动量守恒定律单元测试题(1)
- 格式:doc
- 大小:1.56 MB
- 文档页数:34
《动量守恒定律》单元测试题含答案一、动量守恒定律选择题1.如图所示,一轻杆两端分别固定a、b 两个半径相等的光滑金属球,a球质量大于b球质量.整个装置放在光滑的水平面上,将此装置从图示位置由静止释放,则()A.在b球落地前瞬间,a球的速度方向向右B.在b球落地前瞬间,a球的速度方向向左C.在b球落地前的整个过程中,轻杆对b球的冲量为零D.在b球落地前的整个过程中,轻杆对b球做的功为零2.如图,斜面体固定在水平面上,斜面足够长,在斜面底端给质量为m的小球以平行斜面向上的初速度1v,当小球回到出发点时速率为2v。
小球在运动过程中除重力和弹力外,另受阻力f(包含摩擦阻力),阻力f大小与速率成正比即f kv=。
则小球在斜面上运动总时间t为()A.12sinv vtgθ+=⋅B.12sinv vtgθ-=⋅C.1212sin2mv mvtv vmg kθ+=+⋅+D.1212sin2mv mvtv vmg kθ-=+⋅-3.如图所示,小车的上面是由中间凸起的两个对称曲面组成,整个小车的质量为m,原来静止在光滑的水平面上。
今有一个可以看做质点的小球质量也为m,以水平速度v从左端滑上小车,恰好到达小车的最高点后,又从另一个曲面滑下。
关于这个过程,下列说法正确的是()A.小球滑离小车时,小车又回到了原来的位置B.小球滑到小车最高点时,小球和小车的动量不相等C.小球和小车相互作用的过程中,小车和小球系统动量始终守恒D .车上曲面的竖直高度若高于24v g,则小球一定从小车左端滑下 4.如图所示,用长为L 的细线悬挂一质量为M 的小木块,木块处于静止状态.一质量为m 、速度为v 0的子弹自左向右水平射穿木块后,速度变为v .已知重力加速度为g ,则A .子弹刚穿出木块时,木块的速度为0()m v v M - B .子弹穿过木块的过程中,子弹与木块组成的系统机械能守恒C .子弹穿过木块的过程中,子弹与木块组成的系统动量守恒D .木块上升的最大高度为2202mv mv Mg- 5.如图甲所示,一轻弹簧的两端与质量分别为1m 、2m 的两物块A 、B 相连接,并静止在光滑水平面上。
《动量守恒定律》单元测试题含答案 一、动量守恒定律 选择题1.如图所示,质量为M 的长木板静止在光滑水平面上,上表面OA 段光滑,AB 段粗糙且长为l ,左端O 处固定轻质弹簧,右侧用不可伸长的轻绳连接于竖直墙上,轻绳所能承受的最大拉力为F .质量为m 的小滑块以速度v 从A 点向左滑动压缩弹簧,弹簧的压缩量达最大时细绳恰好被拉断,再过一段时间后长木板停止运动,小滑块恰未掉落.则( )A .细绳被拉断瞬间木板的加速度大小为F M B .细绳被拉断瞬间弹簧的弹性势能为212mv C .弹簧恢复原长时滑块的动能为212mv D .滑块与木板AB 间的动摩擦因数为22v gl2.如图所示,用长为L 的细线悬挂一质量为M 的小木块,木块处于静止状态.一质量为m 、速度为v 0的子弹自左向右水平射穿木块后,速度变为v .已知重力加速度为g ,则A .子弹刚穿出木块时,木块的速度为0()m v v M - B .子弹穿过木块的过程中,子弹与木块组成的系统机械能守恒C .子弹穿过木块的过程中,子弹与木块组成的系统动量守恒D .木块上升的最大高度为2202mv mv Mg- 3.如图所示,长木板A 放在光滑的水平面上,质量为m =4kg 的小物体B 以水平速度v 0=2m/s 滑上原来静止的长木板A 的表面,由于A 、B 间存在摩擦,之后A 、B 速度随时间变化情况如图乙所示,取g=10m/s 2,则下列说法正确的是( )A .木板A 获得的动能为2JB .系统损失的机械能为2JC .A 、B 间的动摩擦因数为0.1D .木板A 的最小长度为2m4.质量为3m 足够长的木板静止在光滑的水平面上,木板上依次排放质量均为m 的木块1、2、3,木块与木板间的动摩擦因数均为μ.现同时给木块l 、2、3水平向右的初速度v 0、2v 0、3v 0,已知重力加速度为g .则下列说法正确的是( )A .1木块相对静止前,木板是静止的B .1木块的最小速度是023v C .2木块的最小速度是056v D .木块3从开始运动到相对静止时位移是204v gμ 5.如图所示,质量为M 、带有半径为R 的四分之一光滑圆弧轨道的滑块静置于光滑水平地面上,且圆弧轨道底端与水平面平滑连接,O 为圆心。
《动量守恒定律》单元测试题含答案 一、动量守恒定律 选择题1.如图所示,光滑水平面上质量为m 的小球A 和质量为13m 的小球B ,通过轻质弹簧相连并处于静止状态,弹簧处于自由长度;质量为m 的小球C 以速度0V 沿AB 连线向右匀速运动.并与小球A 发生弹性正碰.在小球B 的右侧固定一块弹性挡板(图中未画出).当小球B 的速度达到最大时恰与挡板发生正碰,后立刻将挡板搬走.不计所有碰撞过程中的机械能损失.弹簧始终处于弹性限度内,小球B 与固定挡板的碰撞时间极短,碰后小球B 的速度大小不变,但方向相反.则B 与挡板碰后弹簧弹性勢能的最大值m E 为( )A .20mVB .2012mVC .2016mVD .20116mV 2.平静水面上停着一只小船,船头站立着一个人,船的质量是人的质量的8倍.从某时刻起,人向船尾走去,走到船中部时他突然停止走动.不计水对船的阻力,下列说法正确的是( )A .人在船上走动过程中,人的动能是船的动能的8倍B .人在船上走动过程中,人的位移是船的位移的9倍C .人走动时,它相对水面的速度大于小船相对水面的速度D .人突然停止走动后,船由于惯性还会继续运动一小段时间3.A 、B 两小球在光滑水平面上沿同一直线向同一方向运动,A 球的动量为5kg •m /s ,B 球的动量为7kg •m /s ,当A 球追上B 球时发生对心碰撞,则碰撞后A 、B 两球动量的可能值为( )A .''6/6/AB P kg m s P kg m s =⋅=⋅,B .''3/9/A B P kg m s P kg m s =⋅=⋅,C .''2/14/A B P kg m s P kg m s =-⋅=⋅,D .''5/17/A B P kg m s P kg m s =-⋅=⋅,4.如图所示,在光滑的水平面上放有一质量为M 的物体P ,物体P 上有一半径为R 的光滑四分之一圆弧轨道, 现让质量为m 的小滑块Q (可视为质点)从轨道最高点由静止开始下滑至最低点的过程中A .P 、Q 组成的系统动量不守恒,机械能守恒B .P 移动的距离为m M m+R C .P 、Q 组成的系统动量守恒,机械能守恒D .P 移动的距离为M m M+R 5.如图所示,一质量为0.5 kg 的一块橡皮泥自距小车上表面1.25 m 高处由静止下落,恰好落入质量为2 kg 、速度为2.5 m/s 沿光滑水平地面运动的小车上,并与小车一起沿水平地面运动,取210m/s g =,不计空气阻力,下列说法正确的是A .橡皮泥下落的时间为0.3 sB .橡皮泥与小车一起在水平地面上运动的速度大小为2 m/sC .橡皮泥落入小车的过程中,橡皮泥与小车组成的系统动量守恒D .整个过程中,橡皮泥与小车组成的系统损失的机械能为7.5 J6.从高处跳到低处时,为了安全,一般都要屈腿(如图所示),这样做是为了( )A .减小冲量B .减小动量的变化量C .增大与地面的冲击时间,从而减小冲力D .增大人对地面的压强,起到安全作用7.如图所示,轻弹簧的一端固定在竖直墙上,一质量为2m 的光滑弧形槽静止放在足够长的光滑水平面上,弧形槽底端与水平面相切,一质量为m 的小物块从槽上高h 处开始下滑,重力加速度为g ,下列说法正确的是A .物体第一次滑到槽底端时,槽的动能为3mgh B .物体第一次滑到槽底端时,槽的动能为6mgh C .在压缩弹簧的过程中,物块和弹簧组成的系统动量守恒D .物块第一次被弹簧反弹后能追上槽,但不能回到槽上高h 处8.如图,表面光滑的固定斜面顶端安装一定滑轮,小物块A .B 用轻绳连接并跨过 滑轮(不计滑轮的质量和摩擦).初始时刻,A 、B 处于同一高度并恰好处于静止状态.剪断轻绳后A 下落、B 沿斜面下滑,则从剪断轻绳到物块着地,两物块A.落地时的速率相同B.重力的冲量相同C.重力势能的变化量相同D.重力做功的平均功率相同9.如图,在光滑水平面上放着质量分别为2m和m的A、B两个物块,弹簧与A、B栓连,现用外力缓慢向左推B使弹簧压缩,此过程中推力做功W。
《动量守恒定律》单元测试题(含答案)一、动量守恒定律 选择题 1.如图所示,质量均为m 的A 、B 两物块用轻弹簧连接,放在光滑的水平面上,A 与竖直墙面接触,弹簧处于原长,现用向左的推力缓慢推物块B ,当B 处于图示位置时静止,整个过程推力做功为W ,瞬间撤去推力,撤去推力后( )A .当A 对墙的压力刚好为零时,物块B 的动能等于WB .墙对A 物块的冲量为4mWC .当B 向右运动的速度为零时,弹簧的弹性势能为零D .弹簧第一次伸长后具有的最大弹性势能为W2.如图所示,在光滑的水平面上放有一质量为M 的物体P ,物体P 上有一半径为R 的光滑四分之一圆弧轨道, 现让质量为m 的小滑块Q (可视为质点)从轨道最高点由静止开始下滑至最低点的过程中A .P 、Q 组成的系统动量不守恒,机械能守恒B .P 移动的距离为m M m+R C .P 、Q 组成的系统动量守恒,机械能守恒 D .P 移动的距离为M m M +R 3.如图所示,质量为M 的木板静止在光滑水平面上,木板左端固定一轻质挡板,一根轻弹簧左端固定在挡板上,质量为m 的小物块从木板最右端以速度v 0滑上木板,压缩弹簧,然后被弹回,运动到木板最右端时与木板相对静止。
已知物块与木板之间的动摩擦因数为μ,整个过程中弹簧的形变均在弹性限度内,则( )A .木板先加速再减速,最终做匀速运动B .整个过程中弹簧弹性势能的最大值为204()Mmv M m + C .整个过程中木板和弹簧对物块的冲量大小为0Mmv M m+D .弹簧压缩到最短时,物块到木板最右端的距离为202()Mv M m g μ+ 4.如图所示,在光滑的水平杆上套有一个质量为m 的滑环.滑环上通过一根不可伸缩的轻绳悬挂着一个质量为M 的物块(可视为质点),绳长为L .将滑环固定时,给物块一个水平冲量,物块摆起后刚好碰到水平杆;若滑环不固定时,仍给物块以同样的水平冲量,则( )A .给物块的水平冲量为2M gLB .物块上升的最大高度为mL m M+ C .物块上升最高时的速度为2m gL D .物块在最低点时对细绳的拉力3Mg5.如图所示,一木块静止在长木板的左端,长木板静止在水平面上,木块和长木板的质量相等均为M ,木块和长木板之间、长木板和地面之间的动摩擦因数都为μ。
《动量守恒定律》单元测试题含答案一、动量守恒定律 选择题1.如图所示,在同一水平面内有两根足够长的光滑水平平行金属导轨,间距为L =20cm ,电阻不计,其左端连接一恒定电源,电动势为E ,内阻不计,两导轨之间交替存在着磁感应强度为B =1T 、方向相反的匀强磁场,同向磁场的宽度相同。
闭合开关后,一质量为m =0.1kg 、接入电路的阻值为R =4Ω的导体棒恰能从磁场左边界开始垂直于导轨并与导轨接触良好一直运动下去,导体棒运动到第一个磁场的右边界时有最大速度,为5m/s ,运动周期为T =21s ,则下列说法正确的是( )A .E =1VB .导体棒在第偶数个磁场中运动的时间为2T C .相邻两磁场的宽度差为5 mD .导体棒的速度随时间均匀变化2.如图所示,质量10.3kg m =的小车静止在光滑的水平面上,车长 1.5m l =,现有质量20.2kg m =可视为质点的物块,以水平向右的速度0v 从左端滑上小车,最后在车面上某处与小车保持相对静止.物块与车面间的动摩擦因数0.5μ=,取2g=10m/s ,则( )A .物块滑上小车后,系统动量守恒和机械能守恒B .增大物块与车面间的动摩擦因数,摩擦生热不变C .若0 2.5m/s v =,则物块在车面上滑行的时间为0.24sD .若要保证物块不从小车右端滑出,则0v 不得大于5m/s3.平静水面上停着一只小船,船头站立着一个人,船的质量是人的质量的8倍.从某时刻起,人向船尾走去,走到船中部时他突然停止走动.不计水对船的阻力,下列说法正确的是( )A .人在船上走动过程中,人的动能是船的动能的8倍B .人在船上走动过程中,人的位移是船的位移的9倍C .人走动时,它相对水面的速度大于小船相对水面的速度D .人突然停止走动后,船由于惯性还会继续运动一小段时间4.如图甲所示,质量M =2kg 的木板静止于光滑水平面上,质量m =1kg 的物块(可视为质点)以水平初速度v 0从左端冲上木板,物块与木板的v -t 图象如图乙所示,重力加速度大小为10m/s 2,下列说法正确的是( )A .物块与木板相对静止时的速率为1m/sB .物块与木板间的动摩擦因数为0.3C .木板的长度至少为2mD .从物块冲上木板到两者相对静止的过程中,系统产生的热量为3J5.如图所示,质量为M 、带有半径为R 的四分之一光滑圆弧轨道的滑块静置于光滑水平地面上,且圆弧轨道底端与水平面平滑连接,O 为圆心。
(完整版)动量守恒定律单元测试题(1)一、动量守恒定律 选择题1.如图所示,一轻质弹簧固定在墙上,一个质量为m 的木块以速度v 0从右侧沿光滑水平面向左运动并与弹簧发生相互作用。
设相互作用的过程中弹簧始终在弹性限度范围内,那么,到弹簧恢复原长的过程中弹簧对木块冲量I 的大小和弹簧对木块做的功W 的大小分别是( )A .I =0,W =mv 02B .I =mv 0,202mv W =C .I =2mv 0,W =0D .I =2mv 0,202mv W = 2.如图所示,质量10.3kg m =的小车静止在光滑的水平面上,车长 1.5m l =,现有质量20.2kg m =可视为质点的物块,以水平向右的速度0v 从左端滑上小车,最后在车面上某处与小车保持相对静止.物块与车面间的动摩擦因数0.5μ=,取2g=10m/s ,则( )A .物块滑上小车后,系统动量守恒和机械能守恒B .增大物块与车面间的动摩擦因数,摩擦生热不变C .若0 2.5m/s v =,则物块在车面上滑行的时间为0.24sD .若要保证物块不从小车右端滑出,则0v 不得大于5m/s3.A 、B 两球沿同一直线运动并发生正碰,如图所示为两球碰撞前后的位移—时间(x-t)图像,图中a 、b 分别为A 、B 两球碰撞前的图线,c 为碰撞后两球共同运动的图线.若A 球的质量2A m kg =,则由图可知下列结论正确的是( )A .A 、B 两球碰撞前的总动量为3 kg·m/sB .碰撞过程A 对B 的冲量为-4 N·sC .碰撞前后A 的动量变化为4kg·m/sD .碰撞过程A 、B 两球组成的系统损失的机械能为10 J4.质量为3m 足够长的木板静止在光滑的水平面上,木板上依次排放质量均为m 的木块1、2、3,木块与木板间的动摩擦因数均为μ.现同时给木块l 、2、3水平向右的初速度v 0、2v 0、3v 0,已知重力加速度为g .则下列说法正确的是( )A .1木块相对静止前,木板是静止的B .1木块的最小速度是023v C .2木块的最小速度是056v D .木块3从开始运动到相对静止时位移是204v g5.如图所示,左图为大型游乐设施跳楼机,右图为其结构简图.跳楼机由静止从a 自由下落到b ,再从b 开始以恒力制动竖直下落到c 停下.已知跳楼机和游客的总质量为m ,ab 高度差为2h ,bc 高度差为h ,重力加速度为g .则A .从a 到b 与从b 到c 的运动时间之比为2:1B .从a 到b ,跳楼机座椅对游客的作用力与游客的重力大小相等C .从a 到b ,跳楼机和游客总重力的冲量大小为m ghD .从b 到c ,跳楼机受到制动力的大小等于2mg6.如图甲,质量M =0.8 kg 的足够长的木板静止在光滑的水平面上,质量m =0.2 kg 的滑块静止在木板的左端,在滑块上施加一水平向右、大小按图乙所示随时间变化的拉力F ,4 s 后撤去力F 。
2022年高二上期物理单元测试(1)满分:100分 时量:75分钟一、选择题(本题共10小题,共44分。
第1~6题每题4分,只有一项符合题目要求;第7~10题有多项符合题目要求,全部选对的得5分,选对但不全的得3分,有选错或不答的得0分。
)1.下列说法错误的是( )A .根据F =Δp Δt可把牛顿第二定律表述为:物体动量的变化率等于它所受的合外力 B .力与力的作用时间的乘积叫做力的冲量,它反映了力的作用对时间的累积效应,是一个标量C .动量定理的物理实质与牛顿第二定律是相同的,但有时用起来更方便D .易碎品运输时要用柔软材料包装,船舷常常悬挂旧轮胎,都是为了延长作用时间以减小作用力2. 人从高处往下跳,一般都是脚尖先着地,接着让整个脚着地,并且曲腿,这样是为了( )A. 减少人受到的冲量B. 减少人的动量变化C. 延长与地面的作用时间,从而减小人受到的作用力D. 延长与地面的作用时间,使人受到地面给他的弹力小于人所受的重力3. 如图所示,竖直墙壁两侧固定着两轻质弹簧,水平面光滑,一弹性小球在两弹簧间往复运动,把小球和弹簧视为一个系统,则小球在运动过程中( )A .系统的动量守恒,动能守恒B .系统的动量守恒,机械能守恒C .系统的动量不守恒,机械能守恒D.系统的动量不守恒,动能守恒4.如图所示,两辆质量相同的小车置于光滑的水平面上,有一个人静止站在A车上,两车静止,若这个人自A车跳到B车上,接着又跳回A车,静止于A车上,则A车的速率()A.等于零B.小于B车的速率C.大于B车的速率D.等于B车的速率5.如图所示,木块A和B质量均为2 kg,置于光滑水平面上,B与一轻质弹簧一端相连,弹簧另一端固定在竖直挡板上,当A以4 m/s的速度向B撞击时,由于有橡皮泥而粘在一起运动,那么弹簧被压缩到最短时,具有的弹性势能大小为()A.4 J B.8 JC.16 J D.32 J6.高速水流切割是一种高科技工艺加工技术,为完成飞机制造中的高难度加工特制了一台高速水流切割机器人,该机器人的喷嘴横截面积为10-7 m2,喷嘴射出的水流速度为103 m/s,水的密度为1×103kg/m3,设水流射到工件上后速度立即变为零。
《动量守恒定律》单元测试题(含答案) 一、动量守恒定律 选择题1.如图所示,竖直放置的半圆形轨道与水平轨道平滑连接,不计一切摩擦。
圆心 O 点 正下方放置为 2m 的小球A ,质量为m 的小球 B 以初速度 v 0 向左运动,与小球 A 发生弹 性碰撞。
碰 后小球A 在半圆形轨道运动时不脱离轨道,则小球B 的初速度 v 0可能为( )A .gRB .2gRC .5gRD .35gR2.如图所示,将一光滑的、质量为4m 、半径为R 的半圆槽置于光滑水平面上,在槽的左侧紧挨着一个质量为m 的物块.今让一质量也为m 的小球自左侧槽口A 的正上方高为R 处从静止开始落下,沿半圆槽切线方向自A 点进入槽内,则以下结论中正确的是( )A .小球在半圆槽内第一次由A 到最低点B 的运动过程中,槽的支持力对小球做负功 B .小球第一次运动到半圆槽的最低点B 时,小球与槽的速度大小之比为41︰C .小球第一次在半圆槽的最低点B 时对槽的压力为133mg D .物块最终的动能为15mgR 3.如图所示,质量为M 、带有半径为R 的四分之一光滑圆弧轨道的滑块静置于光滑水平地面上,且圆弧轨道底端与水平面平滑连接,O 为圆心。
质量为m 的小滑块以水平向右的初速度0v 冲上圆弧轨道,恰好能滑到最高点,已知M =2m 。
,则下列判断正确的是A .小滑块冲上轨道的过程,小滑块机械能不守恒B .小滑块冲上轨道的过程,小滑块与带有圆弧轨道的滑块组成的系统动量守恒C .小滑块冲上轨道的最高点时,带有圆弧轨道的滑块速度最大且大小为023v D .小滑块脱离圆弧轨道时,速度大小为013v4.如图所示,一个质量为M 的木箱静止在光滑水平面上,木箱内粗糙的底板上放着一个质量为m =2M 的小物块.现使木箱瞬间获得一个水平向左、大小为v 0的初速度,下列说法正确的是A .最终小物块和木箱都将静止B .最终小物块和木箱组成的系统损失机械能为203Mv C .木箱速度水平向左、大小为02v 时,小物块的速度大小为04v D .木箱速度水平向右、大小为03v . 时,小物块的速度大小为023v 5.如图所示,质量为M 的长木板静止在光滑水平面上,上表面OA 段光滑,AB 段粗糙且长为l ,左端O 处固定轻质弹簧,右侧用不可伸长的轻绳连接于竖直墙上,轻绳所能承受的最大拉力为F .质量为m 的小滑块以速度v 从A 点向左滑动压缩弹簧,弹簧的压缩量达最大时细绳恰好被拉断,再过一段时间后长木板停止运动,小滑块恰未掉落.则( )A .细绳被拉断瞬间木板的加速度大小为F M B .细绳被拉断瞬间弹簧的弹性势能为212mv C .弹簧恢复原长时滑块的动能为212mv D .滑块与木板AB 间的动摩擦因数为22v gl6.如图所小,在粗糙水平面上,用水平轻绳相连的两个相同物体P 和Q ,质量均为m ,在水平恒力F 作用下以速度v 做匀速运动.在t =0时轻绳断开,Q 在F 的作用下继续前进,则下列说法正确的是( )A .t =0至2mv t F =时间内,P 、Q 的总动量守恒 B .t =0至3mv t F=时间内,P 、Q 的总动量守恒C .4mv t F =时,Q 的动量为3mv D .3mv t F =时,P 的动量为32mv 7.质量相等的A 、B 两球在光滑水平面上,沿同一直线,同一方向运动,A 球的动量P A =9kg•m/s ,B 球的动量P B =3kg•m/s .当A 追上B 时发生碰撞,则碰后A 、B 两球的动量可能值是( )A .P A ′=10kg•m/s ,PB ′=2kg•m/sB .P A ′=6kg•m/s ,P B ′=4kg•m/sC .P A ′=﹣6kg•m/s ,P B ′=18kg•m/sD .P A ′=4kg•m/s ,P B ′=8kg•m/s8.四个水球可以挡住一颗子弹!如图所示,是央视《国家地理》频道的实验示意图,直径相同(约30cm 左右)的4个装满水的薄皮气球水平固定排列,子弹射入水球中并沿水平线做匀变速直线运动,恰好能穿出第4个水球,气球薄皮对子弹的阻力忽略不计。
最新人教版高中物理选修3-5测试题及答案全套单元测评(一)动量守恒定律(时间:90分钟满分:100分)第Ⅰ卷(选择题,共48分)一、选择题(本题有12小题,每小题4分,共48分.)1.在下列几种现象中,所选系统动量守恒的有()A.原来静止在光滑水平面上的车,从水平方向跳上一个人,人车为一系统B.运动员将铅球从肩窝开始加速推出,以运动员和铅球为一系统C.从高空自由落下的重物落在静止于地面上的车厢中,以重物和车厢为一系统D.光滑水平面上放一斜面,斜面也光滑,一个物体沿斜面滑下,以重物和斜面为一系统解析:判断动量是否守恒的方法有两种:第一种,从动量守恒的条件判定,动量守恒定律成立的条件是系统受到的合外力为零,故分析系统受到的外力是关键.第二种,从动量的定义判定.B选项叙述的系统,初动量为零,末动量不为零.C选项末动量为零而初动量不为零.D选项,在物体沿斜面下滑时,向下的动量增大等.答案:A2.一物体竖直向下匀加速运动一段距离,对于这一运动过程,下列说法正确的是()A.物体的机械能一定增加B.物体的机械能一定减少C.相同时间内,物体动量的增量一定相等D.相同时间内,物体动能的增量一定相等解析:不知力做功情况,A、B项错;由Δp=F合·t=mat知C项正确;由ΔE k=F合·x=max知,相同时间内动能增量不同,D错误.答案:C3.(多选题)如果物体在任何相等的时间内受到的冲量都相同,那么这个物体的运动()A.运动方向不可能改变B.可能是匀速圆周运动C.可能是匀变速曲线运动D.可能是匀变速直线运动解析:由题意可知,物体受到的合外力为恒力,物体不可能做匀速圆周运动,B项错误;物体的加速度不变,可能做匀变速直线运动,其运动方向可能反向,也可能做匀变速曲线运动,A项错误,C、D项正确.答案:CD4.(多选题)质量为m的物体以初速度v0开始做平抛运动,经过时间t,下降的高度为h,速率变为v,在这段时间内物体动量变化量的大小为() A.m(v-v0)B.mgtC.m v2-v20D.m gh解析:平抛运动的合外力是重力,是恒力,所以动量变化量的大小可以用合外力的冲量计算,也可以用初末动量的矢量差计算.答案:BC5.质量M=100 kg的小船静止在水面上,船头站着质量m甲=40 kg的游泳者甲,船尾站着质量m乙=60 kg的游泳者乙,船头指向左方.若甲、乙两游泳者同时在同一水平线上甲朝左、乙朝右以3 m/s的速率跃入水中,则() A.小船向左运动,速率为1 m/sB.小船向左运动,速率为0.6 m/sC.小船向右运动,速率大于1 m/sD.小船仍静止解析:选向左的方向为正方向,由动量守恒定律得m甲v-m乙v+M v′=0,船的速度为v′=(m乙-m甲)vM=(60-40)×3100m/s=0.6 m/s,船的速度向左,故选项B正确.答案:B6.如图所示,两带电的金属球在绝缘的光滑水平桌面上,沿同一直线相向运动,A带电-q,B带电+2q,下列说法正确的是()A.相碰前两球运动中动量不守恒B.相碰前两球的总动量随距离减小而增大C.两球相碰分离后的总动量不等于相碰前的总动量,因为碰前作用力为引力,碰后为斥力D.两球相碰分离后的总动量等于碰前的总动量,因为两球组成的系统合外力为零解析:两球组成的系统,碰撞前后相互作用力,无论是引力还是斥力,合外力总为零,动量守恒,故D选项对,A、B、C选项错.答案:D7.在光滑的水平面的同一直线上,自左向右地依次排列质量均为m的一系列小球,另一质量为m的小球A以水平向右的速度v运动,依次与上述小球相碰,碰后即粘合在一起,碰撞n 次后,剩余的总动能为原来的18,则n 为( ) A .5 B .6C .7D .8解析:整个过程动量守恒,则碰撞n 次后的整体速度为v =m v 0(n +1)m =v 0n +1,对应的总动能为:E k =12(n +1)m v 2=m v 202(n +1),由题可知E k =m v 202(n +1)=18×12m v 20,解得:n =7,所以C 选项正确.答案:C8.两名质量相等的滑冰人甲和乙都静止在光滑的水平冰面上.现在,其中一人向另一人抛出一个篮球,另一人接球后再抛回.如此反复进行几次后,甲和乙最后速率关系是( )A .若甲最先抛球,则一定是v 甲>v 乙B .若乙最后接球,则一定是v 甲>v 乙C .只有甲先抛球,乙最后接球,才有v 甲>v 乙D .无论怎样抛球和接球,都是v 甲>v 乙解析:将甲、乙、篮球视为系统,则满足系统动量守恒,系统动量之和为零,若乙最后接球,即(m 乙+m 篮)v 乙=m 甲v 甲,则v 甲v 乙=m 乙+m 篮m 甲,由于m 甲=m 乙,所以v 甲>v 乙.答案:B9.(多选题)如图所示,一根足够长的水平滑杆SS′上套有一质量为m的光滑金属圆环,在滑杆的正下方与其平行放置一足够长的光滑水平的绝缘轨道PP′,PP′穿过金属环的圆心.现使质量为M的条形磁铁以水平速度v0沿绝缘轨道向右运动,则()A.磁铁穿过金属环后,两者将先后停下来B.磁铁将不会穿越滑环运动C.磁铁与圆环的最终速度为M v0 M+mD.整个过程最多能产生热量Mm2(M+m)v20解析:磁铁向右运动时,金属环中产生感应电流,由楞次定律可知磁铁与金属环间存在阻碍相对运动的作用力,且整个过程中动量守恒,最终二者相对静止.M v0=(M+m)v,v=M v0M+m;ΔE损=12M v20-12(M+m)v2=Mm v202(M+m);C、D项正确,A、B项错误.答案:CD10.如图所示,在光滑的水平地面上有一辆平板车,车的两端分别站着人A 和B ,A 的质量为m A ,B 的质量为m B ,m A >m B .最初人和车都处于静止状态.现在,两人同时由静止开始相向而行,A 和B 对地面的速度大小相等,则车( )A .静止不动B .左右往返运动C .向右运动D .向左运动解析:两人与车为一系统,水平方向不受力,竖直方向合外力为零,所以系统在整个过程中动量守恒.开始总动量为零,运动时A 和B 对地面的速度大小相等,m A >m B ,所以AB 的合动量向右,要想使人车系统合动量为零,则车的动量必向左,即车向左运动.答案:D11.如图所示,质量为0.5 kg 的小球在距离车底面高20 m 处以一定的初速度向左平抛,落在以7.5 m/s 速度沿光滑水平面向右匀速行驶的敞篷小车中,车底涂有一层油泥,车与油泥的总质量为4 kg ,设小球在落到车底前瞬时速度是25 m/s ,g 取10 m/s 2,则当小球与小车相对静止时,小车的速度是( )A .5 m/sB .4 m/sC .8.5 m/sD .9.5 m/s解析:对小球落入小车前的过程,平抛的初速度设为v 0,落入车中的速度设为v ,下落的高度设为h ,由机械能守恒得:12m v 20+mgh =12m v 2,解得v 0=15 m/s ,车的速度在小球落入前为v 1=7.5 m/s ,落入后相对静止时的速度为v 2,车的质量为M ,设向左为正方向,由水平方向动量守恒得:m v 0-M v 1=(m +M )v 2,代入数据可得:v2=-5 m/s,说明小车最后以5 m/s的速度向右运动.答案:A12.如图所示,小车AB放在光滑水平面上,A端固定一个轻弹簧,B端粘有油泥,AB总质量为M,质量为m的木块C放在小车上,用细绳连接于小车的A端并使弹簧压缩,开始时AB和C都静止,当突然烧断细绳时,C被释放,C离开弹簧向B端冲去,并跟B端油泥粘在一起,忽略一切摩擦,以下说法正确的是()A.弹簧伸长过程中C向右运动,同时AB也向右运动B.C与B碰前,C与AB的速率之比为m∶MC.C与油泥粘在一起后,AB立即停止运动D.C与油泥粘在一起后,AB继续向右运动解析:依据系统动量守恒,C向右运动时,A、B向左运动,或由牛顿运动定律判断,AB受向左的弹力作用而向左运动,故A项错;又M v AB=m v C,得v C vAB ,即B项错;根据动量守恒得:0=(M+m)v′,所以v′=0,故选C.=Mm答案:C第Ⅱ卷(非选择题,共52分)二、实验题(本题有2小题,共14分.请按题目要求作答)13.(5分)某同学利用计算机模拟A、B两球碰撞来验证动量守恒,已知A、B两球质量之比为2∶3,用A作入射球,初速度为v1=1.2 m/s,让A球与静止的B球相碰,若规定以v1的方向为正,则该同学记录碰后的数据中,肯定不合理的是________.解析:根据碰撞特点:动量守恒、碰撞后机械能不增加、碰后速度特点可以判断不合理的是BC.答案:BC(5分)14.(9分)气垫导轨是常用的一种实验仪器,它是利用气泵使带孔的导轨与滑块之间形成气垫,使滑块悬浮在导轨上,滑块在导轨上的运动可视为没有摩擦.我们可以用带竖直挡板C 和D 的气垫导轨以及滑块A 和B 来探究碰撞中的不变量,实验装置如图所示(弹簧的长度忽略不计),采用的实验步骤如下:a .用天平分别测出滑块A 、B 的质量m A 、m B .b .调整气垫导轨,使导轨处于水平.c .在A 和B 间放入一个被压缩的轻弹簧,用电动卡销锁定,静止地放置在气垫导轨上.d .用刻度尺测出A 的左端至C 板的距离L 1.e .按下电钮放开卡销,同时使分别记录滑块A 、B 运动时间的计时器开始工作.当A 、B 滑块分别碰撞C 、D 挡板时停止计时,记下A 、B 分别到达C 、D 的运动时间t 1和t 2.(1)实验中还应测量的物理量是______________________________.(2)利用上述测量的实验数据,得出关系式________成立,即可得出碰撞中守恒的量是m v 的矢量和,上式中算得的A 、B 两滑块的动量大小并不完全相等,产生误差的原因是________________________.解析:(1)本实验要测量滑块B 的速度,由公式v =L t 可知,应先测出滑块B的位移和发生该位移所用的时间t ,而滑块B 到达D 端所用时间t 2已知,故只需测出B 的右端至D 板的距离L 2.(2)碰前两物体均静止,即系统总动量为零.则由动量守恒可知0=m A ·L 1t 1-m B ·L 2t 2即m A L 1t 1=m B L 2t 2产生误差的原因有:测量距离、测量时间不准确;由于阻力、气垫导轨不水平等造成误差.答案:(1)测出B 的右端至D 板的距离L 2(3分)(2)m A L 1t 1=m B L 2t 2(3分) 测量距离、测量时间不准确;由于阻力、气垫导轨不水平等造成误差(3分)三、计算题(本题有3小题,共38分.解答应写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位)15.(10分)课外科技小组制作一只“水火箭”,用压缩空气压出水流使火箭运动.假如喷出的水流流量保持为2×10-4 m 3/s ,喷出速度保持为对地10 m/s.启动前火箭总质量为1.4 kg ,则启动2 s 末火箭的速度可以达到多少?已知火箭沿水平轨道运动阻力不计,水的密度是1.0×103 kg/m 3.解析:“水火箭”喷出水流做反冲运动.设火箭原来总质量为M ,喷出水流的流量为Q ,水的密度为ρ,水流的喷出速度为v ,火箭的反冲速度为v ′,由动量守恒定律得(M -ρQt )v ′=ρQt v (6分)代入数据解得火箭启动后2 s 末的速度为v ′=ρQt v M -ρQt =103×2×10-4×2×101.4-103×2×10-4×2m/s =4 m/s. (4分) 答案:4 m/s16.(12分)如图所示,有A 、B 两质量均为M =100 kg 的小车,在光滑水平面上以相同的速率v 0=2 m/s 在同一直线上相对运动,A 车上有一质量为m =50 kg 的人至少要以多大的速度(对地)从A 车跳到B 车上,才能避免两车相撞?解析:要使两车避免相撞,则人从A 车跳到B 车上后,B 车的速度必须大于或等于A 车的速度,设人以速度v 人从A 车跳离,人跳到B 车后,A 车和B 车的共同速度为v ,人跳离A 车前后,以A 车和人为系统,由动量守恒定律:(M +m )v 0=M v +m v 人(5分)人跳上B 车后,以人和B 车为系统,由动量守恒定律:m v 人-M v 0=(m +M )v (5分)联立以上两式,代入数据得:v 人=5.2 m/s. (2分)答案:5.2 m/s17.(16分)如图所示,质量m 1=0.3 kg 的小车静止在光滑的水平面上,车长L =1.5 m ,现有质量m 2=0.2 kg 可视为质点的物块,以水平向右的速度v 0=2 m/s 从左端滑上小车,最后在车面上某处与小车保持相对静止.物块与车面间的动摩擦因数μ=0.5,取g =10 m/s 2,求:(1)物块在车面上滑行的时间t ;(2)要使物块不从小车右端滑出,物块滑上小车左端的速度v 0′不超过多少. 解析:(1)设物块与小车共同速度为v ,以水平向右为正方向,根据动量守恒定律有m 2v 0=(m 1+m 2)v (3分)设物块与车面间的滑动摩擦力为F ,对物块应用牛顿定律有F =m 2v 0-v t (2分)又F =μm 2g (1分)解得t =m 1v 0μ(m 1+m 2)g(1分) 代入数据得t =0.24 s. (1分)(2)要使物块恰好不从车面滑出,须使物块到达车面最右端时与小车有共同的速度,设其为v ′,则m 2v 0′=(m 1+m 2)v ′(3分)由功能关系有12m 2v ′20=12(m 1+m 2)v ′2+μm 2gL (3分) 代入数据解得v 0′=5 m/s故要使物块不从车右端滑出,物块滑上小车左端的速度v 0′不超过5 m/s. (2分)答案:(1)0.24 s (2)5 m/s单元测评(二) 波粒二象性(时间:90分钟 满分:100分)第Ⅰ卷(选择题,共48分)一、选择题(本题有12小题,每小题4分,共48分.)1.能正确解释黑体辐射实验规律的是( )A .能量的连续经典理论B .普朗克提出的能量量子化理论C .以上两种理论体系任何一种都能解释D .牛顿提出的能量微粒说解析:根据黑体辐射的实验规律,随着温度的升高,一方面各种波长的辐射强度都增加;另一方面,辐射强度的极大值向波长较短的方向移动,只能用普朗克提出的能量量子化理论才能得到较满意的解释,故B 项正确.答案:B2.硅光电池是利用光电效应将光辐射的能量转化为电能.若有N 个频率为ν的光子打在光电池极板上,这些光子的总能量为(h 为普朗克常量)( )A .hν B.12Nhν C .Nhν D .2Nhν解析:光子能量与频率有关,一个光子能量为ε=hν,N 个光子能量为Nhν,故C 正确.答案:C3.经150 V 电压加速的电子束,沿同一方向射出,穿过铝箔后射到其后的屏上,则( )A .所有电子的运动轨迹均相同B .所有电子到达屏上的位置坐标均相同C .电子到达屏上的位置坐标可用牛顿运动定律确定D .电子到达屏上的位置受波动规律支配,无法用确定的坐标来描述它的位置解析:电子被加速后其德布罗意波波长λ=h p =1×10-10 m ,穿过铝箔时发生衍射.电子的运动不再遵守牛顿运动定律,不可能同时准确地知道电子的位置和动量,不可能用“轨迹”来描述电子的运动,只能通过概率波来描述.所以A 、B 、C 项均错.答案:D4.关于黑体辐射的强度与波长的关系,下图正确的是( )A BC D 解析:根据黑体辐射的实验规律:随温度升高,各种波长的辐射强度都有增加,故图线不会有交点,选项C 、D 错误.另一方面,辐射强度的极大值会向波长较短方向移动,选项A 错误,B 正确.答案:B5.科学研究证明,光子有能量也有动量,当光子与电子碰撞时,光子的一些能量转移给了电子.假设光子与电子碰撞前的波长为λ,碰撞后的波长为λ′,则碰撞过程中( )A.能量守恒,动量守恒,且λ=λ′B.能量不守恒,动量不守恒,且λ=λ′C.能量守恒,动量守恒,且λ<λ′D.能量守恒,动量守恒,且λ>λ′解析:能量守恒和动量守恒是自然界的普遍规律,适用于宏观世界也适用于微观世界,光子与电子碰撞时遵循这两个守恒定律.光子与电子碰撞前,光子的能量E=hν=h cλ,当光子与电子碰撞时,光子的一些能量转移给了电子,光子的能量E′=hν′=h cλ′,由E>E′,可知λ<λ′,选项C正确.答案:C6.在做双缝干涉实验时,发现100个光子中有96个通过双缝后打到了观察屏上的b处,则b处可能是()A.亮纹B.暗纹C.既有可能是亮纹也有可能是暗纹D.以上各种情况均有可能解析:按波的概率分布的特点去判断,由于大部分光子都落在b点,故b 处一定是亮纹,选项A正确.答案:A7.(多选题)关于不确定性关系ΔxΔp≥h4π有以下几种理解,其中正确的是()A.微观粒子的动量不可能确定B.微观粒子的坐标不可能确定C.微观粒子的动量和坐标不可能同时确定D.不确定性关系不仅适用于电子和光子等微观粒子,也适用于其他宏观粒子解析:不确定性关系ΔxΔp≥h4π表示确定位置、动量的精度互相制约,此长彼消,当粒子位置不确定性变小时,粒子动量的不确定性变大;粒子位置不确定性变大时,粒子动量的不确定性变小.故不能同时准确确定粒子的动量和坐标.不确定性关系也适用于其他宏观粒子,不过这些不确定量微乎其微.答案:CD8.(多选题)用极微弱的可见光做双缝干涉实验,随着时间的增加,在屏上先后出现如图甲、乙、丙所示的图像,则()A.图像甲表明光具有粒子性B.图像丙表明光具有波动性C.用紫外光观察不到类似的图像D.实验表明光是一种概率波解析:从题图甲可以看出,少数粒子打在底片上的位置是随机的,没有规律性,显示出粒子性;而题图丙是大量粒子曝光的效果,遵循了一定的统计性规律,显示出波动性;单个光子的粒子性和大量粒子的波动性就是概率波的思想.答案:ABD9.近年来,数码相机几近家喻户晓,用来衡量数码相机性能的一个非常重要的指标就是像素,1像素可理解为光子打在光屏上的一个亮点,现知300万像素的数码相机拍出的照片比30万像素的数码相机拍出的等大的照片清晰得多,其原因可以理解为( )A .光是一种粒子,它和物质的作用是一份一份的B .光的波动性是大量光子之间的相互作用引起的C .大量光子表现光具有粒子性D .光具有波粒二象性,大量光子表现出光的波动性解析:由题意知像素越高形成照片的光子数越多,表现的波动性越强,照片越清晰,D 项正确.答案:D10.现用电子显微镜观测线度为d 的某生物大分子的结构.为满足测量要求,将显微镜工作时电子的德布罗意波长设定为d n ,其中n >1.已知普朗克常量为h 、电子质量为m 和电子电荷量为e ,电子的初速度不计,则显微镜工作时电子的加速电压应为( )A.n 2h 2med 2 B.md 2h 23n 2e 3 C.d 2h 22men 2 D.n 2h 22med 2解析:由德布罗意波长λ=h p 知,p 是电子的动量,则p =m v =2meU =h λ,而λ=d n ,代入得U =n 2h 22med 2. 答案:D11.对于微观粒子的运动,下列说法中正确的是( )A .不受外力作用时光子就会做匀速运动B .光子受到恒定外力作用时就会做匀变速运动C .只要知道电子的初速度和所受外力,就可以确定其任意时刻的速度D .运用牛顿力学无法确定微观粒子的运动规律解析:光子不同于宏观力学的粒子,不能用宏观粒子的牛顿力学规律分析光子的运动,选项A、B错误;根据概率波、不确定关系可知,选项C错误,故选D.答案:D12.(多选题)如图所示是某金属在光的照射下,光电子最大初动能E k与入射光频率ν的关系图像,由图像可知()A.该金属的逸出功等于EB.该金属的逸出功等于hν0C.入射光的频率为ν0时,产生的光电子的最大初动能为ED.入射光的频率为2ν0时,产生的光电子的最大初动能为2E解析:题中图象反映了光电子的最大初动能E k与入射光频率ν的关系,根据爱因斯坦光电效应方程E k=hν-W0,知当入射光的频率恰为该金属的截止频率ν0时,光电子的最大初动能E k=0,此时有hν0=W0,即该金属的逸出功等于hν0,选项B正确.根据图线的物理意义,有W0=E,故选项A正确,而选项C、D错误.答案:AB第Ⅱ卷(非选择题,共52分)二、计算题(本题有4小题,共52分.解答应写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位)13.(10分)一颗近地卫星质量为m,求其德布罗意波长为多少?(已知地球半径为R ,重力加速度为g )解析:由万有引力提供向心力计算速度,根据德布罗意波长公式计算.对于近地卫星有:G Mm R 2=m v 2R (2分) 对地球表面物体m 0有:G Mm 0R 2=m 0g (2分) 所以v =gR ,(2分)根据德布罗意波长λ=h p (2分)整理得:λ=h m v =h m gR. (2分) 答案:h m gR14.(13分)波长λ=0.71Å的伦琴射线使金箔发射光电子,电子在磁感应强度为B 的匀强磁场区域内做最大半径为r 的匀速圆周运动,已知rB =1.88×10-4 m·T ,电子质量m =9.1×10-3 kg.试求:(1)光电子的最大初动能;(2)金属的逸出功;(3)该电子的物质波的波长是多少?解析:(1)电子在匀强磁场中做匀速圆周运动的向心力为洛伦兹力m v 2r =e v B所以v =erB m (3分) 电子的最大初动能E k =12m v 2=e 2r 2B 22m=(1.6×10-19)2×(1.88×10-4)22×9.1×10-31J ≈4.97×10-16 J ≈3.1×103 eV(2分) (2)入射光子的能量ε=hν=h c λ= 6.63×10-34×3×1087.1×10-11×1.6×10-19 eV ≈1.75×104eV(3分) 根据爱因斯坦光电效应方程得金属的逸出功为W 0=hν-E k =1.44×104 eV(2分)(3)物质波的波长为λ=h m v =h erB = 6.63×10-341.6×10-19×1.88×10-4m ≈2.2×10-11 m(3分) 答案:(1)3.1×103 eV (2)1.44×104 eV (3)2.2×10-11 m15.(14分)如图所示,相距为d 的两平行金属板A 、B 足够大,板间电压恒为U ,有一波长为λ的细激光束照射到B 板中央,使B 板发生光电效应,已知普朗克常量为h ,金属板B 的逸出功为W ,电子质量为m ,电荷量为e .求:(1)从B 板运动到A 板所需时间最短的光电子,到达A 板时的动能;(2)光电子从B 板运动到A 板时所需的最长时间.解析:(1)根据爱因斯坦光电效应方程E k =hν-W ,光子的频率为ν=c λ.(3分)所以,光电子的最大初动能为E k =hc λ-W .(3分)能以最短时间到达A 板的光电子,是初动能最大且垂直于板面离开B 板的电子,设到达A 板的动能为E k1,由动能定理,得eU =E k1-E k ,所以E k1=eU+hcλ-W.(3分)(2)能以最长时间到达A板的光电子,是离开B板时的初速度为零或运动方向平行于B板的光电子.则d=12at2=Uet22dm,得t=d2mUe.(5分)答案:(1)eU+hcλ-W(2)d2mUe16.(15分)光子具有能量,也具有动量.光照射到物体表面时,会对物体产生压强,这就是“光压\”.光压的产生机理如同气体压强;大量气体分子与器壁的频繁碰撞产生了持续均匀的压力,器壁在单位面积上受到的压力就是气体的压强.设太阳光每个光子的平均能量为E,太阳光垂直照射地球表面时,在单位面积上的辐射功率为P0.已知光速为c,光子的动量为E/c.(1)若太阳光垂直照射到地球表面,则在时间t内照射到地球表面上半径为r 的圆形区域内太阳光的总能量及光子个数分别是多少?(2)若太阳光垂直照射到地球表面,在半径为r的某圆形区域内光子被完全反射(即所有光子均被反射,且被反射前后的能量变化可忽视不计),则太阳光在该区域表面产生的光压(用I表示光压)是多少?(3)有科学家建议把光压与太阳帆的作用作为未来星际旅行的动力来源.一般情况下,太阳光照射到物体表面时,一部分会被反射,还有一部分被吸收.若物体表面的反射系数为ρ,则在物体表面产生的光压是全反射时产生光压的1+ρ2倍.设太阳帆的反射系数ρ=0.8,太阳帆为圆盘形,其半径r=15 m,飞船的总质量m=100 kg,太阳光垂直照射在太阳帆表面单位面积上的辐射功率P0=1.4 kW,已知光速c=3.0×108m/s.利用上述数据并结合第(2)问中的结果,求:太阳帆飞船仅在上述光压的作用下,能产生的加速度大小是多少?不考虑光子被反射前后的能量变化.(结果保留2位有效数字)解析:(1)在时间t 内太阳光照射到面积为S 的圆形区域上的总能量E 总=P 0St ,解得E 总=πr 2P 0t .照射到此圆形区域的光子数n =E 总/E .解得n =πr 2P 0t /E .(2)因光子的能量p =E /c ,到达地球表面半径为r 的圆形区域的光子总动量p 总=np .因太阳光被完全反射,所以在时间t 内光子总动量的改变量Δp =2p 总.设太阳光对此圆形区域表面的压力为F ,依据动量定理Ft =Δp ,太阳光在圆形区域表面产生的光压I =F /S ,解得I =2P 0/c .(3)在太阳帆表面产生的光压I ′=1+ρ2I , 对太阳帆产生的压力F ′=I ′S .设飞船的加速度为a ,依据牛顿第二定律F ′=ma .解得a =5.9×10-5 m/s 2.答案:(1)πr 2P 0t πr 2P 0t /E (2)2P 0/c(3)5.9×10-5 m/s 2单元测评(三) 原子结构(时间:90分钟 满分:100分)第Ⅰ卷(选择题,共48分)一、选择题(本题有12小题,每小题4分,共48分.)1.(多选题)下列叙述中符合物理史实的有( )A .爱因斯坦提出光的电磁说B.卢瑟福提出原子核式结构模型C.麦克斯韦提出光子说D.汤姆孙发现了电子解析:爱因斯坦提出光子说,麦克斯韦提出光的电磁说.答案:BD2.如果阴极射线像X射线一样,则下列说法正确的是()A.阴极射线管内的高电压能够对其加速,从而增加能量B.阴极射线通过偏转电场时不会发生偏转C.阴极射线通过偏转电场时能够改变方向D.阴极射线通过磁场时方向可能发生改变解析:X射线是电磁波,不带电,通过电场、磁场时不受力的作用,不会发生偏转、加速,B正确.答案:B3.α粒子散射实验中α粒子经过某一原子核附近时的两种轨迹如图所示,虚线为原子核的等势面,α粒子以相同的速率经过电场中的A点后,沿不同的径迹1和2运动,由轨迹不能断定的是()A.原子核带正电B.整个原子空间都弥漫着带正电的物质C.粒子在径迹1中的动能先减少后增大D.经过B、C两点两粒子的速率相等。
动量守恒定律单元测试题(1)一、动量守恒定律 选择题1.如图所示,小车质量为M ,小车顶端为半径为R 的四分之一光滑圆弧,质量为m 的小球从圆弧顶端由静止释放,对此运动过程的分析,下列说法中正确的是(g 为当地重力加速度)( )A .若地面粗糙且小车能够静止不动,则地面对小车的静摩擦力最大为mgB .若地面粗糙且小车能够静止不动,则地面对小车的静摩擦力最大为32mgC .若地面光滑,当小球滑到圆弧最低点时,小车速度为2()gRmM M m +D .若地面光滑,当小球滑到圆弧最低点时,小车速度为2()gRMm M m +2.如图所示为水平放置的固定光滑平行直轨道,窄轨间距为L ,宽轨间距为2L 。
轨道处于竖直向下的磁感应强度为B 的匀强磁场中,质量分别为m 、2m 的金属棒a 、b 垂直于导轨静止放置,其电阻分别为R 、2R ,现给a 棒一向右的初速度v 0,经t 时间后两棒达到匀速运动两棒运动过程中始终相互平行且与导轨良好接触,不计导轨电阻,b 棒一直在宽轨上运动。
下列说法正确的是( )A .a 棒开始运动时的加速度大小为2203B L v RmB .b 棒匀速运动的速度大小为3v C .整个过程中通过b 棒的电荷量为23mv BLD .整个过程中b 棒产生的热量为203mv3.如图甲所示,一轻弹簧的两端与质量分别为1m 、2m 的两物块A 、B 相连接,并静止在光滑水平面上。
现使B 获得水平向右、大小为6m/s 的瞬时速度,从此刻开始计时,两物块的速度随时间变化的规律如图乙所示,从图像提供的信息可得( )A .在1t 、3t 两个时刻,两物块达到共同的速度2m/s ,且弹簧都处于伸长状态B .在3t 到4t 时刻之间,弹簧由压缩状态恢复到原长C .两物体的质量之比为1m :2m =2:1D .运动过程中,弹簧的最大弹性势能与B 的初始动能之比为2:34.如图,在光滑水平面上放着质量分别为2m 和m 的A 、B 两个物块,弹簧与A 、B 栓连,现用外力缓慢向左推B 使弹簧压缩,此过程中推力做功W 。
然后撤去外力,则( )A .从撤去外力到A 离开墙面的过程中,墙面对A 的冲量大小为2mWB .当A 离开墙面时,B 的动量大小为2mWC .A 离开墙面后,A 的最大速度为89WmD .A 离开墙面后,弹簧的最大弹性势能为23W5.如图所示,质量为M 、带有半径为R 的四分之一光滑圆弧轨道的滑块静置于光滑水平地面上,且圆弧轨道底端与水平面平滑连接,O 为圆心。
质量为m 的小滑块以水平向右的初速度0v 冲上圆弧轨道,恰好能滑到最高点,已知M =2m 。
,则下列判断正确的是A .小滑块冲上轨道的过程,小滑块机械能不守恒B .小滑块冲上轨道的过程,小滑块与带有圆弧轨道的滑块组成的系统动量守恒C .小滑块冲上轨道的最高点时,带有圆弧轨道的滑块速度最大且大小为023v D .小滑块脱离圆弧轨道时,速度大小为013v6.A 、B 两小球在光滑水平面上沿同一直线向同一方向运动,A 球的动量为5kg •m /s ,B 球的动量为7kg •m /s ,当A 球追上B 球时发生对心碰撞,则碰撞后A 、B 两球动量的可能值为( )A .''6/6/A B P kg m s P kg m s =⋅=⋅,B .''3/9/A B P kg m s P kg m s =⋅=⋅,C .''2/14/A B P kg m s P kg m s =-⋅=⋅,D .''5/17/A B P kg m s P kg m s =-⋅=⋅,7.如图所示,A 、B 、C 三个半径相同的小球穿在两根平行且光滑的足够长的杆上,三个球的质量分别为m A =2kg,m B =3kg,m C =1kg,初状态三个小球均静止,BC 球之间连着一根轻质弹簧,弹簣处于原长状态.现给A 一个向左的初速度v 0=10m/s,A 、B 碰后A 球的速度变为向右,大小为2m/s ,下列说法正确的是A .球A 和B 碰撞是弹性碰撞B .球A 和B 碰后,球B 的最小速度可为0C .球A 和B 碰后,弹簧的最大弹性势能可以达到96JD .球A 和B 碰后,弹簧恢复原长时球C 的速度可能为12m/s8.如图所示,光滑绝缘的水平面上M 、N 两点有完全相同的金属球A 和B ,带有不等量的同种电荷.现使A 、B 以大小相等的初动量相向运动,不计一切能量损失,碰后返回M 、N 两点,则A .碰撞发生在M 、N 中点之外B .两球同时返回M 、N 两点C .两球回到原位置时动能比原来大些D .两球回到原位置时动能不变9.有一宇宙飞船,它的正对面积S =2 m 2,以v =3×103 m/s 的相对速度飞入一宇宙微粒区.此微粒区1 m 3空间中有一个微粒,每一个微粒的平均质量为m =2×10-7kg .设微粒与飞船外壳碰撞后附着于飞船上,要使飞船速度不变,飞船的牵引力应增加 A .3.6×103 NB .3.6 NC .1.2×103 ND .1.2 N10.质量分别为3m 和m 的两个物体,用一根细绳相连,中间夹着一根被压缩的轻弹簧,在光滑的水平面上以速度v 0匀速运动.某时刻剪断细绳,质量为m 的物体离开弹簧时速度变为v= 2v 0,如图所示.则在这一过程中弹簧做的功和两物体之间转移的动能分别是A .2083mv 2023mv B .20mv 2032mv C .2012mv 2032mv D .2023mv 2056mv 11.如图所示,滑块和小球的质量分别为M 、m .滑块可在水平放置的光滑固定导轨上自由滑动,小球与滑块上的悬点O 由一不可伸长的轻绳相连,轻绳长为l .开始时,轻绳处于水平拉直状态,小球和滑块均静止.现将小球由静止释放,当小球到达最低点时,下列说法正确的是( )A .滑块和小球组成的系统动量守恒B .滑块和小球组成的系统水平方向动量守恒C .滑块的最大速率为22()m glM M m +D .滑块的最大速率为 2()m glM M m +12.如图所示,在粗糙水平面上,用水平轻绳相连的两个相同的物体A 、B 质量均为m ,在水平恒力F 作用下以速度v 做匀速运动.在t =0时轻绳断开,A 在F 作用下继续前进,则下列说法正确的是( )A .t =0至t =mvF时间内,A 、B 的总动量守恒 B .t =2mv F 至t =3mvF 时间内,A 、B 的总动量守恒 C .t =2mvF时,A 的动量为2mv D .t =4mvF时,A 的动量为4mv 13.如图所示,光滑水平面上质量为m 的小球A 和质量为13m 的小球B ,通过轻质弹簧相连并处于静止状态,弹簧处于自由长度;质量为m 的小球C 以速度0V 沿AB 连线向右匀速运动.并与小球A 发生弹性正碰.在小球B 的右侧固定一块弹性挡板(图中未画出).当小球B 的速度达到最大时恰与挡板发生正碰,后立刻将挡板搬走.不计所有碰撞过程中的机械能损失.弹簧始终处于弹性限度内,小球B 与固定挡板的碰撞时间极短,碰后小球B 的速度大小不变,但方向相反.则B 与挡板碰后弹簧弹性勢能的最大值m E 为( )A .20mVB .2012mV C .2016mV D .20116mV 14.如图所示,轻弹簧的一端固定在竖直墙上,一质量为m 的光滑弧形槽静止放在足够长的光滑水平面上,弧形槽底端与水平面相切。
一质量为2m 的小物块从槽顶端距水平面高h 处由静止开始下滑,重力加速度为g ,下列说法正确的是( )A .物块第一次滑到槽底端时,槽的动能为43mgh B .在下滑过程中物块和槽之间的相互作用力对物块始终不做功C .全过程中物块、槽和弹簧所组成的系统机械能守恒,且水平方向动量守恒D .物块第一次被弹簧反弹后能追上槽,且能回到槽上距水平面高h 处15.如图所示,一块质量为M 的木板停在光滑的水平面上,木板的左端有挡板,挡板上固定一个小弹簧.一个质量为m 的小物块(可视为质点)以水平速度v 0从木板的右端开始向左运动,与弹簧碰撞后(弹簧处于弹性限度内),最终又恰好停在木板的右端.根据上述情景和已知量,可以求出 ( )A .弹簧的劲度系数B .弹簧的最大弹性势能C .木板和小物块组成的系统最终损失的机械能D .若再已知木板长度l 可以求出木板和小物块间的动摩擦因数16.如图所示,内壁光滑的半圆形的圆弧槽静止在光滑水平地面上,其左侧紧靠固定的支柱,槽的半径为R 。
有一个可视为质点的小球,从槽的左侧正上方距槽口高度为R 处由静止释放,槽的质量等于小球的质量的3倍,重力加速度为g ,空气阻力忽略不计,则下列关于小球和槽的运动的说法正确的是( )A .小球运动到槽的底部时,槽对地面的压力大小等于小球重力的5倍B .小球第一次离开槽后能沿圆弧切线落回槽内C .小球上升的最大高度为(相对槽口)RD .小球上升的最大高度为(相对槽口)12R 17.如图所示,在倾角30θ=︒的光滑绝缘斜面上存在一有界匀强磁场,磁感应强度B =1T ,磁场方向垂直斜面向上,磁场上下边界均与斜面底边平行,磁场边界间距为L =0.5m 。
斜面上有一边长也为L 的正方形金属线框abcd ,其质量为m =0.1kg ,电阻为0.5R =Ω。
第一次让线框cd 边与磁场上边界重合,无初速释放后,ab 边刚进入磁场时,线框以速率v 1作匀速运动。
第二次把线框从cd 边离磁场上边界距离为d 处释放,cd 边刚进磁场时,线框以速率v 2作匀速运动。
两种情形下,线框进入磁场过程中通过线框的电量分别为q 1、q 2,线框通过磁场的时间分别t 1、t 2,线框通过磁场过程中产生的焦耳热分别为Q 1、Q 2.已知重力加速度g=10m/s 2,则:( )A .121v v ==m/s ,0.05d =mB .120.5q q ==C ,0.1d =m C .12:9:10Q Q =D .12:6:5t t =18.如图所示,水平面(纸面)内有两条足够长的平行光滑金属导轨PQ 、MN ,导轨电阻不计,间距为L ;导轨之间有方向竖直向下(垂直于纸面向里)、大小为B 的匀强磁场;金属杆ab 、cd 质量均为m ,电阻均为R ,两杆静止在水平导轨上,间距为s 0。
t =0时刻开始金属杆cd 受到方向水平向右、大小为F 的恒定外力作用。
t =t 0时刻,金属杆cd 的速度大小为v ,此时撤去外力F ,下列说法正确的是( )A .t =t 0时刻,金属杆ab 的速度大小为Ft v m- B .从t =0到t =t 0时间内,流过金属杆ab 的电荷量为Ft BLC .最终两金属杆的间距为00222FRt s B L+D .最终两金属杆的间距为0022FRt s B L+19.如图所示,两条足够长、电阻不计的平行导轨放在同一水平面内,相距l 。