动量守恒定律可知,相同质量的白球与黄球发生对心正碰,碰后瞬间白球的速度为 2v ,故A 正确。碰前的动能为12m (5v )2=252m v 2,碰后的动能为12m (3v )2+12m (2v )2=132 m v 2,两球之间的碰撞不属于弹性碰撞,故B 错误。由动量定理,白球对黄球的冲量I 大小就等于黄球动量的变化Δp ,Δp =

经典验证动量守恒定律实验练习题(附答案)

· 验证动量守恒定律由于v 1、v1/、v2/均为水平方向,且它们的竖直下落高 度都相等,所以它们飞行时间相等,若以该时间为时间单位,那么小球的水平射程的数值就等于它们的水平速度。在右图中分别用OP、OM和O/N表示。因此只需验证: m 1OP=m 1 OM+m 2 (O/N-2r)即可。 注意事项: ⑴必须以质量较大的小球作为入射小球(保证碰撞后两小球都向前运动)。 ⑵小球落地点的平均位置要用圆规来确定:用尽可能小的圆把所有落点都圈 在里面,圆心就是落点的平均位置。 ⑶所用的仪器有:天平、刻度尺、游标卡尺(测小球直径)、碰撞实验器、复写纸、白纸、重锤、两个直径相同质量不同的小球、圆规。 ⑷若被碰小球放在斜槽末端,而不用支柱,那么两小球将不再同时落地,但两个小球都将从斜槽末端开始做平抛运动,于是验证式就变为: m 1OP=m 1 OM+m 2 ON,两个小球的直径也不需测量 《 实验练习题 1. 某同学设计了一个用打点计时器验证动量守恒定律的实验:在小车A的前m 端粘有橡皮泥,推动小车A使之作匀速运动。然后与原来静止在前方的小车B 相碰并粘合成一体,继续作匀速运动,他设计的具体装置如图所示。在小车A 后连着纸带,电磁打点计时器电源频率为50Hz,长木板垫着小木片用以平衡摩擦力。 若已得到打点纸带如上图,并测得各计数点间距标在间上,A为运动起始的第一点,则应选____________段起计算A的碰前速度,应选___________段来计算A 和B碰后的共同速度。(以上两格填“AB”或“BC”或“CD”或“DE”)。已测得 小l车A的质量m 1=0.40kg,小车B的质量m 2 =0.20kg,由以上测量结果可得:碰 前总动量=__________kg·m/s. 碰后总动量=_______kg·m/s 2.某同学用图1所示装置通过半径相同的A. B两球的碰撞来验证动量守恒定律。图中PQ是斜槽,QR为水平槽,实验时先使A球从斜槽上某一固定位置G由静止开始滚下,落到位于水平地面的记录纸上,留下痕迹。重复上述操作10次,得到10个落点痕迹再把B球放在水平槽上靠近槽末端的地方,让A球仍从位置G

动量守恒定律测试题(1)

动量守恒定律测试题(1) 一、动量守恒定律选择题 1.如图所示,一轻杆两端分别固定a、b 两个半径相等的光滑金属球,a球质量大于b球质量.整个装置放在光滑的水平面上,将此装置从图示位置由静止释放,则() A.在b球落地前瞬间,a球的速度方向向右 B.在b球落地前瞬间,a球的速度方向向左 C.在b球落地前的整个过程中,轻杆对b球的冲量为零 D.在b球落地前的整个过程中,轻杆对b球做的功为零 2.如图所示,弹簧的一端固定在竖直墙壁上,质量为m的光滑弧形槽静止在光滑水平面上,底部与水平面平滑连接,一个质量也为m的小球从槽高h处开始下滑,则 A.在小球从圆弧槽上下滑过程中,小球和槽组成的系统水平方向的动量始终守恒 B.在小球从圆弧槽上下滑运动过程中小球的机械能守恒 C.在小球压缩弹簧的过程中小球与弹簧组成的系统机械能守恒 D.小球离开弹簧后能追上圆弧槽 3.如图甲所示,一轻弹簧的两端与质量分别为99m、200m的两物块A、B相连接,并静止在光滑的水平面上,一颗质量为m的子弹C以速度v0射入物块A并留在A中,以此刻为计时起点,两物块A(含子弹C)、B的速度随时间变化的规律如图乙所示,从图象信息可得() A.子弹C射入物块A的速度v0为600m/s B.在t1、t3时刻,弹簧具有的弹性势能相同,且弹簧处于压缩状态 C.当物块A(含子弹C)的速度为零时,物块B的速度为3m/s D.在t2时刻弹簧处于自然长度 4.如图所示,固定的光滑金属水平导轨间距为L,导轨电阻不计,左端接有阻值为R的电

阻,导轨处在磁感应强度大小为B 、方向竖直向下的匀强磁场中.质量为m 、电阻不计的导体棒ab ,在垂直导体棒的水平恒力F 作用下,由静止开始运动,经过时间t ,导体棒ab 刚好匀速运动,整个运动过程中导体棒始终与导轨垂直并保持良好接触.在这个过程中,下列说法正确的是 A .导体棒ab 刚好匀速运动时的速度22 FR v B L = B .通过电阻的电荷量2Ft q BL = C .导体棒的位移222 44 FtRB L mFR x B L -= D .电阻放出的焦耳热22222 44 232tRF B L mF R Q B L -= 5.如图,质量分别为m A 、m B 的两个小球A 、B 静止在地面上方,B 球距地面的高度h =0.8m ,A 球在B 球的正上方. 先将B 球释放,经过一段时间后再将A 球释放. 当A 球下落t =0.3s 时,刚好与B 球在地面上方的P 点处相碰,碰撞时间极短,碰后瞬间A 球的速度恰为零.已知m B =3m A ,重力加速度大小为g =10 m/s 2,忽略空气阻力及碰撞中的动能损失.下列说法正确的是( ) A . B 球第一次到达地面时的速度为4m/s B .A 、B 球在B 球向上运动的过程中发生碰撞 C .B 球与A 球碰撞后的速度为1m/s D .P 点距离地面的高度0.75m 6.如图所示,左图为大型游乐设施跳楼机,右图为其结构简图.跳楼机由静止从a 自由下落到b ,再从b 开始以恒力制动竖直下落到c 停下.已知跳楼机和游客的总质量为m ,ab 高度差为2h ,bc 高度差为h ,重力加速度为g .则

16.3动量守恒定律教案

16.3动量守恒定律 主备人:审核人:主讲教师:授课班级:【三维目标】 一、知识与技能: 1.理解动量守恒定律的确切含义和表达式,知道定律的适用条件和适用范围 2.,会应用动量守恒定律分析计算有关问题。 二、过程与方法: 在理解动量守恒定律的确切含义的基础上正确区分内力和外力; 三. 情感、态度与价值观: 培养逻辑思维能力,会应用动量守恒定律分析计算有关问题。 【教学重点】:动量的概念和动量守恒定律。 【教学难点】:动量的变化和动量守恒的条件。 【教学方法】:教师启发、引导,学生讨论、交流。 【教学用具】:投影片,多媒体辅助教学设备。 【教学过程】: 【自主学习】 指导学生完成“知识体系梳理” 【新知探究】 一. 设疑激趣,创设研究情境 设置悬念:鸡蛋是我们每天都需要的营养食品,如果我将这只生鸡蛋用力扔出去,鸡蛋的命运会怎样? 演示:站在教室中部用力将鸡蛋水平扔向竖直悬挂在黑板前的大绒布。 提问:你观察到什么现象? 学生:扔在绒布上鸡蛋没破。 教师从绒布下拿出那只鸡蛋并提问:如果站在同一位置将同一只鸡蛋以相同的力向墙上扔,会出现什么结果? 演示:用力将鸡蛋水平扔向墙壁(墙壁上事先贴有白纸)。 学生:鸡蛋破了。 激疑:两种情况下鸡蛋与墙或布作用前的动量可以认为是相同的,作用后的 动量变为零,鸡蛋的动量变化是相同的。但究竟是什么原因使得鸡蛋出现不

同的结局? 教师:再请大家看一段录象。 教师演示课件:播放几个体育运动的视频录象(在节奏感强烈的音乐背景下 依次出现亚运会跳高、拳击、跳马、吊环等比赛镜头)。 提问:看完这段录象后,我们可能会提出很多问题,比如跳高、跳马、吊环运动员落地时为什么要落在软垫上?激烈的拳击比赛中,运动员为什么要戴拳击手套?以上这些问题是大家熟悉却不能科学解释的问题,也正是本节课我们要研究的问题。 课件显示: 二. 分层展开,引导自主探究 1. 关于物体动量的变化跟哪些因素有关的研究 ①提出假说 教师:要解决刚才提出的问题,必须首先研究、解决物体的动量变化跟哪些因素有关这一问题。你们先猜一猜看,物体的动量变化与哪些因素有关? 学生甲猜想:可能与物体的质量和它受到的力有关。 学生乙猜想:可能与物体受到的力的大小和力的作用时间有关。 ②定性验证 教师:同学们会提出各种不同的假说,这些假说是否正确?请你们操作第一个学习软件,先对两个实例进行定性讨论,由此你能得出什么结论? 学生:动手操作学习软件并相互协作讨论。 学生计算机显示:讨论题—— a.一辆以某一速度行驶的汽车,关闭发动机后,要使汽车停下来即使它的动 量为零,如果你是驾驶员可以采取哪些措施? b.静止的足球,要使它运动起来即使它获得一定的动量,可用哪些方法? 请一学生回答对讨论题的分析结果:…… 学生归纳:物体动量的变化跟物体所受力的大小和作用时间的长短有关。 ③定量验证 提问:你得出的这一结论是否正确?你如何验证? 学生提出观点:可以采用数学推导的方法。 教师:很好!数学推导的方法也称定量分析法,请大家继续研究。 学生:继续操作计算机进行定量分析推导。 学生计算机显示(动画):一个质量为m 的物体,初速度为v ,在合外力F 的作用下,经过时间t,速度变为v',该物体动量的变化与什么有关? v v'

动量守恒定律测试题含复习资料

1 / 9 第16章 《动量守恒定律》测试题 一、单选题(每小题只有一个正确答案) 1.质量为m ,速度为v 的棒球,与棒相互作用后以被原速率弹回,则小球动量的变化量为(取作用前的速度方向为正方向)( ) A .0 B .-2mv C .2mv D .mv 2.相向运动的A 、B 两辆小车相撞后,一同沿A 原来的方向前进,则碰撞前的瞬间( ) A .A 车的动量一定大于 B 车的速度 B .A 车的速度一定大于B 车的动量 C .A 车的质量一定大于B 车的质量 D .A 车的动能一定大于B 车的动能 3.将质量为m 的铅球以大小为v 0、仰角为θ的初速度抛入一个装着沙子的总质量为m '的静止小车中,如图所示,小车与地面间的摩擦力不计,则最后铅球与小车的共同速度等于( ) A .0cos mv m m θ+' B .0sin mv m m θ+' C .0mv m m +' D .0tan mv m m θ+' 4.物体在恒定合力F 作用下做直线运动,在1t ?内速度由0增大到1E ,在2t ?内速度由v 增大到2v.设2E 在1t ?内做功是1W ,冲量是1I ;在2t ?内做功是2W ,冲量是2I ,那么( ) A .1212I I W W <=, B .1212I I W W <<, C .1212,I I W W == D .1212I I W W =<, 5.沿光滑水平面在同一条直线上运动的两物体A 、B 碰撞后以共同的速度运动,该过程的位移—时间图象如图所示。则下列判断错误的是( ) A .碰撞前后A 的运动方向相反 B .A 、B 的质量之比为1:2 C .碰撞过程中A 的动能变大,B 的动能减小 D .碰前B 的动量较大 6.如图所示,质量M=3kg 的滑块套在水平固定着的轨道上并可在轨道上无摩擦滑动。

高考物理动量守恒定律试题经典

高考物理动量守恒定律试题经典 一、动量守恒定律 选择题 1.如图所示,一个质量为M 的木箱静止在光滑水平面上,木箱内粗糙的底板上放着一个质量为m =2M 的小物块.现使木箱瞬间获得一个水平向左、大小为v 0的初速度,下列说法正确的是 A .最终小物块和木箱都将静止 B .最终小物块和木箱组成的系统损失机械能为20 3 Mv C .木箱速度水平向左、大小为0 2v 时,小物块的速度大小为04 v D .木箱速度水平向右、大小为 03v . 时,小物块的速度大小为023 v 2.如图所示,小车的上面是由中间凸起的两个对称曲面组成,整个小车的质量为m ,原来静止在光滑的水平面上。今有一个可以看做质点的小球质量也为m ,以水平速度v 从左端滑上小车,恰好到达小车的最高点后,又从另一个曲面滑下。关于这个过程,下列说法正确的是( ) A .小球滑离小车时,小车又回到了原来的位置 B .小球滑到小车最高点时,小球和小车的动量不相等 C .小球和小车相互作用的过程中,小车和小球系统动量始终守恒 D .车上曲面的竖直高度若高于2 4v g ,则小球一定从小车左端滑下 3.如图所示为水平放置的固定光滑平行直轨道,窄轨间距为L ,宽轨间距为2L 。轨道处于竖直向下的磁感应强度为B 的匀强磁场中,质量分别为m 、2m 的金属棒a 、b 垂直于导轨静止放置,其电阻分别为R 、2R ,现给a 棒一向右的初速度v 0,经t 时间后两棒达到匀速运动两棒运动过程中始终相互平行且与导轨良好接触,不计导轨电阻,b 棒一直在宽轨上运动。下列说法正确的是( )

A .a 棒开始运动时的加速度大小为220 3B L v Rm B .b 棒匀速运动的速度大小为 3 v C .整个过程中通过b 棒的电荷量为 23mv BL D .整个过程中b 棒产生的热量为20 3 mv 4.如图所示,弹簧的一端固定在竖直墙壁上,质量为m 的光滑弧形槽静止在光滑水平面上,底部与水平面平滑连接,一个质量也为m 的小球从槽高h 处开始下滑,则 A .在小球从圆弧槽上下滑过程中,小球和槽组成的系统水平方向的动量始终守恒 B .在小球从圆弧槽上下滑运动过程中小球的机械能守恒 C .在小球压缩弹簧的过程中小球与弹簧组成的系统机械能守恒 D .小球离开弹簧后能追上圆弧槽 5.如图所示,质量分别为m 和2m 的A 、B 两个木块间用轻弹簧相连,放在光滑水平面上,A 紧靠竖直墙.用水平力向左推B 将弹簧压缩,推到一定位置静止时推力大小为F 0,弹簧的弹性势能为E .在此位置突然撤去推力,下列说法中正确的是( ) A .在A 离开竖直墙前,A 、 B 与弹簧组成的系统机械能守恒,之后不守恒 B .在A 离开竖直墙前,A 、B 系统动量不守恒,之后守恒 C .在A 离开竖直墙后,A 、B 速度相等时的速度是223E m D .在A 离开竖直墙后,弹簧的弹性势能最大值为 3 E 6.如图所示,物体A 、B 的质量均为m =0.1kg ,B 静置于劲度系数k =100N/m 竖直轻弹簧的上端且B 不与弹簧连接,A 从距B 正上方h =0.2m 处自由下落,A 与B 相碰并粘在一起.弹簧始终在弹性限度内,g =10m/s 2.下列说法正确的是 A .A B 组成的系统机械能守恒

动量守恒定律

动量、动量守恒定律 所给出的速度值不加分析,盲目地套入公式,这也是一些学生常犯的错误。 例1从同样高度落下的玻璃杯,掉在水泥地上容易打碎,而掉在草地上不容易打碎,其原因是: aA.掉在水泥地上的玻璃杯动量大,而掉在草地上的玻璃杯动量小 B.掉在水泥地上的玻璃杯动量改变大,掉在草地上的玻璃杯动量改变小 C.掉在水泥地上的玻璃杯动量改变快,掉在草地上的玻璃杯动量改变慢 D.掉在水泥地上的玻璃杯与地面接触时,相互作用时间短,而掉在草地上的玻璃杯与地面接触时间长。 【错解】选B。 【错解原因】认为水泥地较草地坚硬,所以给杯子的作用力大,由动量定理I=△P,即F·t=△P,认为F大即△P,大,所以水泥地对杯子的作用力大,因此掉在水泥地上的动量改变量大,所以,容易破碎。 【分析解答】设玻璃杯下落高度为h。它们从h高度落地瞬间的 量变化快,所以掉在水泥地上杯子受到的合力大,冲力也大,所以杯子 所以掉在水泥地受到的合力大,地面给予杯子的冲击力也大,所以杯子易碎。正确答案应选C,D。 【评析】判断这一类问题,应从作用力大小判断入手,再由动量 大,而不能一开始就认定水泥地作用力大,正是这一点需要自己去分析、判断。

例2 把质量为10kg的物体放在光滑的水平面上,如图5-1所示,在与水平方向成53°的N的力F作用下从静止开始运动,在2s内力F对物体的冲量为多少?物体获得的动量是多少? 【错解】错解一:2s内力的冲量为 设物体获得的动量为P2,由动量定理 【错解原因】对冲量的定义理解不全面,对动量定理中的冲量理解不移。 错解一主要是对冲量的概念的理解,冲最定义应为“力与力作用时间的乘积”,只要题目中求力F 的冲量,就不应再把此力分解。这类解法把冲量定义与功的计算公式W=Fcosa·s混淆了。 错解二主要是对动量定理中的冲量没有理解。实际上动量定理的叙述应为“物体的动量改变与物体所受的合外力的冲量相等”而不是“与某一个力的冲量相等”,此时物体除了受外力F的冲量,还有重力及支持力的冲量。所以解错了。 【分析解答】首先对物体进行受力分析:与水平方向成53°的拉力F,竖直向下的重力G、竖直向上的支持力N。由冲量定义可知,力F的冲量为: I F=F·t=10×2=10(N·s) 因为在竖直方向上,力F的分量Fsi n53°,重力G,支持力N的合力为零,合力的冲量也为零。所以,物体所受的合外力的冲量就等干力F在水平方向上的分量,由动量定理得: Fcos53°·t=P2-0 所以P2=Fcos53°·t=10×0.8×2(kg·m/s) P2=16kg·m/s

相关主题
文本预览
相关文档 最新文档