振动测量(振动、位移)
- 格式:ppt
- 大小:3.91 MB
- 文档页数:62
振动一般可以用以下三个单元暗示:mm、mm/s、振幅、振动速度(振速)、振动加速度.振幅是表象,速度和加速度是转子激振力的水平.mm振动位移:一般用于低转速机械的振动评定; mm/s振动速度:一般用于中速转念头械的振动评定; mm/(s^2)振动加速度:一般用于高速转念头械的振动评定.工程实用的振动速度是速度的有效值,表征的是振动的能量;加速度是用的峰值,表征振动中冲击力的年夜小.振幅理解成路程,单元是mm;把振速理解成速度,单元是mm/s;振动加速度理解成运动加速度,单元mm/s2.速度描述的是运动快慢;振速就是振动快慢,一秒内能发生的振幅.振幅相同的设备,它的振动状态可能分歧,所以引入了振速.位移、速度、加速度都是振动丈量的怀抱参数.就概念而言,位移的丈量能够直接反映轴承\固定螺栓和其它固定件上的应力状况.例如:通过分析透平机上滑动轴承的位移,可以知道其轴承内轴杆的位置和摩擦情况.速度反映轴承及其它相关结构所接受的疲劳应力.而这正是招致旋转设备故障的重要原因.加速度则反映设备内部各种力的综合作用.表达上三者均为正弦曲线,分别有90度,180度的相位差.现场应用上,对低速设备(转速小于1000RPM)来说,位移是最好的丈量方法.而那些加速度很小,其位移较年夜的设备,一般采纳折衷的方法,即采纳速度丈量,对高速度或高频设备,有时尽管位移很小,速度也适中,但其加速度却可能很高的设备采纳加速度丈量是非常重要的手段.另外还需要了解传感器的工作原理及应用选择,提及一点,例如采纳涡流传感器丈量的位移和应用加速度传感器通过两次积分输出的位移所获得的工具是完全纷歧样的.涡流传感器丈量轴承与轴杆之间的相对运动,加速度传感器丈量轴承顶部的振动,然后转换成位移.如整个轴承振动的很厉害,轴与轴承的相对运动很小,涡流传感器就不能反应出这样的状态,而加速度传感器则可以.两种传感器丈量两种分歧的现象.理解了这些,你就能明白为什么许多有经验的工程师将涡流传感器和加速度传感器组合应用以便既可观察轴承相对空中的振动,又能监测到轴相对轴承的振动了.通过这样的方式能获得更完整的机器状态对一个单一频率的振动,速度峰值是位移峰值的2πf倍,加速度峰值又是速度峰值的2πf倍.固然要注意位移一般用的峰峰值,速度用有效值,加速度用峰值.还要注意现场丈量的位移是轴和轴瓦的相对振动,速度和加速度测的是轴瓦的绝对振动.假设一个振动的速度一定,是5mm/s,年夜家可以自己算下如果是低频振动,其位移会很年夜,但加速度很小.高频振动位移则极小,加速度很年夜.所以一般在低频区域都用位移,中频用速度,高频区域用加速度.但使用范围也有重叠.位移值体现的是设备在空间上的振动范围,因此取其峰峰值,电力行业一般以位移为评判标准.速度的有效值和。
实验一 简谐振动幅值测量一、实验目的1.了解振动信号位移、速度、加速度之间的关系。
2.学会用各种传感器测量简谐振动的位移、速度、加速度幅值。
二、实验装置框图简谐振动的位移、速度、加速度幅值测量试验的实验装置与仪器框图见图1-1。
图1-1 实验装置框图三、实验原理在振动测量中,有时往往不需要测量振动信号的时间历程曲线,而只需要测量振动信号的幅值。
振动信号的幅值可根据位移、速度、加速度的关系,用位移传感器或速度传感器、加速度传感器来测量。
设振动位移、速度、加速度分别为x 、v 、a ,其幅值分别为X 、V 、A :x = Bsin (ωt -ψ) (1)v =dtdy =ωBcos (ωt -ψ) (2) )sin(222ψ--==wt B w dtyd a (3)式中:B 一一位移振幅 ω—振动角频率 ψ—初相位X=B (4) V=ωB=2πfB (5)A=ω2B=(2πf)2B (6)振动信号的幅值可根据式(6)中位移、速度、加速度的关系,分别用位移传感器、速度传感器或加速度传感器来测量。
也可利用动态分析仪中的微分、积分功能来测量。
四、实验方法1、安装激振器把激振器安装在支架上,将激振器和支架固定在实验台基座上,并保证激振器顶杆对简支梁有一定的预压力(不要超过激振杆上的标识),用专用连接线连接激振器和DH1301扫频信号源输出接口。
2、连接仪器和传感器把加速度传感器安装在简支梁的中部,输出信号接到电荷放大器的输入端,并将电荷放大器的输出接到数采分析仪的1通道。
3、仪器参数设置打开数采仪器的电源开关,开机进入DAS2003数采分析软件的主界面,设置采样率(2kHz)、量程范围,输入加速度传感器的灵敏度。
打开一个窗口,分别显示三个通道的信号。
4、采集并显示数据调节扫频信号源的输出频率,使梁产生振动。
分别调整电荷放大器为加速度、速度、位移状态,同时在窗口中读取当前振动的最大值(位移、速度、加速度)。
5、计算数据与实验数据比较按公式计算位移、速度或加速度值,并与实验数据比较。
振动测量方法和标准(一)振动测量方法和标准概述•振动测量是工程领域中常用的一种测试方法,用于评估物体振动的强度和频率。
通过振动测量,可以帮助我们分析和优化结构的设计,预测设备的寿命以及判断机器运行是否正常。
常用的振动测量方法1.加速度法:通过测量物体在特定点上的加速度来评估振动。
这种方法可以用于结构的动态响应分析和冲击问题。
2.速度法:通过测量物体在特定点上的速度来评估振动。
速度法适用于精密设备和需要高精度的振动测量。
3.位移法:通过测量物体在特定点上的位移来评估振动。
位移法适用于机械系统和结构的频率响应分析。
4.功率谱法:通过将振动信号转换为频谱来评估振动。
功率谱法可以帮助我们了解在不同频率下振动的能量分布情况。
国际标准和规范•ISO 10816:该标准是国际上最常用的用于评估机械设备振动的标准。
它包含了振动级别的分级标准以及对振动测量的方法和仪器的要求。
•ISO 2372:该标准适用于旋转机械的振动测量。
它提供了用于评估旋转机械振动的标准指导,并包含了振动级别的分级标准。
•ISO 7919:该标准适用于机组振动测量和评估。
它为机组振动评估提供了详细的指导,并包含了对测点位置和振动级别的要求。
•DIN 4150:该规范适用于建筑物振动的评估和控制。
它提供了对建筑物振动的测量和评估的标准指导,并包含了对振动限值的要求。
结论•振动测量是一种重要的工程技术方法,可以帮助我们评估和优化结构的设计,预测设备的寿命以及判断机器运行是否正常。
在进行振动测量时,可以选择适合具体应用场景的测量方法,并遵循相应的国际标准和规范进行评估。
通过合理的振动测量,我们可以提高工程项目的质量和可靠性,减少潜在的风险和故障发生。
电机震动的测量方法电机震动是指电机运行时产生的机械振动。
电机震动会导致电机和机器设备的损坏,影响设备的正常运行。
因此,对电机震动的测量和监测十分重要。
本文将介绍电机震动的测量方法。
1.传感器测量法:传感器是目前最常用的电机震动测量方法之一、传感器能够直接测量电机震动,并将其转化为电信号进行分析和判读。
主要使用的传感器包括加速度传感器、速度传感器和位移传感器。
- 加速度传感器(Accelerometer)是最常见的电机震动传感器。
它能够测量电机震动的加速度,通过与电机振动频率的关系,进而分析和判读电机的状态。
加速度传感器常常安装在电机轴承处,能够直接感知到电机的振动。
- 速度传感器(Velocity transducer)能够测量电机震动的速度。
与加速度传感器相比,速度传感器不易受到高频振动的干扰,因此在一些特定场合下更加适用。
- 位移传感器(Displacement sensor)测量电机震动的位移,可以直接反映电机的振动情况。
位移传感器能够精确度量电机振动的幅值,对于分析电机问题有较高的准确性。
2.振动计测量法:振动计是利用机械传动原理进行测量的设备。
它可以将电机振动转换成旋转角度或位置,进而判断电机的振动情况。
-机械式振动计是一种简单而有效的电机震动测量设备。
它通常由旋转惯性装置和振动表盘组成。
当电机运行时,旋转惯性装置会受到振动影响,进而使得振动表盘移动。
振动表盘的读数可以反映电机的振动程度。
-电子式振动计是一种采用电子技术进行测量的设备。
它通过电子传感器测量电机振动的角度或位置,转化为电信号进行分析和判读。
电子式振动计具有高精度、自动记录和数字化等优点。
3.频谱分析法:频谱分析是电机震动测量中常用的一种方法。
通过测量电机振动信号的频谱,可以分析电机振动的频率成分和振幅分布,从而得到电机的振动特征。
- 傅里叶变换(Fourier Transform)是频谱分析的基础方法。
它能够将时域的振动信号转换为频域的频谱分布图,直观地反映不同频率成分在整个振动信号中所占比例。
振动测量方法和标准振动测量是一种用于评估机械设备运行状况和故障诊断的重要工具。
通过测量机械设备产生的振动信号,可以获得有关设备结构的信息以及潜在故障的迹象。
正确选择适当的振动测量方法和遵循相应的标准,对于准确评估设备状况和制定维护计划至关重要。
本文将探讨振动测量方法和标准的相关内容。
1、振动测量方法1.1 加速度传感器加速度传感器是一种广泛用于振动测量的传感器。
它可以测量垂直方向和水平方向的加速度。
该传感器将振动转化为电信号,进而分析并显示振动特性。
加速度传感器具有高频响应和较低的成本,适用于连续振动监测和机械故障诊断。
1.2 速度传感器速度传感器可以测量振动的速度。
它适用于低频振动测量和对振动的整体评估。
速度传感器可以直接测量振动,并提供振动速度的输出信号。
与加速度传感器相比,速度传感器具有较低的灵敏度和频率响应,但在某些应用中仍然具有一定的实用价值。
1.3 位移传感器位移传感器可以测量振动的位移。
它适用于低频振动测量和对机械设备结构变化的评估。
位移传感器可以直接测量振动的位移,并提供相应的输出信号。
位移传感器通常具有较低的频率响应和较高的灵敏度,适用于对振动幅值的精确测量。
2、振动测量标准2.1 ISO 10816系列标准ISO 10816系列标准是振动测量中最常用的国际标准之一。
该系列标准规定了振动测量的一般要求,以及根据不同类型的机械设备和应用的振动限值。
这些标准提供了一种测量和评估机械设备振动水平的一般方法,并提供了用于判断机械设备运行状况的准则。
2.2 ASME标准ASME标准适用于美国机械工程师学会制定的振动测量标准。
这些标准更加具体和详细,适用于各类机械设备和应用。
ASME标准提供了更为细致的振动测量方法和评估准则,有助于更准确地判断设备的运行状况,并制定相应的维护计划。
2.3 DIN标准DIN标准是德国国家标准组织制定的振动测量标准。
这些标准被广泛用于欧洲地区。
DIN 标准与ISO标准相似,提供了一种测量和评估机械设备振动的方法和准则。
测振仪测振动用哪个单位怎么读测振仪的三个读数的叫法?振动一般可以用以下三个单位表示:mm、mm/s、mm/s²,即振幅、振动速度(振速)、振动加速度振幅是表象,速度和加速度是转子激振力的程度,我来为大家科普一下关于测振仪的三个读数的叫法振动一般可以用以下三个单位表示:mm、mm/s、mm/s²,即振幅、振动速度(振速)、振动加速度。
振幅是表象,速度和加速度是转子激振力的程度。
•振动位移:理解成路程,单位是mm,一般用于低转速机械的振动评定;•振动速度:理解成速度,单位是mm/s,一般用于中速转动机械的振动评定;•振动加速度:理解成运动加速度,单位mm/s²,一般用于高速转动机械的振动评定。
工程实用的振动速度是速度的有效值,表征的是振动的能量。
加速度是用的峰值,表征振动中冲击力的大小。
速度描述的是运动快慢;振速就是振动快慢,一秒内能产生的振幅。
振幅相同的设备,它的振动状态可能不同,所以引入了振速。
位移、速度、加速度都是振动测量的度量参数。
就概念而言,位移的测量能够直接反映轴承固定螺栓和其它固定件上的应力状况。
例如通过分析透平机上滑动轴承的位移,可以知道其轴承内轴杆的位置和摩擦情况;速度反映轴承及其它相关结构所承受的疲劳应力,而这正是导致旋转设备故障的重要原因;加速度则反映设备内部各种力的综合作用。
表达上三者均为正弦曲线,分别有90度、180度的相位差。
现场应用上,对于低速设备(转速小于1000RPM)来说,位移是最好的测量方法。
而那些加速度很小位移较大的设备,一般采用折衷的方法,即采用速度测量。
对于高速度或高频设备,有时尽管位移很小速度也适中,但其加速度却可能很高的设备,采用加速度测量是非常重要的手段。
另外还需要了解传感器的工作原理及应用选择,提及一点,例如采用涡流传感器测量的位移和应用加速度传感器,通过两次积分输出的位移所得到的东西是完全不一样的。
涡流传感器测量轴承与轴杆之间的相对运动;加速度传感器测量轴承顶部的振动,然后转换成位移。
振动一般可以用以下三个单位表示:mm、mm/s、mm/(s^2)。
振幅、振动速度〔振速〕、振动加速度。
振幅是表象,速度和加速度是转子激振力的程度。
mm振动位移:一般用于低转速机械的振动评定;mm/s振动速度:一般用于中速转动机械的振动评定;mm/〔s^2〕振动加速度:一般用于高速转动机械的振动评定。
工程实用的振动速度是速度的有效值,表征的是振动的能量;加速度是用的峰值,表征振动中冲击力的大小。
振幅理解成路程,单位是mm;把振速理解成速度,单位是mm/s;振动加速度理解成运动加速度,单位mm/s2。
速度描述的是运动快慢;振速就是振动快慢,一秒内能产生的振幅。
振幅相同的设备,它的振动状态可能不同,所以引入了振速。
位移、速度、加速度都是振动测量的度量参数。
就概念而言,位移的测量能够直接反映轴承\固定螺栓和其它固定件上的应力状况。
例如:通过分析透平机上滑动轴承的位移,可以知道其轴承内轴杆的位置和摩擦情况。
速度反映轴承及其它相关结构所承受的疲劳应力。
而这正是导致旋转设备故障的重要原因。
加速度那么反映设备内部各种力的综合作用。
表达上三者均为正弦曲线,分别有90度,180度的相位差。
现场应用上,对于低速设备(转速小于1000RPM)来说,位移是最好的测量方法。
而那些加速度很小,其位移较大的设备,一般采用折衷的方法,即采用速度测量,对于高速度或高频设备,有时尽管位移很小,速度也适中,但其加速度却可能很高的设备采用加速度测量是非常重要的手段。
另外还需要了解传感器的工作原理及应用选择,提及一点,例如采用涡流传感器测量的位移和应用加速度传感器通过两次积分输出的位移所得到的东西是完全不一样的。
涡流传感器测量轴承与轴杆之间的相对运动,加速度传感器测量轴承顶部的振动,然后转换成位移。
如整个轴承振动的很厉害,轴与轴承的相对运动很小,涡流传感器就不能反响出这样的状态,而加速度传感器那么可以。
两种传感器测量两种不同的现象。
理解了这些,你就能明白为什么许多有经验的工程师将涡流传感器和加速度传感器组合应用以便既可观察轴承相对于地面的振动,又能监测到轴相对于轴承的振动了。
振动一般可以用以下三个单位暗示:mm、mm/s、mm/(s^2).之袁州冬雪创作振幅、振动速度(振速)、振动加速度.振幅是表象,速度和加速度是转子激振力的程度.mm振动位移:一般用于低转速机械的振动评定; mm/s振动速度:一般用于中速转动机械的振动评定; mm/(s^2)振动加速度:一般用于高速转动机械的振动评定.工程实用的振动速度是速度的有效值,表征的是振动的能量;加速度是用的峰值,表征振动中冲击力的大小.振幅懂得成旅程,单位是mm;把振速懂得成速度,单位是mm/s;振动加速度懂得成运动加速度,单位mm/s2.速度描绘的是运动快慢;振速就是振动快慢,一秒内能发生的振幅.振幅相同的设备,它的振动状态可以分歧,所以引入了振速.位移、速度、加速度都是振动丈量的度量参数.就概念而言,位移的丈量可以直接反映轴承\固定螺栓和其它固定件上的应力状况.例如:通过分析透平机上滑动轴承的位移,可以知道其轴承内轴杆的位置和磨擦情况.速度反映轴承及其它相关布局所承受的疲劳应力.而这正是导致旋转设备故障的重要原因.加速度则反映设备外部各种力的综合作用.表达上三者均为正弦曲线,分别有90度,180度的相位差.现场应用上,对于低速设备(转速小于1000RPM)来讲,位移是最好的丈量方法.而那些加速度很小,其位移较大的设备,一般采取折衷的方法,即采取速度丈量,对于高速度或高频设备,有时虽然位移很小,速度也适中,但其加速度却可以很高的设备采取加速度丈量是非常重要的手段.别的还需要懂得传感器的工作原理及应用选择,提及一点,例如采取涡传播感器丈量的位移和应用加速度传感器通过两次积分输出的位移所得到的东西是完全纷歧样的.涡传播感器丈量轴承与轴杆之间的相对运动,加速度传感器丈量轴承顶部的振动,然后转换成位移.如整个轴承振动的很利害,轴与轴承的相对运动很小,涡传播感器就不克不及反应出这样的状态,而加速度传感器则可以.两种传感器丈量两种分歧的现象.懂得了这些,你就可以大白为什么许多有经历的工程师将涡传播感器和加速度传感器组合应用以便既可观察轴承相对于地面的振动,又能监测到轴相对于轴承的振动了.通过这样的方式能得到更完整的机器状态对一个单一频率的振动,速度峰值是位移峰值的2πf 倍,加速度峰值又是速度峰值的2πf倍.当然要注意位移一般用的峰峰值,速度用有效值,加速度用峰值.还要注意现场丈量的位移是轴和轴瓦的相对振动,速度和加速度测的是轴瓦的相对振动.假设一个振动的速度一定,是5mm/s,大家可以自己算下如果是低频振动,其位移会很大,但加速度很小.高频振动位移则极小,加速度很大.所以一般在低频区域都用位移,中频用速度,高频区域用加速度.但使用范围也有重叠.位移值体现的是设备在空间上的振动范围,因此取其峰峰值,电力行业一般以位移为评判尺度.速度的有效值和振动的能量是成比例的,其大小代表了振动能量的大小,现在出了电力行业基本上都是以速度有效值为尺度的.加速度和力成正比,一般用其峰值,其大小暗示了振动中最大的冲击力,冲击力大设备更容易疲劳损坏,现在没有加速度的尺度.。
一、振动测量参数的选择位移:适用于低频范围,转速在1500转/分以下的机组,速度:适用于中频段,转速在1500——10000转/分范围内的机组、加速度:适用于高频段,转速在10000转/分以上的机组现在一般采用速度标准,1、位移:反映质点的位能,可监测位能对设备部件的破坏。
2、速度:反映质点的动能,可监测动能对设备部件的破坏。
3、加速度:反映质点的受力情况受,可监测振源的冲击力对设备的破坏程度。
振动的表征参数-峰值(单峰值)、峰-峰值及有效值。
对于位移,一般选峰-峰值作为表征参数;加速度选择峰值,速度选择有效值作为表征参数。
二、测点选择1、尽量靠近轴承2、尽量在垂直、水平、轴向三个方向上设置测点3、给测点位置作好记号,以保证测量数值的稳定性和可比性4、必要时可将设备表面进行处理三、测试中应注意的几个问题1、在测试同一设备、同一测点和同一参数量时,应选择同一种测试仪器,并在同一状态下、同一频带下进行测试。
2、检查测试设备的安装情况,应保证测点设备与测试仪器不产生共振。
3、测量径向振动时,传感器应相对于被测设备轴径向安装;测量轴向振动时,应相对于被测轴平行安装。
4、应考虑测试现场周围的电场、磁场以及外界环境对传感器和仪器本身的影响。
一、振动基础理论1.1 振动形式的描述机械设备总是不可避免的会产生振动,过大的振动是有害的,除非为了特殊的目的,如振动给料机、磨煤机等。
为了说明振动的特点,采用了多种描述方式。
1、时域描述有两种形式,即振动波形和轴心运动轨迹。
可直观了解振动随时间的变化情况,以及转轴在轴承中的横向运动情况,粗略估量振动平稳与否及对称程度。
2、频域描述将振动幅值、相位、能量情况按频率排列,有利于反映故障原因。
3、幅域描述现场主要采用峰值、峰-峰值、有效值等概念反映振动幅值的大小,其中又有位移、速度、加速度等不同振动量之分。
位移峰-峰值主要考核设备间隙的安全性。
速度有效值用以反映振动能量的大小或破坏能力,是判断振动状态的主要指标。