第九章力学量本征值问题的代数解法
- 格式:ppt
- 大小:2.10 MB
- 文档页数:67
第九章 力学量本征值问题的代数解法本征值问题的解法: 分析解法,代数解法§9.1 一维谐振子的Schrödinger 因式分解法 升、降算符一、Hamilton 量的代数表示 一维谐振子的Hamilton 量可表为2222121x p H μωμ+=采用自然单位(1===ωμ ),(此时能量以ω 为单位,长度以μω/ 为单位,动量以ωμ 为单位) 则222121x p H +=而基本对易式是[]i p x =,。
令)(21ip x a +=,)(21ip x a -=+其逆为)(21a a x +=+,)(2a a i p -=+。
利用上述对易式,容易证明(请课后证明)1],[=+a a将两类算符的关系式)(21a a x +=+,)(2a a i p -=+代入一维谐振子的Hamilton 量222121x p H +=,有⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=+21ˆ21N a a H上式就是Hamilton 量的因式分解法,其中a a N +=ˆ。
由于N Nˆˆ=+,而且在任何量子态ψ下 0),(),(≥==+ψψψψa a a a N所以Nˆ为正定厄米算符 二、Hamilton 量的本征值下面证明,若N ˆ的本征值为n , ,2,1,0=n ,则H 的本征值nE 为(自然单位,ω ) ⎪⎭⎫ ⎝⎛+=21n E n , ,2,1,0=n证明:设|n >为Nˆ的本征态( n 为正实数),即 n n n N=ˆ 利用1],[=+a a 及a a N+=ˆ容易算出 ++=a a N],ˆ[,a a N -=],ˆ[ 因此n a n a N-=],ˆ[。
但上式 左边n na n a N n N a n a N-=-=ˆˆˆ 由此可得n a n n a N)1(ˆ-=。
这说明,>n a |也是Nˆ的本征态,相应本征值为)1(-n 。
如此类推,从Nˆ的本征态>n |出发,逐次用a 运算,可得出N ˆ的一系列本征态 >n |,>n a |,>n a |2,…相应的本征值为n ,1-n ,2-n ,…因为Nˆ为正定厄米算子,其本征值为非负实数。
第九章 力学量本征值问题的代数解法9—1) 在8.2节式(21)中给出了自旋(21)与轨迹角动量(l )耦合成总角动量j 的波函数j ljm φ,这相当于21,21===s j l j 的耦合。
试由8.2节中式(21)写出表9.1(a )中的CG 系数jm m m j 21121解:8.2节式(21a )(21b ):()21),0( 21+=≠-=m ml l j jjljm φ⎪⎪⎭⎫ ⎝⎛-+++=+11121lm lm Y m l Y m l l ()⎪⎪⎪⎭⎫⎝⎛-++---+=+=21,2121,212121,21j j m j j m j j Y m j Y m j j m j m l j (21a )()21-=j ljljm φ⎪⎪⎭⎫⎝⎛++---=+11121lm lm Y m l Y m l l ()⎪⎪⎪⎭⎫⎝⎛+++--+++-++=≠-=21,2121,211122121),0( 21j j m j j m j j Y m j Y m j j m j m l l j (21b )()21++j l此二式中的l 相当于CG 系数中的1j ,而212==s j ,21,~,,~21±=m m m m j 。
因此,(21a )式可重写为jm ∑=222112211m jm m j m jm j m j212121212121212111111111--+=m j jm m j m j jm m j ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛++-⎪⎪⎭⎫ ⎝⎛++++=+=212112212121122111211111211121121),21(m j j m j m j j m j j l j a (21a ’) 对照CG 系数表,可知:当21121+=+=j j j j ,212=m时 ,21111112212121⎪⎪⎭⎫ ⎝⎛++=+j m j jm m j 而212-=m 时,21111112212121⎪⎪⎭⎫ ⎝⎛+-=-+j m j jm m j 对于21211-=-=j l j 的(21b )式,有21111111221,212121⎪⎪⎭⎫ ⎝⎛+--=-+j m j m j m j21111111221,212121⎪⎪⎭⎫ ⎝⎛++=--+j m j m j m j9-2)设两个全同粒子角动量21j j j ==,耦合成总角动量J ,JMj2ψ()()21212121jm jm m m JM m j jm ψψ∑=(1)利用CG 系数的对称性,证明()JMjJj JM j p 22212ψψ--=由此证明,无论是Bose 子或Fermi 子,J 都必须取偶数证:由式(1),JM j p 212ψ()()12212121jm jm m m JM jm jm ψψ∑=把21m m ↔, ()()12122112jm jm m m JM jm jm ψψ∑=利用CG 系数的对称性 ()()()21212112212jm jm m m Jj JM m j m j ψψ∑--=()JMjJj 22ψ--= (2)对于Fermi 子,=j 半奇数,=j 2奇数,但要求ψψ-=12p , 即要求()12-=--Jj ,所以J 必须为偶数。
第一章 量子力学的诞生[1] 在宏观世界里,量子现象常常可以忽略.对下列诸情况,在数值上加以证明: ( l )长l=lm ,质量M=1kg 的单摆的零点振荡的振幅;( 2 )质量M=5g ,以速度10cm/s 向一刚性障碍物(高5cm ,宽1cm )运动的子弹的透射率;( 3 )质量M= 0.1kg ,以速度0.5m/s 运动的钢球被尺寸为1×1.5m 2时的窗子所衍射.[2] 用h,e,c,m (电子质量), M (质子质量)表示下列每个量,给出粗略的数值估计: ( 1 )玻尔半径(cm ) ; ( 2 )氢原子结合能(eV ) ; ( 3 )玻尔磁子;( 4 )电子的康普顿波长(cm ) ; ( 5 )经典电子半径(cm ) ; ( 6 )电子静止能量(MeV ) ; ( 7 )质子静止能量( MeV ) ; ( 8 )精细结构常数;( 9 )典型的氢原子精细结构分裂[3]导出、估计、猜测或背出下列数值,精确到一个数量级范围内,( 1 )电子的汤姆逊截面;( 2 )氢原子的电离能;( 3 )氢原子中基态能级的超精细分裂能量;( 4 )37Li ( z=3 )核的磁偶极矩;( 5 )质子和中子质量差;( 6 )4He 核的束缚能;( 7 )最大稳定核的半径;( 8 )Π0介子的寿命;( 9 )Π-介子的寿命;( 10 )自由中子的寿命.[4]指出下列实验中,哪些实验表明了辐射场的粒子性?哪些实验主要证明能量交换的量子性?哪些实验主要表明物质粒子的波动性?简述理由.( 1 )光电效应;( 2 )黑体辐射谱;( 3 ) Franck – Hertz 实验;( 4 ) Davisson -Ger - mer 实验;( 5 ) Compton 散射.[5]考虑如下实验:一束电子射向刻有A 、B 两缝的平板,板外是一装有检测器阵列的屏幕,利用检测器能定出电子撞击屏幕的位置.在下列各种情形下,画出入射电子强度随屏幕位置变化的草图,给出简单解释. ( 1 ) A 缝开启,B 缝关闭; ( 2 ) B 缝开启,A 缝关闭; ( 3 )两缝均开启. [6]验算三个系数数值:(1)h 2e m ;(2)h 2nm ;(3)hc第二章 波函数与Schr ödinger 方程[1] 试用量子化条件,求谐振子的能量[谐振子势能2221)(x m x V ω=] [2] 一维运动的粒子处在⎩⎨⎧<≥=-0,00,)(x x Axe x x 当当λψ的状态,其中0>λ,求:(1)粒子动量的几率分布函数;(2)粒子动量的平均值。