通信原理5.2数字基带传输中的码间串扰和噪声
- 格式:ppt
- 大小:769.50 KB
- 文档页数:43
《数字通信系统原理》复习要点说明:要点以教材中的相关内容为基础,各章小结及习题为重点。
1.通信的概念、通信系统的模型2.通信系统的分类和通信方式、资源3.数字通信的主要特点及数字通信系统4.数字通信技术的现状与未来5.数字通信系统的性能及相关的一些概念6.数字与数据通信7.消息、信号与信息8.信号的频谱分析基础9.随机过程的基本概念10.通信信道及信道容量、常用带宽11.信源及其编码的概念12.模拟信号数字化传输方法13.波形编码(PCM、 )14.数字基带信号及常用码型15.数字基带传输系统、眼图16.信道编码的概念、基本原理和术语17.信道复用与多址技术的基本概念18.FDM和TDM与数字复接19.帧结构20.数字信号的调制(频带)传输的概念21.数字信号调制系统的技术比较(MASK、MFSK、MPSK)22.同步的基本概念、分类和比较《数字通信系统原理》复习题(上部分)1简述通信系统的分类和通信方式、主要通信资源2数字通信系统模型3数字通信的主要特点4简述数字通信技术的现状与未来5什么是数字消息?什么是模拟消息?什么是数字信号?什么是随机信号?什么是模拟信号什么是基带信号?6信道容量的含义?7简述数字通信的主要特点8简述数字通信系统的质量指标9简述数字通信与数据通信的概念与区别10简述信号的分类11简述功率信号和能量信号的含义12简述信道的定义与分类什么是抽样定理?有什么实际意义?13什么是量化?量化的作用是什么?叙述量化是如何进行的。
14画出PCM 通信系统的方框图,由模拟信号得到PCM信号要经过哪几步?模拟题(部分)1.数值上取有限个离散值的消息一定是数字消息。
()2.时间上离散的消息一定是数字消息。
()3.数字消息必定是时间上离散,且数值上离散的。
()4.离散信源中,消息出现的概率越大,该消息的信息量也越大。
()5.在M元离散信源中,M个消息的出现概率相等时,信源的熵最大。
()6.高斯随机过程若是广义平稳的,则必定是严格平稳的。
信号与系统的教学实例:基带传输中的码间干扰翁剑枫;郑卫红【摘要】基带传输中码间干扰的产生与消除包含了信号与系统的许多重要概念,包括信号带宽与系统带宽、不失真传输、采样与重建及系统的物理可实现性等,因此非常适合在信号与系统课程的傅立叶变换的应用部分将其取作一个综合性的实例.教学实践表明,尽早引入与基本原理密切相关的后续课程中重要论题的做法,既能使学生对所学到的基本概念、基本原理和分析方法受到综合性的训练,建立起各种概念之间的有机联系,增强将理论应用于工程问题的能力,又能为后续课程的学习打下良好的基础.【期刊名称】《浙江科技学院学报》【年(卷),期】2011(023)003【总页数】5页(P244-248)【关键词】码间干扰;信号带宽;系统带宽;不失真传输;采样与重建;物理可实现系统【作者】翁剑枫;郑卫红【作者单位】浙江科技学院信息与电子工程学院,杭州310023;浙江科技学院信息与电子工程学院,杭州310023【正文语种】中文【中图分类】G642.3;TN911.6信号与系统课程是电子信息类专业的一门重要的专业基础课,所涉及的基本理论和分析方法构成了后续的数字信号处理、通信原理等课程的先修基础知识,也是学生在毕业设计及日后工作中的重要基础。
为了使学生更好地掌握这门课程的基本原理和基本概念,有机地建立起重要概念之间的联系,应该在讲解原理、概念的同时,尽早地引入与之密切相关的应用实例分析。
因此,笔者主张在介绍完时域、频域分析的基本理论后,围绕傅里叶变换应用的中心议题,从后续课程中挑选一些实例,通过对这些实例的分析,既使学生加深对基本概念的理解,也使学生受到将基本理论和分析工具用于工程实践的训练。
本文将就教学实践中所采用的一个实例——数字基带传输中的码间干扰[1]作一教学分析。
码间干扰问题中,涉及信号与系统课程中的许多极为重要的概念,包括信号带宽与系统带宽的匹配问题、不失真传输、采样与重建及系统的物理可实现性[2-4]等。
通信原理课程中数字基带传输系统的码间串扰及其判断作者:邓尚伟来源:《学园》2014年第16期【摘要】本文介绍了高职院校通信原理课程中数字基带传输系统的码间串扰及其判断方法。
【关键词】码间串扰(ISI)奈奎斯特第一准则奈奎斯特带宽B 无ISI的最高码率RBmax【中图分类号】G642 【文献标识码】A 【文章编号】1674-4810(2014)16-0072-01在高职通信原理课程中,数字基带传输系统的码间串扰及其判断是高职学生在学习本课程中的一个难点。
本文主要介绍无码间串扰的数字基带传输系统的传输特性判断方法。
一无码间串扰的基带传输特性码间串扰(InterSymbol Interference,简称ISI)是由于系统传输总特性不理想,导致前后码元的波形畸变、展宽,并使前面波形出现很长的拖尾,蔓延到当前码元的抽样时刻上,从而对当前码元的判决造成干扰。
原因是系统传输总特性H(ω)(包括收、发滤波器和信道的特性)不理想,导致码元的波形畸变、展宽和拖尾。
在1924年,奈奎斯特(Nyquist)就推导出了著名的奈氏准则。
他给出了在假定的理想条件下,为了避免码间串扰,码元的传输速率的上限值。
奈奎斯特给出的无ISI的基带传输特性的条件是:1.时域条件只要基带传输系统的冲激响应波形h(t)仅在本码元的抽样时刻上有最大值,并在其他码元的抽样时刻上均为0,则可消除码间串扰。
即:从以上分析中可看出,采用方法1能简明快捷地判断实际系统能否实现无ISI的基带数据传输,比教材上普遍采用的方法2更能让学生理解和掌握。
参考文献[1]樊昌信、曹丽娜编著.通信原理(第6版)[M].北京:国防工业出版社,2006〔责任编辑:庞远燕〕。
基带传输系统中码间串扰产生的原因引言:基带传输系统是一种将数字信号直接传输到传输介质上的通信系统。
在基带传输过程中,码间串扰是一种常见的干扰现象。
本文将探讨码间串扰产生的原因,并对其影响和解决方法进行分析。
一、码间串扰的定义和影响码间串扰是指在基带传输系统中,由于信号之间存在相互干扰,导致接收端无法正确解码的现象。
码间串扰会导致接收信号的错误和失真,影响通信系统的可靠性和性能。
二、码间串扰产生的原因1. 信号传输路径干扰:当多个信号在传输路径上同时存在时,它们之间会相互干扰,产生码间串扰。
例如,在同一传输介质上同时传输多个信号时,它们之间的相互作用会导致码间串扰。
2. 传输介质特性差异:不同传输介质对信号的传输特性有所差异,如传输速度、传输延迟等。
当多个信号同时传输在不同的介质上时,由于介质特性的差异,会产生码间串扰。
3. 邻近信号干扰:当多个信号在时间上或频率上非常接近时,它们之间会相互干扰,产生码间串扰。
例如,在频分多路复用系统中,多个信号被调制到不同的频率上进行传输,但相邻频率之间会产生串扰。
4. 信号功率差异:当多个信号的功率差异较大时,功率较大的信号会对功率较小的信号产生干扰,导致码间串扰。
这种干扰主要发生在采用非线性调制方式的系统中。
5. 时钟抖动:时钟抖动是指时钟信号的不稳定性,会导致码间串扰。
当时钟信号抖动较大时,信号传输的时序会出现偏差,从而引起码间串扰。
三、码间串扰的影响码间串扰会对基带传输系统的性能产生负面影响,主要表现在以下几个方面:1. 误码率增加:码间串扰会导致接收信号的错误和失真,增加系统的误码率。
当误码率过高时,会影响通信系统的可靠性和传输质量。
2. 传输距离受限:码间串扰会限制基带传输系统的传输距离,使信号传输的距离受到限制。
这是因为码间串扰会随着传输距离的增加而增强,导致信号的质量下降。
3. 频带利用率下降:码间串扰会占用信号的频带资源,降低频带利用率。
这是因为码间串扰会使接收信号的频谱发生变化,增加了信号之间的重叠,从而降低了频带利用率。