第九章力学量本征值问题的代数解法
- 格式:ppt
- 大小:2.10 MB
- 文档页数:67
第九章 力学量本征值问题的代数解法本征值问题的解法: 分析解法,代数解法§9.1 一维谐振子的Schrödinger 因式分解法 升、降算符一、Hamilton 量的代数表示 一维谐振子的Hamilton 量可表为2222121x p H μωμ+=采用自然单位(1===ωμ ),(此时能量以ω 为单位,长度以μω/ 为单位,动量以ωμ 为单位) 则222121x p H +=而基本对易式是[]i p x =,。
令)(21ip x a +=,)(21ip x a -=+其逆为)(21a a x +=+,)(2a a i p -=+。
利用上述对易式,容易证明(请课后证明)1],[=+a a将两类算符的关系式)(21a a x +=+,)(2a a i p -=+代入一维谐振子的Hamilton 量222121x p H +=,有⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=+21ˆ21N a a H上式就是Hamilton 量的因式分解法,其中a a N +=ˆ。
由于N Nˆˆ=+,而且在任何量子态ψ下 0),(),(≥==+ψψψψa a a a N所以Nˆ为正定厄米算符 二、Hamilton 量的本征值下面证明,若N ˆ的本征值为n , ,2,1,0=n ,则H 的本征值nE 为(自然单位,ω ) ⎪⎭⎫ ⎝⎛+=21n E n , ,2,1,0=n证明:设|n >为Nˆ的本征态( n 为正实数),即 n n n N=ˆ 利用1],[=+a a 及a a N+=ˆ容易算出 ++=a a N],ˆ[,a a N -=],ˆ[ 因此n a n a N-=],ˆ[。
但上式 左边n na n a N n N a n a N-=-=ˆˆˆ 由此可得n a n n a N)1(ˆ-=。
这说明,>n a |也是Nˆ的本征态,相应本征值为)1(-n 。
如此类推,从Nˆ的本征态>n |出发,逐次用a 运算,可得出N ˆ的一系列本征态 >n |,>n a |,>n a |2,…相应的本征值为n ,1-n ,2-n ,…因为Nˆ为正定厄米算子,其本征值为非负实数。
第九章 力学量本征值问题的代数解法9—1) 在8.2节式(21)中给出了自旋(21)与轨迹角动量(l )耦合成总角动量j 的波函数j ljm φ,这相当于21,21===s j l j 的耦合。
试由8.2节中式(21)写出表9.1(a )中的CG 系数jm m m j 21121解:8.2节式(21a )(21b ):()21),0( 21+=≠-=m ml l j jjljm φ⎪⎪⎭⎫ ⎝⎛-+++=+11121lm lm Y m l Y m l l ()⎪⎪⎪⎭⎫⎝⎛-++---+=+=21,2121,212121,21j j m j j m j j Y m j Y m j j m j m l j (21a )()21-=j ljljm φ⎪⎪⎭⎫⎝⎛++---=+11121lm lm Y m l Y m l l ()⎪⎪⎪⎭⎫⎝⎛+++--+++-++=≠-=21,2121,211122121),0( 21j j m j j m j j Y m j Y m j j m j m l l j (21b )()21++j l此二式中的l 相当于CG 系数中的1j ,而212==s j ,21,~,,~21±=m m m m j 。
因此,(21a )式可重写为jm ∑=222112211m jm m j m jm j m j212121212121212111111111--+=m j jm m j m j jm m j ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛++-⎪⎪⎭⎫ ⎝⎛++++=+=212112212121122111211111211121121),21(m j j m j m j j m j j l j a (21a ’) 对照CG 系数表,可知:当21121+=+=j j j j ,212=m时 ,21111112212121⎪⎪⎭⎫ ⎝⎛++=+j m j jm m j 而212-=m 时,21111112212121⎪⎪⎭⎫ ⎝⎛+-=-+j m j jm m j 对于21211-=-=j l j 的(21b )式,有21111111221,212121⎪⎪⎭⎫ ⎝⎛+--=-+j m j m j m j21111111221,212121⎪⎪⎭⎫ ⎝⎛++=--+j m j m j m j9-2)设两个全同粒子角动量21j j j ==,耦合成总角动量J ,JMj2ψ()()21212121jm jm m m JM m j jm ψψ∑=(1)利用CG 系数的对称性,证明()JMjJj JM j p 22212ψψ--=由此证明,无论是Bose 子或Fermi 子,J 都必须取偶数证:由式(1),JM j p 212ψ()()12212121jm jm m m JM jm jm ψψ∑=把21m m ↔, ()()12122112jm jm m m JM jm jm ψψ∑=利用CG 系数的对称性 ()()()21212112212jm jm m m Jj JM m j m j ψψ∑--=()JMjJj 22ψ--= (2)对于Fermi 子,=j 半奇数,=j 2奇数,但要求ψψ-=12p , 即要求()12-=--Jj ,所以J 必须为偶数。