线性代数方程组的解法
- 格式:ppt
- 大小:314.00 KB
- 文档页数:34
甘肃政法学院本科学年论文(设计)题目浅议线性方程组的几种求解方法学号:姓名:指导教师:成绩:__________________完成时间: 2012 年 11 月目录第一章引言 (1)第二章线性方程组的几种解法 (1)2.1 斯消元法 (1)2.1.1 消元过程 (1)2.1.2 回代过程 (2)2.1.3 解的判断 (2)2.2 克莱姆法则 (3)2.3 LU分解法 (4)2.4 追赶法 (6)第三章结束语 (8)致谢 (8)参考文献 (9)摘要:线性方程组是线性代数的核心内容之一,其解法研究是代数学中经典且重要的研究课题.下面将综述几种不同类型的线性方程组的解法,如消元法、克莱姆法则、直接三角形法、、追赶法,并以具体例子介绍不同解法的应用技巧. 在这些解法中,高斯消元法方法,具有表达式清晰,使用范围广的特点.另外,这些方法有利于快速有效地解决线性方程组的求解问题,为解线性方程组提供一个简易平台,促进了理论与实际的结合。
关键词:线性方程组;解法;应用Several methods of solving linear equation groupAbstract: The system of linear equations is one of linear algebra core contents, its solution research is in the algebra the classics also the important research topic. This article summarized several kind of different type system of linear equations solution, like the elimination, the Cramer principle, the generalized inverse matrix law, the direct triangle law, the square root method, pursue the law, and by concrete example introduction different solution application skill. In these solutions, the generalized inverse matrix method, has the expression to be clear, use scope broad characteristic. Moreover, these methods favor effectively solve the system of linear equations solution problem fast, provides a simple platform for the solution system of linear equations, promoted the theory and the actual union.Key word: Linear equations; Solution ; Example第一章 引言线性方程组理论是高等数学中十分重要的内容,而线性方程组的解法是利用线性方程组理论解决问题的关键.下面将介绍线性方程组的消元法、追赶法、直接三角形法等求解方法,为求解线性方程组提供一个平台。
线性方程组的几种解法线性方程组形式如下:常记为矩阵形式其中一、高斯消元法高斯(Gauss)消元法的基本思想是:通过一系列的加减消元运算,也就是代数中的加减消去法,将方程组化为上三角矩阵;然后,再逐一回代求解出x向量。
现举例说明如下:(一)消元过程第一步:将(1)/3使x1的系数化为1 得再将(2)、(3)式中x1的系数都化为零,即由(2)-2×(1)(1)得由(3)-4×(1)(1)得)1(32)2(......3432=+xx)1(321)1(......23132=++xxx第二步:将(2)(1)除以2/3,使x 2系数化为1,得再将(3)(1)式中x 2系数化为零,即 由(3)(1)-(-14/3)*(2)(2),得第三步:将(3)(2)除以18/3,使x 3系数化为1,得经消元后,得到如下三角代数方程组:(二)回代过程由(3)(3)得 x 3=1, 将x 3代入(2)(2)得x 2=-2, 将x 2 、x 3代入(1)(1)得x 2=1 所以,本题解为[x]=[1,2,-1]T(三)、用矩阵演示进行消元过程第一步: 先将方程写成增广矩阵的形式第二步:然后对矩阵进行初等行变换初等行变换包含如下操作(1) 将某行同乘或同除一个非零实数(2) 将某行加入到另一行 (3) 将任意两行互换第三步:将增广矩阵变换成上三角矩阵,即主对角线全为1,左下三角矩阵全为0,形)3(3)3(......1-=x )2(3)3( (63)18-=x )2(32)2(......02=+x x )1(32)3( (63)10314-=--x x示例:(四)高斯消元的公式综合以上讨论,不难看出,高斯消元法解方程组的公式为1.消元(1)令a ij(1) = a ij , (i,j=1,2,3,…,n)b i(1) =b i , (i=1,2,3,…,n)(2)对k=1到n-1,若a kk(k)≠0,进行l ik = a ik(k) / a kk(k) , (i=k+1,k+2,…,n)a ij(k+1) = a ij(k) - l ik * a kj(k), (i,j= k+1,k+2,…,n)b i(k+1) = b i(k) - l ik * b k(k), (i= k+1,k+2,…,n)2.回代若a nn(n) ≠0x n = b n(n) / a nn(n)x i = (b i(i) – sgm(a ij(i) * x j)/- a ii(i),(i = n-1,n-2,…,1),( j = i+1,i+2,…,n )(五)高斯消元法的条件消元过程要求a ii(i) ≠0 (i=1,2,…,n),回代过程则进一步要求a nn(n) ≠0,但就方程组Ax=b 讲,a ii(i)是否等于0时无法事先看出来的。
线性方程组的解法与矩阵的特征值与特征向量线性方程组是数学中的重要概念,它描述了线性关系的一种形式。
解决线性方程组可以帮助我们理解和解决各种实际问题,并且在数学和工程等领域有着广泛的应用。
而矩阵的特征值与特征向量则是矩阵理论中的重要内容,它们与线性方程组之间有着密切的联系。
本文将介绍线性方程组的解法以及矩阵的特征值与特征向量的相关知识。
一、线性方程组的解法1.1. 高斯消元法高斯消元法是解决线性方程组的基本方法之一。
它通过消元操作将线性方程组化为最简形式,从而求出方程组的解。
具体步骤如下:步骤一:写出线性方程组的增广矩阵。
步骤二:利用初等行变换将增广矩阵化为阶梯形式。
步骤三:从最后一个非零行开始,利用回代法求解方程组的解。
1.2. 矩阵的逆另一种解决线性方程组的方法是使用矩阵的逆。
如果矩阵A可逆,那么我们可以通过左乘矩阵A的逆来求解线性方程组Ax=b,即x=A^(-1)b。
1.3. 克拉默法则克拉默法则是解决线性方程组的另一种方法。
它利用矩阵的行列式来求解方程组的解。
具体步骤如下:步骤一:计算系数矩阵A的行列式D。
步骤二:计算替换掉系数矩阵A的第i列为常数向量b后的行列式D_i。
步骤三:方程组的解为x_i=D_i/D。
二、矩阵的特征值与特征向量2.1. 特征值与特征向量的定义给定n阶矩阵A,如果存在非零向量x使得Ax=λx,其中λ为常数,那么向量x称为矩阵A的特征向量,常数λ称为矩阵A的特征值。
2.2. 特征值与特征向量的计算要计算矩阵A的特征值与特征向量,可以通过以下步骤进行:步骤一:求解矩阵A-λI的零空间,其中I为单位矩阵。
步骤二:将零空间中的向量标准化,得到单位特征向量。
步骤三:通过将特征向量代入矩阵A-λI的定义式,计算对应的特征值。
2.3. 特征值与特征向量的应用特征值与特征向量在矩阵理论中有着广泛的应用。
例如,它们可以用于矩阵的对角化,从而简化矩阵的计算;它们还可以用于解决微分方程和差分方程等应用问题。
第二章线性代数方程组的直接解法教学目标:1.了解线性代数方程组的结构、基本理论以及相关解法的发展历程;2.掌握高斯消去法的原理和计算步骤,理解顺序消去法能够实现的条件,并在此基础上理解矩阵的三角分解(即LU分解),能应用高斯消去法熟练计算简单的线性代数方程组;3.在理解高斯消去法的缺点的基础上,掌握有换行步骤的高斯消去法,从而理解和掌握选主元素的高斯消去法,尤其是列主元素消去法的理论和计算步骤,并能灵活的应用于实际中。
教学重点:1. 高斯消去法的原理和计算步骤;2. 顺序消去法能够实现的条件;3. 矩阵的三角分解(即LU分解);4. 列主元素消去法的理论和计算步骤。
教学难点:1. 高斯消去法的原理和计算步骤;2. 矩阵的三角分解(即LU分解);3. 列主元素消去法的理论和计算步骤。
教学方法:教具:引言在自然科学和工程技术中,许多问题的解决常常归结为线性方程组的求解,有的问题的数学模型中虽不直接表现为线性方程组,但它的数值解法中将问题“离散化”或“线性化”为线性方程组。
例如,电学中的网络问题、船体数学放样中建立三次样条函数问题、最小二乘法用于求解实验数据的曲线拟合问题、求解非线性方程组问题、用差分法或有限元法求解常微分方程边值问题及偏微分方程的定解问题,都要导致求解一个或若干个线性方程组的问题。
目前,计算机上解线性方程组的数值方法尽管很多,但归纳起来,大致可以分为两大类:一类是直接法(也称精确解法);另一类是迭代法。
例如线性代数中的Cramer法则就是一种直接法,但其对高阶方程组计算量太大,不是一种实用的算法。
实用的直接法中具有代表性的算法是高斯(Gauss)消元法,其它算法都是它的变形和应用。
在数值计算历史上,直接法和迭代法交替生辉。
一种解法的兴旺与计算机的硬件环境和问题规模是密切相关的。
一般说来,对同等规模的线性方程组,直接法对计算机的要求高于迭代法。
对于中、低阶(200n )以及高阶带形的线性方程组,由于直接法的准确性和可靠性高,一般都用直接法求解。