位移传感器
- 格式:doc
- 大小:159.00 KB
- 文档页数:7
位移传感器又称为线性传感器,是一种属于金属感应的线性器件,传感器的作用是把各种被测物理量转换为电量。
在生产过程中,位移的测量一般分为测量实物尺寸和机械位移两种。
按被测变量变换的形式不同,位移传感器可分为模拟式和数字式两种。
模拟式又可分为物性型和结构型两种。
位移传感器的主要分类根据运动方式直线位移传感器:直线位移传感器的功能在于把直线机械位移量转换成电信号。
为了达到这一效果,通常将可变电阻滑轨定置在传感器的固定部位,通过滑片在滑轨上的位移来测量不同的阻值。
传感器滑轨连接稳态直流电压,允许流过微安培的小电流,滑片和始端之间的电压,与滑片移动的长度成正比。
将传感器用作分压器可最大限度降低对滑轨总阻值精确性的要求,因为由温度变化引起的阻值变化不会影响到测量结果。
角度位移传感器:角度位移传感器应用于障碍处理:使用角度传感器来控制你的轮子可以间接的发现障碍物。
原理非常简单:如果马达角度传感器构造运转,而齿轮不转,说明你的机器已经被障碍物给挡住了。
此技术使用起来非常简单,而且非常有效;唯一要求就是运动的轮子不能在地板上打滑(或者说打滑次数太多),否则你将无法检测到障碍物。
一个空转的齿轮连接到马达上就可以避免这个问题,这个轮子不是由马达驱动而是通过装置的运动带动它:在驱动轮旋转的过程中,如果惰轮停止了,说明你碰到障碍物了。
根据材质电位器式位移传感器:它通过电位器元件将机械位移转换成与之成线性或任意函数关系的电阻或电压输出。
普通直线电位器和圆形电位器都可分别用作直线位移和角位移传感器。
但是,为实现测量位移目的而设计的电位器,要求在位移变化和电阻变化之间有一个确定关系。
图1中的电位器式位移传感器的可动电刷与被测物体相连。
物体的位移引起电位器移动端的电阻变化。
阻值的变化量反映了位移的量值,阻值的增加还是减小则表明了位移的方向。
通常在电位器上通以电源电压,以把电阻变化转换为电压输出。
线绕式电位器由于其电刷移动时电阻以匝电阻为阶梯而变化,其输出特性亦呈阶梯形。
位移传感器原理与分类一、工作原理1.电阻式位移传感器:电阻式位移传感器通过电阻变化的方式测量位移。
一种常见的电阻式传感器是电位计,它借助电位计棒的旋转或滑动来改变电阻值,通过测量电阻值的变化来得到位移信息。
2.容量式位移传感器:容量式位移传感器是利用物体移动时电容量的变化来测量位移的。
当测量物体靠近或远离电容的一个极板时,电场线密度会发生变化,从而改变电容量。
常见的容量式位移传感器有平行板电容器和轴向电容器。
3.感应式位移传感器:感应式位移传感器通过感应物体相对电感元件改变的方式来测量位移。
当物体靠近或远离感应线圈时,感应电势会发生变化,从而能够得到位移信息。
感应式位移传感器常用于测量非接触的位移。
4.光电式位移传感器:光电式位移传感器通过光信号的接收和转换来测量位移。
它通常由一对光电二极管(光源和光接收器)组成,当物体移动时阻挡或透过光源和光接收器之间的光线,从而产生电信号进行位移测量。
二、分类1.接触式位移传感器:接触式位移传感器需要物体与传感器之间有物理接触,通过物体的接触或压力来测量位移。
例如,机械式微调电阻可以通过旋转旋钮改变电阻值,从而测量位移。
2.非接触式位移传感器:非接触式位移传感器可以实现物体与传感器之间的无接触测量。
这种传感器常用于需要高精度和高速度的应用。
例如,磁性编码器可以通过感应物体对磁场的变化来测量位移。
3.绝对位移传感器:绝对位移传感器能够直接测量物体的绝对位置,无需参考点。
它能够提供准确的位移信息,在断电后也能够保留位移值。
常见的绝对位移传感器有光栅尺和霍尔效应传感器。
4.相对位移传感器:相对位移传感器只能测量物体相对于参考点的移动,无法给出绝对位置。
相对位移传感器通常需要初始化或标定,以确定参考点。
例如,编码器能够通过计数脉冲的方式测量物体相对于起始点的移动。
总之,位移传感器通过不同的工作原理和分类方式实现位移测量。
根据实际应用需求,选择合适类型的位移传感器可以提供准确的位移信息,满足各种工业和科技领域对位移测量的要求。
位移传感器的工作原理位移传感器是一种用于测量物体位置变化的装置,它能够将物体的位移转换为电信号输出,从而实现对物体位移的测量和监控。
位移传感器在工业自动化、机械制造、航空航天等领域都有着广泛的应用,其工作原理是通过不同的传感原理实现的。
1. 电阻式位移传感器。
电阻式位移传感器是一种常用的位移测量装置,它利用材料的电阻随位移的变化而变化的特性来实现测量。
其工作原理是通过将电阻传感器与测量物体相连,当测量物体发生位移时,电阻传感器的电阻值会随之改变,从而产生与位移相关的电信号输出。
这种传感器结构简单、成本低廉,但精度较低,适用于一些对精度要求不高的场合。
2. 容量式位移传感器。
容量式位移传感器是利用电容的变化来实现位移测量的装置,其工作原理是通过将传感电极与被测物体相连,当被测物体发生位移时,传感电极与被测物体之间的电容值会发生变化,从而产生与位移相关的电信号输出。
这种传感器具有较高的精度和灵敏度,适用于对测量精度要求较高的场合。
3. 感应式位移传感器。
感应式位移传感器是利用感应原理来实现位移测量的装置,其工作原理是通过将传感线圈与被测物体相连,当被测物体发生位移时,传感线圈中的感应电流会发生变化,从而产生与位移相关的电信号输出。
这种传感器具有较高的抗干扰能力和可靠性,适用于一些对环境要求较高的场合。
4. 光电式位移传感器。
光电式位移传感器是利用光电效应来实现位移测量的装置,其工作原理是通过将光源和光电探测器与被测物体相连,当被测物体发生位移时,光源和光电探测器之间的光线强度会发生变化,从而产生与位移相关的电信号输出。
这种传感器具有较高的分辨率和稳定性,适用于对测量精度要求较高的场合。
总的来说,位移传感器的工作原理是通过将传感器与被测物体相连,利用不同的物理效应来实现对被测物体位移的测量和监控。
不同类型的位移传感器具有不同的特点和适用范围,可以根据实际需求选择合适的传感器进行应用。
随着科技的不断进步,位移传感器的测量精度和稳定性将会不断提高,为各个领域的应用提供更加可靠和精准的位移测量技术。
位移传感器的原理和应用
一、原理
1.接触式位移传感器原理:
接触式位移传感器通过机械接触的方式测量物体的位移。
常见的接触式位移传感器有滑动变阻器、电容变阻器、电感变阻器等。
这类传感器通过物体位移引起电阻、电容、电感元件的变化,从而测量位移。
2.非接触式位移传感器原理:
非接触式位移传感器通过无需物理接触的方式测量物体的位移。
常见的非接触式位移传感器有光电编码器、激光位移传感器、电磁感应位移传感器等。
这类传感器利用光学、电磁或其他无线技术测量位移。
二、应用
1.汽车工业:
在汽车制造中,位移传感器被广泛应用于测量车辆悬挂、翘曲、变形等情况,以提高车辆的安全性和驾驶舒适度。
例如,车辆的悬架系统中使用位移传感器测量悬挂裙的位移来调节车身的高度。
2.机械设备:
在机械制造过程中,位移传感器被广泛应用于测量机械元件的位移和变形,以确保机械设备的正常运行和精度。
例如,机床加工过程中使用位移传感器来实时监测工件位置,以确保加工质量。
3.工业自动化:
4.航空航天:
5.医疗领域:
总结:
位移传感器通过测量物体的位移,提供了在许多领域中实时定位、控
制和监测的重要数据。
无论是接触式还是非接触式,这些传感器都在汽车、机械设备、工业自动化、航空航天和医疗等领域发挥着重要的作用。
位移
传感器的发展不断推动着现代科技和工程的进步。
位移传感器的原理位移传感器(Displacement Sensor)是一种测量物体位移大小的装置,广泛应用于机械、仪器仪表、自动化控制及相关行业。
它能够实时地测量物体相对于一些基准点的位置变化,并将变化量转换为相应的电信号输出。
1.电阻式电阻式位移传感器是根据导电性材料在外力作用下产生电阻变化的原理来测量位移的。
一般采用电阻片和导电材料的组合,通过测量电阻值的变化来判断位移的大小。
当外力作用于传感器时,导电材料会发生伸缩变化,从而改变电阻值。
利用电桥或电源和电流信号,可以将电阻值转换为电压或电流输出。
电阻式位移传感器适用于测量小幅度位移,具有响应速度快、稳定性好、分辨率高的特点。
但由于其结构简单,一般只能测量单个方向的位移。
2.电容式电容式位移传感器是利用两个电极间的电容变化来测量位移的原理。
当物体位移时,两个电极之间的电容会发生变化。
常见的电容式位移传感器有平板型和圆柱型两种,其中平板型较为常见。
平板型电容式位移传感器由两个平行板组成,物体位于两电极之间,位移时会改变电容值。
采用交流激励信号,通过测量电容的变化来获得位移信息。
电容式位移传感器具有高精度、长寿命、响应速度快的特点。
但由于测量过程对环境的要求较高,同时受到电容板的尺寸和测量距离的限制,适用于小尺寸、短行程的位移测量。
3.光学式光学式位移传感器是利用光学原理来测量位移的装置。
它利用光电效应来感知光线的变化,并将其转换为电信号输出。
常见的光学式位移传感器包括物体反射式和光栅式。
物体反射式位移传感器通过发送光束到物体上,反射光线经传感器接收后转换为电信号,通过计算光束的偏移量来得到位移值。
光栅式位移传感器则是通过光栅尺的光电放大器测量光栅运动的变化,从而获取位移信息。
光学式位移传感器具有分辨率高、精度高、不受噪声干扰的特点。
但光电器件容易受到尘埃和污染的影响,同时测量距离有限,适用于小位移范围的测量。
4.磁性式磁性式位移传感器是利用物体相对于传感器的磁场发生变化来测量位移的原理。
位移传感器一、简介位移传感器又称为线性传感器,是一种属于金属感应的线性器件,传感器的作用是把各种被测物理量转换为电量。
在生产过程中,位移的测量一般分为测量实物尺寸和机械位移两种。
按被测变量变换的形式不同,位移传感器可分为模拟式和数字式两种。
模拟式又可分为物性型和结构型两种。
常用位移传感器以模拟式结构型居多,包括电位器式位移传感器、电感式位移传感器、自整角机、电容式位移传感器、电涡流式位移传感器、霍尔式位移传感器等。
数字式位移传感器的一个重要优点是便于将信号直接送入计算机系统。
这种传感器发展迅速,应用日益广泛。
位移是和物体的位置在运动过程中的移动有关的量,位移的测量方式所涉及的范围是相当广泛的。
小位移通常用应变式、电感式、差动变压器式、涡流式、霍尔传感器来检测,大的位移常用感应同步器、光栅、容栅、磁栅等传感技术来测量。
其中光栅传感器因具有易实现数字化、精度高(目前分辨率最高的可达到纳米级)、抗干扰能力强、没有人为读数误差、安装方便、使用可靠等优点,在机床加工、检测仪表等行业中得到日益广泛的应用。
二、工作原理电位器式位移传感器,它通过电位器元件将机械位移转换成与之成线性或任意函数关系的电阻或电压输出。
普通直线电位器和圆形电位器都可分别用作直线位移和角位移传感器。
但是,为实现测量位移目的而设计的电位器,要求在位移变化和电阻变化之间有一个确定关系。
电位器式位移传感器的可动电刷与被测物体相连。
物体的位移引起电位器移动端的电阻变化。
阻值的变化量反映了位移的量值,阻值的增加还是减小则表明了位移的方向。
通常在电位器上通以电源电压,以把电阻变化转换为电压输出。
线绕式电位器由于其电刷移动时电阻以匝电阻为阶梯而变化,其输出特性亦呈阶梯形。
如果这种位移传感器在伺服系统中用作位移反馈元件,则过大的阶跃电压会引起系统振荡。
因此在电位器的制作中应尽量减小每匝的电阻值。
电位器式传感器的另一个主要缺点是易磨损。
它的优点是:结构简单,输出信号大,使用方便,价格低廉。
位移传感器原理
位移传感器是一种用于测量物体位置变化的设备。
它基于许多不同的物理原理来实现测量,其中包括电磁、机械和光学原理。
一种常见的位移传感器是电容传感器。
它包括两个电极,其中一个固定在参考点上,另一个则被测量物体所连接。
当物体相对于参考点发生位移时,电极之间的电容值也会相应变化,从而提供了相对位移的测量。
另一种常用的位移传感器是电感传感器。
它利用物体与线圈之间的磁场相互作用来测量位移。
当物体相对于线圈发生位移时,线圈的感应电压也会发生变化,通过测量这个变化,就可以确定物体的位移。
此外,压阻式传感器也可以用来测量位移。
它由一层感应电阻和一个活动导体组成。
当物体发生位移时,活动导体压在感应电阻上,从而改变了电阻值。
通过测量电阻值的变化,就可以获得位移的信息。
光电传感器是另一种常见的位移传感器。
它利用光的特性来实现测量。
传感器发射光束,并通过测量光束反射或透过物体的程度来确定位移的大小。
总之,位移传感器通过不同的物理原理来实现对位移的测量,包括电容、电感、电阻和光学原理。
通过适当选择传感器类型和合适的测量方法,可以实现准确的位移测量。
位移传感器工作原理1. 引言位移传感器是一种广泛应用于工业领域的传感器,用于测量物体在空间中的位置变化。
它能够将物体的位移转化为电信号,从而实现对物体位移的精确测量。
本文将介绍位移传感器的工作原理以及常见的类型和应用。
2. 工作原理位移传感器的工作原理基于测量物体相对于参考点的位移或移动距离。
常见的位移传感器工作原理包括电阻式、电感式和光电式等。
2.1 电阻式位移传感器电阻式位移传感器是最常见的一种类型。
它通过测量物体位移时引起的电阻值变化来实现测量。
传感器由一个导电材料形成的电阻元件组成,通常是一条细长的导线。
当物体移动时,它会接触到导线上的电阻元件,改变导电材料的电阻值。
传感器测量这些电阻值的变化,并将其转化为输入电信号,进而实现位移测量。
2.2 电感式位移传感器电感式位移传感器利用物体位移时引起的电感值变化来进行测量。
它由一个线圈和一个心脏型铁芯组成。
当物体靠近或远离线圈时,线圈中的电感值会发生变化。
传感器检测并测量这些电感值的变化,并将其转化为位移信号。
2.3 光电式位移传感器光电式位移传感器是一种基于光学原理的传感器。
它使用光的传播特性来测量物体的位移。
传感器由一个发光二极管和一个接收器(如光敏电阻或光敏二极管)组成。
发光二极管发出光束,当物体位移时,光束会射到接收器上。
传感器测量接收到的光强度变化,并将其转化为位移信号。
3. 常见类型除了上述提到的电阻式、电感式和光电式位移传感器,还有一些其他常见的类型。
3.1 压电式位移传感器压电式位移传感器是一种利用压电效应进行测量的传感器。
当施加压力或力矩到压电器件上时,会产生电荷累积或电场变化,从而使得输出电信号与位移相关。
3.2 超声波位移传感器超声波位移传感器使用声波波束的传输和接收来测量物体的位移。
它通常由一个发射器和一个接收器组成。
发射器发出的声波波束射到物体上,并被接收器接收。
传感器测量声波的传播时间并计算出物体的位移。
4. 应用领域位移传感器在工业领域有着广泛的应用。
位移传感器位移传感器又称为线性传感器,它分为电感式位移传感器,电容式位移传感器,光电式位移传感器,超声波式位移传感器,霍尔式位移传感器。
电感式位移传感器是一种归于金属感应的线性器材,接通电源后,在开关的感应面将发作一个交变磁场,当金属物体挨近此感应面时,金属中则发作涡流而汲取了振动器的能量,使振动器输出崎岖线性衰减,然后依据衰减量的改动来完毕无触摸查看物体的意图。
电感式位移传感用具有无滑动触点,作业时不受尘土等非金属要素的影响,并且低功耗,长寿数,可运用在各种恶劣条件下。
位移传感器首要运用在主动化配备出产线对仿照量的智能操控。
位移是和物体的方位在运动进程中的移动有关的量,位移的丈量办法所触及的计划是恰当广泛的。
小位移一般用应变式、电感式、差动变压器式、涡流式、霍尔传感器来查看,大的位移常用感应同步器、光栅、容栅、磁栅等传感技能来丈量。
其间光栅传感器因具有易完毕数字化、精度高(如今分辩率最高的可抵达纳米级)、抗搅扰才干强、没有人为读数差错、设备便当、运用牢靠等利益,在机床加工、查看外表等作业中得到日益广泛的运用。
原理计量光栅是运用光栅的莫尔条纹景象来丈量位移的。
莫尔原出于法文Moire,意思是水波纹。
几百年前法国丝绸工人发现,当两层薄丝绸叠在逐个同,将发作水波纹状把戏;假定薄绸子相对运动,则把戏也跟着移动,这种古怪的斑纹便是莫尔条纹。
一般来说,只需是有必定周期的曲线簇堆叠起来,便会发作莫尔条纹。
计量光栅在实习运用上有透射光栅和反射光栅两种;按其效果原理又可分为辐射光栅和相位光栅;按其用处可分为直线光栅和圆光栅。
下面以透射光栅为例加以议论。
透射光栅尺上均匀地刻有平行的刻线即栅线,a为刻线宽,b为两刻线之间缝宽,W=a+b称为光栅栅距。
如今国内常用的光栅每毫米刻成十、25、50、十0、250条等线条。
光栅的横向莫尔条纹测位移,需求两块光栅。
一块光栅称为主光栅,它的巨细与丈量计划相一同;另一块是很小的一块,称为指示光栅。
位移传感器
位移传感器又称为线性传感器,它分为电感式位移传感器,电容式位移传感器,光电式位移传感器,位移传感器超声波式位移传感器,霍尔式位移传感器。
电感式位移传感器是一种属于金属感应的线性器件,接通电源后,在开关的感应面将产生一个交变磁场,当金属物体接近此感应面时,金属中则产生涡流而吸取了振荡器的能量,使振荡器输出幅度线性衰减,然后根据衰减量的变化来完成无接触检测物体的目的。
位移是和物体的位置在运动过程中的移动有关的量,位移的测量方式所涉及的范围是相当广泛的。
小位移通常用应变式、电感式、差动变压器式、涡流式、霍尔传感器来检测,大的位移常用感应同步器、光栅、容栅、磁栅等传感技术来测量。
其中光栅传感器因具有易实现数字化、精度高(目前分辨率最高的可达到纳米级)、抗干扰能力强、没有人为读数误差、安装方便、使用可靠等优点,在机床加工、检测仪表等行业中得到日益广泛的应用。
电容位移传感器是一种非接触电容式原理的精密测量仪器,能将被测物理量(位移、压力等)的变化转换成电容量变化的元件,通过检测电路再把电容量的变化换成电信号(电压、电流或频率)。
它与其他传感器相比,具有一系列突出的优点:结构特别简单,能实现无接触测量。
采用合适的检测电路,可以做到灵敏度高、分辨力强、能分辨微小的位移。
由于电容传感器只需输入极小的功率,而且在移动过程中没有摩擦和几乎没有相互作用力,因而特别适用于地震仪器。
当然电容式传感器有它的缺点:容易受外界干扰和分布参数的影响。
随着电子技术的飞快发展,克服了电容式传感器中所存在的一些技术问题,获得了广泛的应用。
近几年来,在地震仪器上也开始了应用电容式传感器。
电容位移传感器还具有一般非接触式仪器所共有的无磨擦、无损磨和无惰性特点外,还具有信噪比大,灵敏度高,零漂小,频响宽,非线性小,精度稳定性好,抗电磁干扰能力强和使用操作方便等优点。
在国内研究所,高等院校、工厂和军工部门得到广泛应用,成为科研、教学和生产中一种不可缺少的测试仪器。
数字式电容式位移传感器广泛应用于高精度的精密加工、高精度定位及高速高精度、大行程机器人的运行定位中以及石油、化工、电力、储运、建筑等工业生产领域,尤其能在强光照射、核辐射条件、过载冲击震动等恶劣环境下工作。
数字式电容位移传感器是将被测量的变化转换为电容量变化的一种装置,它本身
就是一种可变电容器。
由于这种传感器具有结构简单,体积小,动态响应好,灵敏度高,分辨率高,能实现非接触测量等特点。
在众多的测量仪器当中,非接触式测量仪器由于其自身的优点,成为微位移测量领域的主流研究方向之一。
目前用于微位移测量的传感器主要有数字式电容传感器、数字式电感传感器和新兴的光纤式传感器,这三类传感器各有优缺点,适用于不同的测量场合,在高精度微位移测量中,数字式电容传感器以其自身的优点得到广泛应用。
与其他两种传感器相比较,其具有如下优点:结构简单,适应性强 。
动态响应好。
可得到较大的相对变化量。
温度稳定性好。
可以实现非接触测量。
由于数字式电容位移传感器的这些良好性能,世界上很多著名的研究所和测量仪器公司不断创新推出各种机械的、电路的以及软件的方法,经过近几十年的技术更新,数字式电容位移传感器的发展以高精度、智能化、便携化和模块化为发展趋势和主流研究方向。
目前,数字式电容位移传感器作为一种测量微小位移的精密测量仪器,已经在全世界范围内被广泛地使用。
1.数字式电容式位移测量仪的原理介绍
传感器的应用方面可用来测量直线位移、角位移、振动振幅,尤其适合测量高频振动振幅、精密轴系回转精度、加速度等机械量;还可用来测量压力、压差、液位、料面、成分含量(如油、粮食中的含水量)、非金属材料的涂层、油膜等的厚度,测量电介质的湿度、密度、厚度等等,在自动检测和控制系统中也常常用来作为位置信号发生器。
电容式传感器是将被测量的变化转换为电容量变化的一种装置,它本身就是一种可变电容器。
由于这种传感器具有结构简单,体积小,动态响应好,灵敏度高,分辨率高,能实现非接触测量等特点,因而被广泛应用于位移、加速度、振动、压力、压差、液位、等检测领域。
电容器是一个既能充电又能放电的电子元件,电容器的基本结构由两只金属极板或圆筒中间隔以绝缘体组成。
电容传感器是一个具有可变参数的电容器。
多数场合下,电容是由两个金属平行板组成并以空气为介质,如式(1-1)所示。
在不计边缘效应的情况下,平行板式电容器的电容为
d A
c ε=
(1-1)
式中 c ——电容量;
ε——电容极板间介质的介电常数;
A ——两平行板正对的面积;
d ——两极板之间的距离。
当被测参数使得式(1-1)中的ε、A 或d 发生变化时,电容量C 也随之变化。
如果保持其中两个参数不变而仅改变另一个参数,就可把该参数的变化转换为电容量的变化。
图1-1为此传感器的原理图。
设初始电容量为:
00S
C d ε=
(1-2)
若电容动极板因被测量变化而向上移动d ∆时,则极板间距变为
0d d d =-∆,电容量为:
0S
C d d ε=-∆
(1-3)
图1-1
极板移动前后电容的变化量为 :
0000000S
S
S d d C C C g C g d d d d d d d d εεε∆∆∆=-=-==-∆-∆-∆
(1-4)
上式表明∆C-∆d 之间不是线性关系。
C-d 的关系为非线性,其特性曲线如图1-2所示。
但当∆d=d 0时,可以认为∆C-∆d 的关系为线性的:
00d C C d ∆∆≈
(1-5)
图1-2
则其灵敏度K 为:
0200C C S K d d d ε∆===∆
(1-6)
故变极距型电容传感器只在∆d/d 0很小时,才有近似线性输出。
其灵敏度与初始极距的平方成反比,故可通过减小初始极距来提高灵敏度。
当动极板相对于定极板沿着长度方向平移时,其电容变化量化为
图1-3 变面积型电容传感器
d b x a C C C r )(00∆-=
-=∆εε
(1-7)
△C 与△x 间呈线性关系
电容式角位移传感器
当θ=0时
00
00d s C r εε=
(1-8)
图1-4 电容式角位移传感器
当θ≠0时
π
θπθεε0000)1(C C d C r -=-=
(1-9)
传感器电容量C 与角位移θ间呈线性关系 变介电常数型电容式传感器
初始电容
d D H C ln 20πε=
(1-10)
电容与液位的关系为:
d D h C d D h d D H d D h H d D h C ln )(2ln )(2ln 2ln )(2ln 21011εεπεεππεπεπε-+=-+=-+=
(1-11)
图1-5 电容式液位传感器
如图1-5电容式液位传感器
02010021)(d L L L b C C C r r εεε+-=+=
(1-12)
当L=0时,传感器的初始电容
000000
0100d b L d b L C r εεε==
(1-13)
当被测电介质进入极板间L 深度后,引起电容相对变化量为
02000)1(L L C C C C C r -=-=∆ε
电容变化量与电介质移动量L 呈线性关系。