第3章_弹塑性本构模型理论
- 格式:ppt
- 大小:951.50 KB
- 文档页数:64
混凝土cdp本构混凝土是一种常见的建筑材料,具有良好的强度和耐久性。
在设计和分析混凝土结构时,混凝土的本构模型是非常重要的。
本文将介绍混凝土的本构模型之一——混凝土弹塑性本构模型(Concrete Damaged Plasticity Model,简称CDP)。
一、混凝土弹塑性本构模型的基本原理混凝土弹塑性本构模型是基于弹塑性力学理论开发的一种模型,用于描述混凝土在受力过程中的弹性和塑性行为。
该模型考虑了混凝土的弹性、损伤和塑性三个阶段,并能够准确地模拟混凝土在不同受力状态下的力学行为。
混凝土的弹性本构行为可以通过胡克定律来描述,即应力与应变之间的线性关系。
而混凝土的塑性本构行为则需要引入一些额外的参数来描述,如损伤变量、塑性应变等。
二、混凝土弹塑性本构模型的特点1. 考虑非线性行为:混凝土在受力过程中会出现非线性行为,如应力-应变曲线的非线性、弹塑性转变等。
CDP模型能够准确地描述这些非线性行为。
2. 考虑损伤效应:混凝土在受力过程中会发生损伤,即出现裂缝或破坏。
CDP模型通过引入损伤变量来描述混凝土的损伤过程,并能够准确地模拟混凝土的裂缝扩展和破坏。
3. 考虑三轴应力状态:混凝土在实际工程中往往会受到多向应力的作用,如拉压、剪切等。
CDP模型考虑了三轴应力状态下混凝土的力学行为,能够准确地模拟混凝土在不同应力状态下的响应。
4. 考虑温度效应:混凝土在受力过程中的温度变化也会对其力学性能产生影响。
CDP模型可以考虑温度效应,并通过引入温度参数来描述混凝土的热力学行为。
三、混凝土弹塑性本构模型的应用混凝土弹塑性本构模型在工程实践中应用广泛,特别是在大型混凝土结构的设计和分析中起到了重要的作用。
例如,在水坝工程中,为了准确地评估混凝土坝体的稳定性和安全性,需要使用CDP模型来模拟混凝土在洪水冲击和地震作用下的力学行为。
在桥梁、隧道、建筑物等混凝土结构的设计中,CDP模型也可以用于预测混凝土的变形和破坏,从而指导结构的设计和施工。
弹塑性力学简答题第一章 应力1、 什么是偏应力状态?什么是静水压力状态?举例说明?静水压力状态时指微六面体的每个面只有正应力作用,偏应力状态是从应力状态中扣除静水压力后剩下的部分。
2、应力边界条件所描述的物理本质是什么?物体边界点的平衡条件。
3、对照应力张量ij δ与偏应力张量ij S ,试问:两者之间的关系?两者主方向之间的关系?相同。
110220330S S S σσσσσσ=+=+=+.4、为什么定义物体内部应力状态的时候要采取在一点的领域取极限的方法?不规则,内部受力不一样。
5、解释应力空间中为什么应力状态不能位于加载面之外?保证位移单值连续。
连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续。
6、Pie 平面上的点所代表的应力状态有何特点?该平面上任意一点的所代表值的应力状态1+2+3=0,为偏应力状态,且该平面上任一法线所代表的应力状态其应力解不唯一。
固体力学解答必须满足的三个条件是什么?可否忽略其中一个?第二章 应变1、从数学和物理的不同角度,阐述相容方程的意义。
从数学角度看,由于几何方程是6个,而待求的位移分量是3个,方程数目多于未知函数的数目,求解出的位移不单值.从物理角度看,物体各点可以想象成微小六面体,微单元体之间就会出现“裂缝”或者相互“嵌入",即产生不连续.2、两个材料不同、但几何形状、边界条件及体积力(且体积力为常数)等都完全相同的线弹性平面问题,它们的应力分布是否相同?为什么?相同。
应力分布受到平衡方程、变形协调方程及力边界条件,未涉及本构方程,与材料性质无关.3、应力状态是否可以位于加载面外?为什么?不可以.保证位移单值连续。
连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续.4、给定单值连续的位移函数,通过几何方程可求出应变分量,问这些应变分量是否满足变形协调方程?为什么?满足。
弹塑性材料本构模型与仿真方法弹塑性材料本构模型是描述材料在受力作用下的变形和应力响应的数学模型。
它是工程力学和材料科学中重要的理论基础,用于预测材料在不同应力条件下的行为,从而指导工程设计和材料选择。
弹塑性材料是一类具有弹性和塑性行为的材料,其在小应变范围内表现出弹性行为,而在大应变范围内则表现出塑性行为。
弹性行为是指材料在受力后能够恢复原状的性质,而塑性行为则是指材料在受力后会发生不可逆的形变。
常见的弹塑性材料本构模型包括线性弹性模型、塑性模型和弹塑性模型等。
线性弹性模型是最简单的弹塑性材料本构模型之一,它假设材料的应力和应变之间存在线性关系。
在小应变范围内,材料的应力和应变之间满足胡克定律,即应力等于杨氏模量乘以应变。
这种模型适用于强度较高、刚度较大的材料,如金属和陶瓷。
塑性模型是描述材料塑性行为的本构模型,它考虑了材料在大应变范围内的非线性行为。
常见的塑性模型包括屈服准则、硬化规律和流动规律等。
屈服准则描述了材料在何种应力条件下开始发生塑性变形,硬化规律描述了材料的塑性变形随应力增大而增加,流动规律描述了材料的塑性变形随时间的变化。
弹塑性模型是综合考虑了弹性和塑性行为的本构模型,它能够较好地描述材料在整个应变范围内的行为。
常见的弹塑性模型包括von Mises模型和Tresca模型等。
von Mises模型基于屈服准则,假设材料在达到一定应力条件时开始发生塑性变形,而Tresca模型基于硬化规律,假设材料的塑性变形随应力增大而增加。
仿真方法是利用计算机模拟材料行为的一种方法。
在弹塑性材料的仿真中,常用的方法包括有限元法、离散元法和网格法等。
有限元法是一种广泛应用的仿真方法,它将材料分割成有限数量的小单元,通过求解各个单元的力平衡方程和位移连续性方程,得到整个材料的应力和应变分布。
离散元法是一种基于颗粒模型的仿真方法,它将材料看作由许多离散的颗粒组成,通过模拟颗粒之间的相互作用,得到材料的变形和应力响应。
第三章塑性本构关系全量和增量理论•全量理论(形变理论):在塑性状态下仍有应力和应变之间的关系。
Il’yushin(伊柳辛)理论。
•增量理论(流动理论):在塑性状态下是塑性应变增量和应力及应力增量之间的关系。
Levy-Mises理论和Prandtl-Reuss理论。
3-5 全量理论的适用范围简单加载定律变形:小变形加载:简单加载适用范围:物体内每一点应力的各个应力分量,在加载过程中成比例增长简单加载:()0ij ijt σασ=0ijσ非零的参考应力状态()t α随着加载单调增长加载时物体内应力和应变特点:应力和应变的主方向都保持不变应力和应变的主分量成比例增长应力Lode参数和应力Lode角保持常数应力点的轨迹在应力空间是直线小变形前提下,判断简单加载的条件:荷载按比例增长(包括体力);零位移边界材料不可压缩应力强度和应变强度幂函数关系m i iA σε=实际应用:满足荷载比例增长和零位移边界条件3-6 卸载定律卸载:按照单一曲线假设,应力强度减小•外载荷减小,应力水平降低•塑性变形发展,应力重分布,局部应力强度降低简单卸载定律:•各点的应力分量按比例减少•不发生新的塑性变形¾以卸载时的荷载改变量为假想荷载,按弹性计算得到应力和应变的改变量¾卸载前的应力和应变减去卸载过程中的改变量塑性本构关系的基本要素•初始屈服条件–判断弹性或者塑性区•后继屈服条件–描述材料硬化特性,内变量演化•流动法则–应变增量和应力以及应力增量之间的关系,包括方向和分配关系Saint-Venant(1870):应变增量和应力张量主轴重合•继承这个方向关系•提出分配关系()0ij ij d d S d ελλ=≥应变增量分量和应力偏量分量成比例Levy-Mises 流动法则(M. Levy,1871 & Von Mises,1913)适用范围:刚塑性材料3-7 流动法则--Levy-Mises & Prandtl-Reuss。