2017年北京市丰台区高考数学一模试卷(理科)
- 格式:doc
- 大小:629.50 KB
- 文档页数:16
2017年北京市丰台区高考数学一模试卷(理科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.如果集合A={x∈Z|﹣2≤x<1},B={﹣1,0,1},那么A∩B=()A.{﹣2,﹣1,0,1}B.{﹣1,0,1}C.{0,1}D.{﹣1,0}2.已知a,b∈R,则“b≠0”是“复数a+bi是纯虚数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件3.定积分=()A.10﹣ln3 B.8﹣ln3 C.D.4.设E,F分别是正方形ABCD的边AB,BC上的点,且,,如果(m,n为实数),那么m+n的值为()A.B.0 C.D.15.执行如图所示的程序框图,若输出的S的值为64,则判断框内可填入的条件是()A.k≤3?B.k<3?C.k≤4?D.k>4?6.某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.7.小明跟父母、爷爷奶奶一同参加《中国诗词大会》的现场录制,5人坐成一排.若小明的父母至少有一人与他相邻,则不同坐法的总数为()A.60 B.72 C.84 D.968.一次猜奖游戏中,1,2,3,4四扇门里摆放了a,b,c,d四件奖品(每扇门里仅放一件).甲同学说:1号门里是b,3号门里是c;乙同学说:2号门里是b,3号门里是d;丙同学说:4号门里是b,2号门里是c;丁同学说:4号门里是a,3号门里是c.如果他们每人都猜对了一半,那么4号门里是()A.a B.b C.c D.d二、填空题共6小题,每小题5分,共30分.9.抛物线y2=2x的准线方程是.10.已知{a n}为等差数列,S n为其前n项和.若a2=2,S9=9,则a8=.11.在△ABC中,若b2=ac,,则∠A=.12.若x,y满足,则的取值范围是.13.在平面直角坐标系xOy中,曲线C1:x+y=4,曲线(θ为参数),过原点O的直线l分别交C1,C2于A,B两点,则的最大值为.14.已知函数f(x)=e x﹣e﹣x,下列命题正确的有.(写出所有正确命题的编号)①f(x)是奇函数;②f(x)在R上是单调递增函数;③方程f(x)=x2+2x有且仅有1个实数根;④如果对任意x∈(0,+∞),都有f(x)>kx,那么k的最大值为2.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.已知函数f(x)=Asin(ωx)(ω>0)的图象如图所示.(Ⅰ)求f(x)的解析式;(Ⅱ)若,求g(x)在上的单调递减区间.16.如图1,平面五边形ABCDE中,AB∥CD,∠BAD=90°,AB=2,CD=1,△ADE 是边长为2的正三角形.现将△ADE沿AD折起,得到四棱锥E﹣ABCD(如图2),且DE⊥AB.(Ⅰ)求证:平面ADE⊥平面ABCD;(Ⅱ)求平面BCE和平面ADE所成锐二面角的大小;(Ⅲ)在棱AE上是否存在点F,使得DF∥平面BCE?若存在,求的值;若不存在,请说明理由.17.某公司购买了A,B,C三种不同品牌的电动智能送风口罩.为了解三种品牌口罩的电池性能,现采用分层抽样的方法,从三种品牌的口罩中抽出25台,测试它们一次完全充电后的连续待机时长,统计结果如下(单位:小时):(Ⅰ)已知该公司购买的C品牌电动智能送风口罩比B品牌多200台,求该公司购买的B品牌电动智能送风口罩的数量;(Ⅱ)从A品牌和B品牌抽出的电动智能送风口罩中,各随机选取一台,求A 品牌待机时长高于B品牌的概率;(Ⅲ)再从A,B,C三种不同品牌的电动智能送风口罩中各随机抽取一台,它们的待机时长分别是a,b,c(单位:小时).这3个新数据与表格中的数据构成的新样本的平均数记为μ1,表格中数据的平均数记为μ0.若μ0≤μ1,写出a+b+c 的最小值(结论不要求证明).18.已知函数.(Ⅰ)求f(x)的单调区间;(Ⅱ)对任意,都有xln(kx)﹣kx+1≤mx,求m的取值范围.19.已知椭圆C:的离心率为,右焦点为F,点B(0,1)在椭圆C上.(Ⅰ)求椭圆C的方程;(Ⅱ)过点的直线交椭圆C于M,N两点,交直线x=2于点P,设,,求证:λ+μ为定值.20.对于∀n∈N*,若数列{x n}满足x n﹣x n>1,则称这个数列为“K数列”.+1(Ⅰ)已知数列:1,m+1,m2是“K数列”,求实数m的取值范围;(Ⅱ)是否存在首项为﹣1的等差数列{a n}为“K数列”,且其前n项和S n满足?若存在,求出{a n}的通项公式;若不存在,请说明理由;(Ⅲ)已知各项均为正整数的等比数列{a n}是“K数列”,数列不是“K数列”,若,试判断数列{b n}是否为“K数列”,并说明理由.2017年北京市丰台区高考数学一模试卷(理科)参考答案与试题解析一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.如果集合A={x∈Z|﹣2≤x<1},B={﹣1,0,1},那么A∩B=()A.{﹣2,﹣1,0,1}B.{﹣1,0,1}C.{0,1}D.{﹣1,0}【考点】交集及其运算.【分析】先分别求出集合A和B,由此利用交集定义能求出A∩B.【解答】解:∵集合A={x∈Z|﹣2≤x<1}={﹣2,﹣1,0},B={﹣1,0,1},∴A∩B={﹣1,0}.故选:D.2.已知a,b∈R,则“b≠0”是“复数a+bi是纯虚数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】a,b∈R,复数a+bi是纯虚数⇔,即可判断出结论.【解答】解:a,b∈R,复数a+bi是纯虚数⇔,∴“b≠0”是“复数a+bii是纯虚数”的必要不充分条件.故选:B.3.定积分=()A.10﹣ln3 B.8﹣ln3 C.D.【考点】定积分.【分析】求出原函数,即可求出定积分.【解答】解:==8﹣ln3,故选B .4.设E ,F 分别是正方形ABCD 的边AB ,BC 上的点,且,,如果(m ,n 为实数),那么m +n 的值为( )A .B .0C .D .1 【考点】平面向量的基本定理及其意义.【分析】如图所示, ==﹣.即可求得m ,n 即可.【解答】解:如图所示,==﹣.∴m=﹣,n=,∴, 故选:C5.执行如图所示的程序框图,若输出的S 的值为64,则判断框内可填入的条件是()A.k≤3?B.k<3?C.k≤4?D.k>4?【考点】程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的k,S的值,当k=4时,退出循环,输出S的值为64,故判断框图可填入的条件是k≤3.【解答】解:模拟执行程序框图,可得:S=1,k=0满足条件,S=1,k=1,满足条件,S=2,k=2,满足条件,S=8,k=3,满足条件,S=64,k=4,由题意,此时应不满足条件,退出循环,输出S的值为64.结合选项可得判断框内填入的条件可以是:k≤3.故选:A.6.某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【考点】棱柱、棱锥、棱台的体积.【分析】根据已知中的三视图,可得该几何体是一个以俯视图为底面的三棱柱切去一个三棱锥得到的组合体,可得答案.【解答】解:根据已知中的三视图,可得该几何体是一个以俯视图为底面的三棱柱切去一个三棱锥得到的组合体,其底面面积S=×1×1=,柱体的高为:2,锥体的高为1,故组合体的体积V=×2﹣××1=,故选:A.7.小明跟父母、爷爷奶奶一同参加《中国诗词大会》的现场录制,5人坐成一排.若小明的父母至少有一人与他相邻,则不同坐法的总数为()A.60 B.72 C.84 D.96【考点】排列、组合的实际应用.【分析】根据题意,分3种情况讨论:①、小明的父母的只有1人与小明相邻且父母不相邻,②、小明的父母的只有1人与小明相邻且父母相邻,③、小明的父母都与小明相邻,分别求出每一种情况下的排法数目,由分类计数原理计算可得答案.【解答】解:根据题意,分3种情况讨论:①、若小明的父母的只有1人与小明相邻且父母不相邻时,先在其父母中选一人与小明相邻,有C21=2种情况,将小明与选出的家长看成一个整体,考虑其顺序有A22=2种情况,当父母不相邻时,需要将爷爷奶奶进行全排列,将整体与另一个家长安排在空位中,有A22×A32=12种安排方法,此时有2×2×12=48种不同坐法;②、若小明的父母的只有1人与小明相邻且父母相邻时,将父母及小明看成一个整体,小明在一端,有2种情况,考虑父母之间的顺序,有2种情况,则这个整体内部有2×2=4种情况,将这个整体与爷爷奶奶进行全排列,有A33=6种情况,此时有2×2×6=24种不同坐法;③、小明的父母都与小明相邻,即小明在中间,父母在两边,将3人看成一个整体,考虑父母的顺序,有A22=2种情况,将这个整体与爷爷奶奶进行全排列,有A33=6种情况,此时,共有2×6=12种不同坐法;则一共有48+24+12=84种不同坐法;故选:C.8.一次猜奖游戏中,1,2,3,4四扇门里摆放了a,b,c,d四件奖品(每扇门里仅放一件).甲同学说:1号门里是b,3号门里是c;乙同学说:2号门里是b,3号门里是d;丙同学说:4号门里是b,2号门里是c;丁同学说:4号门里是a,3号门里是c.如果他们每人都猜对了一半,那么4号门里是()A.a B.b C.c D.d【考点】进行简单的合情推理.【分析】根据题意,条件“四人都只说对了一半”,若甲同学猜对了1﹣b,依次判断3﹣d,2﹣c,4﹣a,再假设若甲同学猜对了3﹣c得出矛盾.【解答】解:根据题意:若甲同学猜对了1﹣b,则乙同学猜对了,3﹣d,丙同学猜对了,2﹣c,丁同学猜对了,4﹣a,根据题意:若甲同学猜对了3﹣c,则丁同学猜对了,4﹣a,丙同学猜对了,2﹣c,这与3﹣c相矛盾,综上所述号门里是a,故选:A.二、填空题共6小题,每小题5分,共30分.9.抛物线y2=2x的准线方程是.【考点】抛物线的简单性质.【分析】先根据抛物线方程求得p,进而根据抛物线的性质,求得答案.【解答】解:抛物线y2=2x,∴p=1,∴准线方程是x=﹣故答案为:﹣10.已知{a n}为等差数列,S n为其前n项和.若a2=2,S9=9,则a8=16.【考点】等差数列的前n项和.【分析】利用等差数列的通项公式和前n项和公式列出方程组,求出首项和公差,由此能求出a8.【解答】解:{a n}为等差数列,S n为其前n项和.a2=2,S9=9,∴,解得∴a8=a1+7d=16.故答案为:16.11.在△ABC中,若b2=ac,,则∠A=.【考点】余弦定理.【分析】根据余弦定理求解出a,c的关系,即可判断角A的大小.【解答】解:由b2=ac,,根据余弦定理cosB=,可得a2+c2=2ac,即(a﹣c)2=0,∴a=c,由b2=ac,可得a=b=c.△ABC是等边三角形.∴A=故答案为:.12.若x,y满足,则的取值范围是[,6] .【考点】简单线性规划.【分析】先画出约束条件的可行域,然后分析的几何意义,结合图象,用数形结合的思想,即可求解.【解答】解:满足约束条件的可行域,如下图所示:又∵表示的是可行域内一点与原点连线的斜率当x=,y=时,有最小值;当x=1,y=6时,有最大值6故答案为:[,6]13.在平面直角坐标系xOy中,曲线C1:x+y=4,曲线(θ为参数),过原点O的直线l分别交C1,C2于A,B两点,则的最大值为.【考点】参数方程化成普通方程.【分析】求出曲线(θ为参数)的普通方程,设直线方程为kx﹣y=0,求出|OA|,|OB|,即可求出的最大值.【解答】解:曲线(θ为参数),普通方程为(x﹣1)2+y2=1.设直线方程为kx﹣y=0,圆心到直线的距离d=,∴|OB|=2=,kx﹣y=0与x+y=4联立,可得A(,),∴|OA|=,∴=,设k+1=t(t>0),则=≤=.∴的最大值为.故答案为.14.已知函数f(x)=e x﹣e﹣x,下列命题正确的有①②④.(写出所有正确命题的编号)①f(x)是奇函数;②f(x)在R上是单调递增函数;③方程f(x)=x2+2x有且仅有1个实数根;④如果对任意x∈(0,+∞),都有f(x)>kx,那么k的最大值为2.【考点】函数恒成立问题;命题的真假判断与应用.【分析】根据题意,依次分析4个命题,对于①、由奇函数的定义分析可得①正确;对于②、对函数f(x)=e x﹣e﹣x求导,分析可得f′(x)>0,分析可得②正确;对于③、g(x)=e x﹣e﹣x﹣x2﹣2x,分析可得g(0)=0,即方程f(x)=x2+2x 有一根x=0,进而利用二分法分析可得g(x)有一根在(3,4)之间,即方程f (x)=x2+2x至少有2跟,故③错误,对于④、由函数的恒成立问题的分析方法,分析可得④正确,综合可得答案.【解答】解:根据题意,依次分析4个命题:对于①、f(x)=e x﹣e﹣x,定义域是R,且f(﹣x)=e﹣x﹣e x=﹣f(x),f(x)是奇函数;故①正确;对于②、若f(x)=e x﹣e﹣x,则f′(x)=e x+e﹣x>0,故f(x)在R递增;故②正确;对于③、f(x)=x2+2x,令g(x)=e x﹣e﹣x﹣x2﹣2x,令x=0可得,g(0)=0,即方程f(x)=x2+2x有一根x=0,g(3)=e3﹣﹣13<0,g(4)=e4﹣﹣20>0,则方程f(x)=x2+2x有一根在(3,4)之间,故③错误;对于④、如果对任意x∈(0,+∞),都有f(x)>kx,即e x﹣e﹣x﹣kx>0恒成立,令h(x)=e x﹣e﹣x﹣kx,且h(0)=0,若h(x)>0恒成立,则必有h′(x)=e x+e﹣x﹣k>0恒成立,若e x+e﹣x﹣k>0,即k<e x+e﹣x=e x+恒成立,而e x+≥2,若有k<2,故④正确;综合可得:①②④正确;故答案为:①②④.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.已知函数f(x)=Asin(ωx)(ω>0)的图象如图所示.(Ⅰ)求f(x)的解析式;(Ⅱ)若,求g(x)在上的单调递减区间.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;正弦函数的图象.【分析】(Ⅰ)由图象求得A及周期,再由周期公式求得ω,则f(x)的解析式可求;(Ⅱ)把f(x)代入,整理后由复合函数的单调性求得g(x)在上的单调递减区间.【解答】解:(Ⅰ)由图象可知A=2,设函数f(x)的周期为T,则,求得T=π,从而ω=2,∴f(x)=2sin2x;(Ⅱ)===,∴,即,k∈Z.令k=0,得,∴g(x)在上的单调递减区间为.16.如图1,平面五边形ABCDE中,AB∥CD,∠BAD=90°,AB=2,CD=1,△ADE 是边长为2的正三角形.现将△ADE沿AD折起,得到四棱锥E﹣ABCD(如图2),且DE⊥AB.(Ⅰ)求证:平面ADE⊥平面ABCD;(Ⅱ)求平面BCE和平面ADE所成锐二面角的大小;(Ⅲ)在棱AE上是否存在点F,使得DF∥平面BCE?若存在,求的值;若不存在,请说明理由.【考点】二面角的平面角及求法;平面与平面垂直的判定.【分析】(Ⅰ)推导出AB⊥AD,AB⊥DE,从而AB⊥平面ADE,由此能平面ADE ⊥平面ABCD.(Ⅱ)设AD的中点为O,连接EO,推导出EO⊥AD,从而EO⊥平面ABCD.以O为原点,OA所在的直线为x轴,在平面ABCD内过O 垂直于AD的直线为y 轴,OE所在的直线为z轴,建立空间直角坐标系O﹣xyz,利用向量法能求出平面BCE和平面ADE所成的锐二面角大小.(Ⅲ)设BE的中点为G,连接CG,FG,推导出四边形CDFG是平行四边形,从而DF∥CG.由此能求出在棱AE上存在点F,使得DF∥平面BCE,此时.【解答】(本小题共14分)证明:(Ⅰ)由已知得AB⊥AD,AB⊥DE.因为AD∩DE=D,所以AB⊥平面ADE.又AB⊂平面ABCD,所以平面ADE⊥平面ABCD..…解:(Ⅱ)设AD的中点为O,连接EO.因为△ADE是正三角形,所以EA=ED,所以EO⊥AD.因为平面ADE⊥平面ABCD,平面ADE∩平面ABCD=AD,EO⊂平面ADE,所以EO⊥平面ABCD.以O为原点,OA所在的直线为x轴,在平面ABCD内过O 垂直于AD的直线为y轴,OE所在的直线为z轴,建立空间直角坐标系O﹣xyz,如图所示.由已知,得E(0,0,),B(1,2,0),C(﹣1,1,0).所以=(1,﹣1,),=(2,1,0).设平面BCE的法向量=(x,y,z).则,令x=1,则=(1,﹣2,﹣).又平面ADE的一个法向量=(0,1,0),所以cos<>==﹣.所以平面BCE和平面ADE所成的锐二面角大小为.…(Ⅲ)在棱AE上存在点F,使得DF∥平面BCE,此时.理由如下:设BE的中点为G,连接CG,FG,则FG∥AB,FG=.因为AB∥CD,且,所以FG∥CD,且FG=CD,所以四边形CDFG是平行四边形,所以DF∥CG.因为CG⊂平面BCE,且DF⊄平面BCE,所以DF∥平面BCE..…17.某公司购买了A,B,C三种不同品牌的电动智能送风口罩.为了解三种品牌口罩的电池性能,现采用分层抽样的方法,从三种品牌的口罩中抽出25台,测试它们一次完全充电后的连续待机时长,统计结果如下(单位:小时):(Ⅰ)已知该公司购买的C品牌电动智能送风口罩比B品牌多200台,求该公司购买的B品牌电动智能送风口罩的数量;(Ⅱ)从A品牌和B品牌抽出的电动智能送风口罩中,各随机选取一台,求A 品牌待机时长高于B品牌的概率;(Ⅲ)再从A,B,C三种不同品牌的电动智能送风口罩中各随机抽取一台,它们的待机时长分别是a,b,c(单位:小时).这3个新数据与表格中的数据构成的新样本的平均数记为μ1,表格中数据的平均数记为μ0.若μ0≤μ1,写出a+b+c 的最小值(结论不要求证明).【考点】函数模型的选择与应用.【分析】(I)利用该公司购买的C品牌电动智能送风口罩比B品牌多200台,建立方程,即可求该公司购买的B品牌电动智能送风口罩的数量;(Ⅱ)根据古典概型概率计算公式,可求出A品牌待机时长高于B品牌的概率;(Ⅲ)根据平均数的定义,写出a+b+c的最小值.【解答】解:(Ⅰ)设该公司购买的B品牌电动智能送风口罩的数量为x台,则购买的C品牌电动智能送风口罩为台,由题意得,所以x=800.答:该公司购买的B品牌电动智能送风口罩的数量为800台..…(Ⅱ)设A品牌待机时长高于B品牌的概率为P,则.答:在A品牌和B品牌抽出的电动智能送风口罩中各任取一台,A品牌待机时长高于B品牌的概率为..…(Ⅲ)18.…18.已知函数.(Ⅰ)求f(x)的单调区间;(Ⅱ)对任意,都有xln(kx)﹣kx+1≤mx,求m的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间;(Ⅱ)问题转化为m≥f(x)max,通过讨论k的范围,求出f(x)的最大值,从而求出m的范围即可.【解答】解:由已知得,f(x)的定义域为(0,+∞).(Ⅰ),.令f'(x)>0,得x>1,令f'(x)<0,得0<x<1.所以函数f(x)的单调减区间是(0,1),单调增区间是(1,+∞),(Ⅱ)由xln(kx)﹣kx+1≤mx,得,即m≥f(x)max.由(Ⅰ)知,(1)当k≥2时,f(x)在上单调递减,所以,所以m≥0;.(2)当0<k≤1时,f(x)在上单调递增,所以,所以;(3)当1<k<2时,f(x)在上单调递减,在上单调递增,所以.又,,①若,即,所以1<k<2ln2,此时,所以.②若,即,所以2ln2≤k<2,此时f(x)max=0,所以m ≥0综上所述,当k≥2ln2时,m≥0;当0<k<2ln2时,.19.已知椭圆C:的离心率为,右焦点为F,点B(0,1)在椭圆C上.(Ⅰ)求椭圆C的方程;(Ⅱ)过点的直线交椭圆C于M,N两点,交直线x=2于点P,设,,求证:λ+μ为定值.【考点】直线与椭圆的位置关系.【分析】(Ⅰ)由题意b=1,利用椭圆的离心率即可求得a的值,求得椭圆方程;(Ⅱ)设直线MN的方程为y=k(x﹣1),代入椭圆方程,利用韦达定理及向量的坐标运算,即可证明λ+μ=0为定值.【解答】解:(Ⅰ)由点B(0,1)在椭圆C:上,则,即b=1.又椭圆C的离心率为,则,由a2=b2+c2,得.∴椭圆C的方程为…(Ⅱ)证明:由已知得F(1,0),直线MN的斜率存在.设直线MN的方程为y=k(x﹣1),M(x1,y1),N(x2,y2),则P(2,k).由,,得,∴,.联立得(1+2k2)x2﹣4k2x+2k2﹣2=0.∴,.∴==0,∴λ+μ=0为定值…20.对于∀n∈N*,若数列{x n}满足x n﹣x n>1,则称这个数列为“K数列”.+1(Ⅰ)已知数列:1,m+1,m2是“K数列”,求实数m的取值范围;(Ⅱ)是否存在首项为﹣1的等差数列{a n}为“K数列”,且其前n项和S n满足?若存在,求出{a n}的通项公式;若不存在,请说明理由;(Ⅲ)已知各项均为正整数的等比数列{a n}是“K数列”,数列不是“K数列”,若,试判断数列{b n}是否为“K数列”,并说明理由.【考点】数列的应用.【分析】(Ⅰ)由题意得(m+1)﹣1>1,m2﹣(m+1)>1,联立解出即可得出.(Ⅱ)假设存在等差数列{a n}符合要求,设公差为d,则d>1,由题意,得对n∈N*均成立,化为(n﹣1)d<n.对n分类讨论解出即可得出.(Ⅲ)设数列{a n}的公比为q,则,由题意可得:{a n}的每一项均为﹣a n=a n q﹣a n=a n(q﹣1)>1>0,可得a1>0,且q>1.由a n+1正整数,且a n+1﹣a n=q(a n﹣a n﹣1)>a n﹣a n﹣1,可得在{a n﹣a n﹣1}中,“a2﹣a1”为最小项.同理,在中,“”为最小项.再利用“K数列”,可得a1=1,q=3或a1=2,q=2.进而得出.【解答】解:(Ⅰ)由题意得(m+1)﹣1>1,①m2﹣(m+1)>1,②解①得m>1;解②得m<﹣1或m>2.所以m>2,故实数m的取值范围是m>2.(Ⅱ)假设存在等差数列{a n}符合要求,设公差为d,则d>1,由a1=﹣1,得,.由题意,得对n∈N*均成立,即(n﹣1)d<n.①当n=1时,d∈R;②当n>1时,,因为,所以d≤1,与d>1矛盾,故这样的等差数列{a n}不存在.(Ⅲ)设数列{a n}的公比为q,则,﹣a n=a n q﹣a n=a n(q﹣1)>1>0,因为{a n}的每一项均为正整数,且a n+1所以a1>0,且q>1.因为a n﹣a n=q(a n﹣a n﹣1)>a n﹣a n﹣1,+1}中,“a2﹣a1”为最小项.所以在{a n﹣a n﹣1同理,在中,“”为最小项.由{a n}为“K数列”,只需a2﹣a1>1,即a1(q﹣1)>1,又因为不是“K数列”,且“”为最小项,所以,即a1(q﹣1)≤2,由数列{a n}的每一项均为正整数,可得a1(q﹣1)=2,所以a1=1,q=3或a1=2,q=2.①当a1=1,q=3时,,则,令,则,又=,所以{c n}为递增数列,即c n>c n﹣1>c n﹣2>…>c1,所以b n+1﹣b n>b n﹣b n﹣1>b n﹣1﹣b n﹣2>…>b2﹣b1.因为,所以对任意的n∈N*,都有b n+1﹣b n>1,即数列{c n}为“K数列”.②当a1=2,q=2时,,则.因为,所以数列{b n}不是“K数列”.综上:当时,数列{b n}为“K数列”,当时,数列{b n}不是“K数列”.2017年4月25日。
2017年北京市高考数学试卷(理科)2017年北京市高考数学试卷(理科)一、选择题.(每小题5分)1.(5分)若集合A={x|﹣2<x<1},B={x|x<﹣1或x>3},则A∩B=()A.{x|﹣2<x<﹣1} B.{x|﹣2<x<3} C.{x|﹣1<x<1} D.{x|1<x<3} 2.(5分)若复数(1﹣i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是()A.(﹣∞,1) B.(﹣∞,﹣1)C.(1,+∞)D.(﹣1,+∞)3.(5分)执行如图所示的程序框图,输出的S值为()A.2 B.C.D.4.(5分)若x,y满足,则x+2y的最大值为()A.1 B.3 C.5 D.95.(5分)已知函数f(x)=3x﹣()x,则f(x)()A.是奇函数,且在R上是增函数B.是偶函数,且在R上是增函数C.是奇函数,且在R上是减函数D.是偶函数,且在R上是减函数6.(5分)设,为非零向量,则“存在负数λ,使得=λ”是•<0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.(5分)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为()A.3B.2C.2D.28.(5分)根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080,则下列各数中与最接近的是()(参考数据:lg3≈0.48)A.1033 B.1053 C.1073 D.1093二、填空题(每小题5分)9.(5分)若双曲线x2﹣=1的离心率为,则实数m= .10.(5分)若等差数列{an }和等比数列{bn}满足a1=b1=﹣1,a4=b4=8,则= .11.(5分)在极坐标系中,点A在圆ρ2﹣2ρcosθ﹣4ρsinθ+4=0上,点P 的坐标为(1,0),则|AP|的最小值为.12.(5分)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα=,则cos(α﹣β)= .13.(5分)能够说明“设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题的一组整数a,b,c的值依次为.14.(5分)三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中Ai 的横、纵坐标分别为第i名工人上午的工作时间和加工的零件数,点Bi的横、纵坐标分别为第i名工人下午的工作时间和加工的零件数,i=1,2,3.(1)记Qi 为第i名工人在这一天中加工的零件总数,则Q1,Q2,Q3中最大的是.(2)记pi 为第i名工人在这一天中平均每小时加工的零件数,则p1,p2,p3中最大的是.三、解答题15.(13分)在△ABC中,∠A=60°,c=a.(1)求sinC的值;(2)若a=7,求△ABC的面积.16.(14分)如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=,AB=4.(1)求证:M为PB的中点;(2)求二面角B﹣PD﹣A的大小;(3)求直线MC与平面BDP所成角的正弦值.17.(13分)为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x 和y的数据,并制成如图,其中“*”表示服药者,“+”表示未服药者.(1)从服药的50名患者中随机选出一人,求此人指标y的值小于60的概率;(2)从图中A,B,C,D四人中随机选出两人,记ξ为选出的两人中指标x的值大于1.7的人数,求ξ的分布列和数学期望E(ξ);(3)试判断这100名患者中服药者指标y数据的方差与未服药者指标y数据的方差的大小.(只需写出结论)18.(14分)已知抛物线C:y2=2px过点P(1,1).过点(0,)作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP、ON交于点A,B,其中O为原点.(1)求抛物线C的方程,并求其焦点坐标和准线方程;(2)求证:A为线段BM的中点.19.(13分)已知函数f(x)=e x cosx﹣x.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间[0,]上的最大值和最小值.20.(13分)设{an }和{bn}是两个等差数列,记cn=max{b1﹣a1n,b2﹣a2n,…,bn﹣an n}(n=1,2,3,…),其中max{x1,x2,…,xs}表示x1,x2,…,xs这s个数中最大的数.(1)若an =n,bn=2n﹣1,求c1,c2,c3的值,并证明{cn}是等差数列;(2)证明:或者对任意正数M,存在正整数m,当n≥m时,>M;或者存在正整数m,使得cm ,cm+1,cm+2,…是等差数列.2017年北京市高考数学试卷(理科)参考答案与试题解析一、选择题.(每小题5分)1.(5分)(2017•北京)若集合A={x|﹣2<x<1},B={x|x<﹣1或x>3},则A ∩B=()A.{x|﹣2<x<﹣1} B.{x|﹣2<x<3} C.{x|﹣1<x<1} D.{x|1<x<3}【分析】根据已知中集合A和B,结合集合交集的定义,可得答案.【解答】解:∵集合A={x|﹣2<x<1},B={x|x<﹣1或x>3},∴A∩B={x|﹣2<x<﹣1}故选:A2.(5分)(2017•北京)若复数(1﹣i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是()A.(﹣∞,1) B.(﹣∞,﹣1)C.(1,+∞)D.(﹣1,+∞)【分析】复数(1﹣i)(a+i)=a+1+(1﹣a)i在复平面内对应的点在第二象限,可得,解得a范围.【解答】解:复数(1﹣i)(a+i)=a+1+(1﹣a)i在复平面内对应的点在第二象限,∴,解得a<﹣1.则实数a的取值范围是(﹣∞,﹣1).故选:B.3.(5分)(2017•北京)执行如图所示的程序框图,输出的S值为()A.2 B.C.D.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:当k=0时,满足进行循环的条件,执行完循环体后,k=1,S=2,当k=1时,满足进行循环的条件,执行完循环体后,k=2,S=,当k=2时,满足进行循环的条件,执行完循环体后,k=3,S=,当k=3时,不满足进行循环的条件,故输出结果为:,故选:C.4.(5分)(2017•北京)若x,y满足,则x+2y的最大值为()A.1 B.3 C.5 D.9【分析】画出约束条件的可行域,利用目标函数的最优解求解目标函数的最值即可.【解答】解:x,y满足的可行域如图:由可行域可知目标函数z=x+2y经过可行域的A时,取得最大值,由,可得A(3,3),目标函数的最大值为:3+2×3=9.故选:D.5.(5分)(2017•北京)已知函数f(x)=3x﹣()x,则f(x)()A.是奇函数,且在R上是增函数B.是偶函数,且在R上是增函数C.是奇函数,且在R上是减函数D.是偶函数,且在R上是减函数【分析】由已知得f(﹣x)=﹣f(x),即函数f(x)为奇函数,由函数y=3x为增函数,y=()x为减函数,结合“增”﹣“减”=“增”可得答案.【解答】解:f(x)=3x﹣()x=3x﹣3﹣x,∴f(﹣x)=3﹣x﹣3x=﹣f(x),即函数f(x)为奇函数,又由函数y=3x为增函数,y=()x为减函数,故函数f(x)=3x﹣()x为增函数,故选:A.6.(5分)(2017•北京)设,为非零向量,则“存在负数λ,使得=λ”是•<0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】,为非零向量,存在负数λ,使得=λ,则向量,共线且方向相反,可得•<0.反之不成立,非零向量,的夹角为钝角,满足•<0,而=λ不成立.即可判断出结论.【解答】解:,为非零向量,存在负数λ,使得=λ,则向量,共线且方向相反,可得•<0.反之不成立,非零向量,的夹角为钝角,满足•<0,而=λ不成立.∴,为非零向量,则“存在负数λ,使得=λ”是•<0”的充分不必要条件.故选:A.7.(5分)(2017•北京)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为()A.3B.2C.2D.2【分析】根据三视图可得物体的直观图,结合图形可得最长的棱为PA,根据勾股定理求出即可.【解答】解:由三视图可得直观图,再四棱锥P﹣ABCD中,最长的棱为PA,即PA===2,故选:B.8.(5分)(2017•北京)根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080,则下列各数中与最接近的是()(参考数据:lg3≈0.48)A.1033 B.1053 C.1073 D.1093【分析】根据对数的性质:T=,可得:3=10lg3≈100.48,代入M将M也化为10为底的指数形式,进而可得结果.【解答】解:由题意:M≈3361,N≈1080,根据对数性质有:3=10lg3≈100.48,∴M≈3361≈(100.48)361≈10173,∴≈=1093,故本题选:D.二、填空题(每小题5分)9.(5分)(2017•北京)若双曲线x2﹣=1的离心率为,则实数m= 2 .【分析】利用双曲线的离心率,列出方程求和求解m 即可.【解答】解:双曲线x2﹣=1(m>0)的离心率为,可得:,解得m=2.故答案为:2.10.(5分)(2017•北京)若等差数列{an }和等比数列{bn}满足a1=b1=﹣1,a4=b4=8,则= 1 .【分析】利用等差数列求出公差,等比数列求出公比,然后求解第二项,即可得到结果.【解答】解:等差数列{an }和等比数列{bn}满足a1=b1=﹣1,a4=b4=8,设等差数列的公差为d,等比数列的公比为q.可得:8=﹣1+3d,d=3,a2=2;8=﹣q3,解得q=﹣2,∴b2=2.可得=1.故答案为:1.11.(5分)(2017•北京)在极坐标系中,点A在圆ρ2﹣2ρcosθ﹣4ρsinθ+4=0上,点P的坐标为(1,0),则|AP|的最小值为 1 .【分析】先将圆的极坐标方程化为标准方程,再运用数形结合的方法求出圆上的点到点P的距离的最小值.【解答】解:设圆ρ2﹣2ρcosθ﹣4ρsinθ+4=0为圆C,将圆C的极坐标方程化为:x2+y2﹣2x﹣4y+4=0,再化为标准方程:(x﹣1)2+(y﹣2)2=1;如图,当A在CP与⊙C的交点Q处时,|AP|最小为:|AP|min =|CP|﹣rC=2﹣1=1,故答案为:1.12.(5分)(2017•北京)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα=,则cos(α﹣β)= ﹣.【分析】方法一:根据教的对称得到sinα=sinβ=,cosα=﹣cosβ,以及两角差的余弦公式即可求出方法二:分α在第一象限,或第二象限,根据同角的三角函数的关系以及两角差的余弦公式即可求出【解答】解:方法一:∵角α与角β均以Ox为始边,它们的终边关于y轴对称,∴sinα=sinβ=,cosα=﹣cosβ,∴cos(α﹣β)=cosαcosβ+sinαsinβ=﹣cos2α+sin2α=2sin2α﹣1=﹣1=﹣方法二:∵sinα=,当α在第一象限时,cosα=,∵α,β角的终边关于y轴对称,∴β在第二象限时,sinβ=sinα=,co sβ=﹣cosα=﹣,∴cos(α﹣β)=cosαcosβ+sinαsinβ=﹣×+×=﹣:∵sinα=,当α在第二象限时,cosα=﹣,∵α,β角的终边关于y轴对称,∴β在第一象限时,sinβ=sinα=,cosβ=﹣cosα=,∴cos(α﹣β)=cosαcosβ+sinαsinβ=﹣×+×=﹣综上所述cos(α﹣β)=﹣,故答案为:﹣13.(5分)(2017•北京)能够说明“设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题的一组整数a,b,c的值依次为﹣1,﹣2,﹣3 .【分析】设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题,则若a >b>c,则a+b≤c”是真命题,举例即可,本题答案不唯一【解答】解:设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题,则若a>b>c,则a+b≤c”是真命题,可设a,b,c的值依次﹣1,﹣2,﹣3,(答案不唯一),故答案为:﹣1,﹣2,﹣314.(5分)(2017•北京)三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中Ai的横、纵坐标分别为第i名工人上午的工作时间和加工的零件数,点Bi的横、纵坐标分别为第i名工人下午的工作时间和加工的零件数,i=1,2,3.(1)记Qi 为第i名工人在这一天中加工的零件总数,则Q1,Q2,Q3中最大的是Q1.(2)记pi 为第i名工人在这一天中平均每小时加工的零件数,则p1,p2,p3中最大的是p2.【分析】(1)若Qi 为第i名工人在这一天中加工的零件总数,则Qi=Ai的综坐标+Bi的综坐标;进而得到答案.(2)若pi 为第i名工人在这一天中平均每小时加工的零件数,则pi为AiBi中点与原点连线的斜率;进而得到答案.【解答】解:(1)若Qi为第i名工人在这一天中加工的零件总数,Q1=A1的综坐标+B1的综坐标;Q2=A2的综坐标+B2的综坐标,Q3=A3的综坐标+B3的综坐标,由已知中图象可得:Q1,Q2,Q3中最大的是Q1,(2)若pi为第i名工人在这一天中平均每小时加工的零件数,则pi 为AiBi中点与原点连线的斜率,故p1,p2,p3中最大的是p2故答案为:Q1,p2三、解答题15.(13分)(2017•北京)在△ABC中,∠A=60°,c=a.(1)求sinC的值;(2)若a=7,求△ABC的面积.【分析】(1)根据正弦定理即可求出答案,(2)根据同角的三角函数的关系求出cosC,再根据两角和正弦公式求出sinB,根据面积公式计算即可.【解答】解:(1)∠A=60°,c=a,由正弦定理可得sinC=sinA=×=,(2)a=7,则c=3,∴C<A,由(1)可得cosC=,∴sinB=sin(A+C)=sinAcosC+cosAsinC=×+×=,∴S=acsinB=×7×3×=6.△ABC16.(14分)(2017•北京)如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=,AB=4.(1)求证:M为PB的中点;(2)求二面角B﹣PD﹣A的大小;(3)求直线MC与平面BDP所成角的正弦值.【分析】(1)设AC∩BD=O,则O为BD的中点,连接OM,利用线面平行的性质证明OM∥PD,再由平行线截线段成比例可得M为PB的中点;(2)取AD中点G,可得PG⊥AD,再由面面垂直的性质可得PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG,再证明OG⊥AD.以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系,求出平面PBD与平面PAD 的一个法向量,由两法向量所成角的大小可得二面角B﹣PD﹣A的大小;(3)求出的坐标,由与平面PBD的法向量所成角的余弦值的绝对值可得直线MC与平面BDP所成角的正弦值.【解答】(1)证明:如图,设AC∩BD=O,∵ABCD为正方形,∴O为BD的中点,连接OM,∵PD∥平面MAC,PD⊂平面PBD,平面PBD∩平面AMC=OM,∴PD∥OM,则,即M为PB的中点;(2)解:取AD中点G,∵PA=PD,∴PG⊥AD,∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,∴PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG,由G是AD的中点,O是AC的中点,可得OG∥DC,则OG⊥AD.以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系,由PA=PD=,AB=4,得D(2,0,0),A(﹣2,0,0),P(0,0,),C(2,4,0),B(﹣2,4,0),M(﹣1,2,),,.设平面PBD的一个法向量为,则由,得,取z=,得.取平面PAD的一个法向量为.∴cos<>==.∴二面角B﹣PD﹣A的大小为60°;(3)解:,平面PAD的一个法向量为.∴直线MC与平面BDP所成角的正弦值为|cos<>|=||=||=.17.(13分)(2017•北京)为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x和y的数据,并制成如图,其中“*”表示服药者,“+”表示未服药者.(1)从服药的50名患者中随机选出一人,求此人指标y的值小于60的概率;(2)从图中A,B,C,D四人中随机选出两人,记ξ为选出的两人中指标x的值大于1.7的人数,求ξ的分布列和数学期望E(ξ);(3)试判断这100名患者中服药者指标y数据的方差与未服药者指标y数据的方差的大小.(只需写出结论)【分析】(1)由图求出在50名服药患者中,有15名患者指标y的值小于60,由此能求出从服药的50名患者中随机选出一人,此人指标小于60的概率.(2)由图知:A、C两人指标x的值大于1.7,而B、D两人则小于1.7,可知在四人中随机选项出的2人中指标x的值大于1.7的人数ξ的可能取值为0,1,2,分别求出相应的概率,由此能求出ξ的分布列和E(ξ).(3)由图知100名患者中服药者指标y数据的方差比未服药者指标y数据的方差大.【解答】解:(1)由图知:在50名服药患者中,有15名患者指标y的值小于60,则从服药的50名患者中随机选出一人,此人指标小于60的概率为:p==.(2)由图知:A、C两人指标x的值大于1.7,而B、D两人则小于1.7,可知在四人中随机选项出的2人中指标x的值大于1.7的人数ξ的可能取值为0,1,2,P(ξ=0)=,P(ξ=1)==,P(ξ=2)==,∴ξ的分布列如下:ξ 0 1 2PE(ξ)==1.(3)由图知100名患者中服药者指标y数据的方差比未服药者指标y数据的方差大.18.(14分)(2017•北京)已知抛物线C:y2=2px过点P(1,1).过点(0,)作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP、ON交于点A,B,其中O为原点.(1)求抛物线C的方程,并求其焦点坐标和准线方程;(2)求证:A为线段BM的中点.【分析】(1)根据抛物线过点P(1,1).代值求出p,即可求出抛物线C的方程,焦点坐标和准线方程;(2)设过点(0,)的直线方程为y=kx+,M(x1,y1),N(x2,y2),根据韦达定理得到x1+x2=,x1x2=,根据中点的定义即可证明.【解答】解:(1)∵y2=2px过点P(1,1),∴1=2p,解得p=,∴y2=x,∴焦点坐标为(,0),准线为x=﹣,(2)证明:设过点(0,)的直线方程为y=kx+,M(x1,y1),N(x2,y2),∴直线OP为y=x,直线ON为:y=x,由题意知A(x1,x1),B(x1,),由,可得k2x2+(k﹣1)x+=0,∴x1+x2=,x1x2=∴y1+=kx1++=2kx1+=2kx1+=2kx1+(1﹣k)•2x1=2x1,∴A为线段BM的中点.19.(13分)(2017•北京)已知函数f (x )=e x cosx ﹣x .(1)求曲线y=f (x )在点(0,f (0))处的切线方程; (2)求函数f (x )在区间[0,]上的最大值和最小值.【分析】(1)求出f (x )的导数,可得切线的斜率和切点,由点斜式方程即可得到所求方程;(2)求出f (x )的导数,再令g (x )=f′(x ),求出g (x )的导数,可得g (x )在区间[0,]的单调性,即可得到f (x )的单调性,进而得到f (x )的最值.【解答】解:(1)函数f (x )=e x cosx ﹣x 的导数为f′(x )=e x (cosx ﹣sinx )﹣1,可得曲线y=f (x )在点(0,f (0))处的切线斜率为k=e 0(cos0﹣sin0)﹣1=0,切点为(0,e 0cos0﹣0),即为(0,1),曲线y=f (x )在点(0,f (0))处的切线方程为y=1;(2)函数f (x )=e x cosx ﹣x 的导数为f′(x )=e x (cosx ﹣sinx )﹣1, 令g (x )=e x (cosx ﹣sinx )﹣1,则g (x )的导数为g′(x )=e x (cosx ﹣sinx ﹣sinx ﹣cosx )=﹣2e x •sinx,当x ∈[0,],可得g′(x )=﹣2e x •sinx≤0,即有g (x )在[0,]递减,可得g (x )≤g (0)=0,则f (x )在[0,]递减,即有函数f (x )在区间[0,]上的最大值为f (0)=e 0cos0﹣0=1;最小值为f ()=e cos ﹣=﹣.20.(13分)(2017•北京)设{a n }和{b n }是两个等差数列,记c n =max{b 1﹣a 1n ,b 2﹣a 2n ,…,b n ﹣a n n}(n=1,2,3,…),其中max{x 1,x 2,…,x s }表示x 1,x 2,…,x s 这s 个数中最大的数.(1)若an =n,bn=2n﹣1,求c1,c2,c3的值,并证明{cn}是等差数列;(2)证明:或者对任意正数M,存在正整数m,当n≥m时,>M;或者存在正整数m,使得cm ,cm+1,cm+2,…是等差数列.【分析】(1)分别求得a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,代入即可求得c1,c 2,c3;由(bk﹣nak)﹣(b1﹣na1)≤0,则b1﹣na1≥bk﹣nak,则cn=b1﹣na1=1﹣n,cn+1﹣cn=﹣1对∀n∈N*均成立;(2)由bi ﹣ain=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),分类讨论d1=0,d1>0,d1<0三种情况进行讨论根据等差数列的性质,即可求得使得cm ,cm+1,cm+2,…是等差数列;设=An+B+对任意正整数M,存在正整数m,使得n≥m,>M,分类讨论,采用放缩法即可求得因此对任意正数M,存在正整数m,使得当n≥m时,>M.【解答】解:(1)a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,当n=1时,c1=max{b1﹣a1}=max{0}=0,当n=2时,c2=max{b1﹣2a1,b2﹣2a2}=max{﹣1,﹣1}=﹣1,当n=3时,c3=max{b1﹣3a1,b2﹣3a2,b3﹣3a3}=max{﹣2,﹣3,﹣4}=﹣2,下面证明:对∀n∈N*,且n≥2,都有cn =b1﹣na1,当n∈N*,且2≤k≤n时,则(bk ﹣nak)﹣(b1﹣na1),=[(2k﹣1)﹣nk]﹣1+n,=(2k﹣2)﹣n(k﹣1),=(k﹣1)(2﹣n),由k﹣1>0,且2﹣n≤0,则(bk ﹣nak)﹣(b1﹣na1)≤0,则b1﹣na1≥bk﹣nak,因此,对∀n∈N*,且n≥2,cn =b1﹣na1=1﹣n,cn+1﹣cn=﹣1,∴c2﹣c1=﹣1,∴cn+1﹣cn=﹣1对∀n∈N*均成立,∴数列{cn}是等差数列;(2)证明:设数列{an }和{bn}的公差分别为d1,d2,下面考虑的cn取值,由b1﹣a1n,b2﹣a2n,…,bn﹣ann,考虑其中任意bi ﹣ain,(i∈N*,且1≤i≤n),则bi ﹣ain=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n,=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),下面分d1=0,d1>0,d1<0三种情况进行讨论,①若d1=0,则bi﹣ain═(b1﹣a1n)+(i﹣1)d2,当若d2≤0,则(bi﹣ain)﹣(b1﹣a1n)=(i﹣1)d2≤0,则对于给定的正整数n而言,cn =b1﹣a1n,此时cn+1﹣cn=﹣a1,∴数列{cn}是等差数列;当d1>0,(bi﹣ain)﹣(bn﹣ann)=(i﹣1)d2≤0,则对于给定的正整数n而言,cn =bn﹣ann=bn﹣a1n,此时cn+1﹣cn=d2﹣a1,∴数列{cn}是等差数列;此时取m=1,则c1,c2,…,是等差数列,命题成立;②若d1>0,则此时﹣d1n+d2为一个关于n的一次项系数为负数的一次函数,故必存在m∈N*,使得n≥m时,﹣d1n+d2<0,则当n≥m时,(bi ﹣ain)﹣(b1﹣a1n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i≤n),因此当n≥m时,cn =b1﹣a1n,此时cn+1﹣cn=﹣a1,故数列{cn}从第m项开始为等差数列,命题成立;③若d1<0,此时﹣d1n+d2为一个关于n的一次项系数为正数的一次函数,故必存在s∈N*,使得n≥s时,﹣d1n+d2>0,则当n≥s时,(bi ﹣ain)﹣(bn﹣ann)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i≤n),因此,当n≥s时,cn =bn﹣ann,此时==﹣an+,=﹣d2n+(d1﹣a1+d2)+,令﹣d1=A>0,d1﹣a1+d2=B,b1﹣d2=C,下面证明:=An+B+对任意正整数M,存在正整数m,使得n≥m,>M,若C≥0,取m=[+1],[x]表示不大于x的最大整数,当n≥m时,≥An+B≥Am+B=A[+1]+B>A•+B=M,此时命题成立;若C<0,取m=[]+1,当n≥m时,≥An+B+≥Am+B+C>A•+B+C≥M﹣C﹣B+B+C=M,此时命题成立,因此对任意正数M,存在正整数m,使得当n≥m时,>M;综合以上三种情况,命题得证.参与本试卷答题和审题的老师有:豫汝王世崇;沂蒙松;qiss;whgcn;于东;sxs123;zlzhan;双曲线;铭灏2016(排名不分先后)菁优网2017年6月11日。
绝密★启封并使用完毕前2017年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)若集合A={x|–2x1},B={x|x–1或x3},则AB=(A){x|–2x–1} (B){x|–2x3}(C){x|–1x1} (D){x|1x3}(2)若复数(1–i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是(A)(–∞,1)(B)(–∞,–1)(C)(1,+∞)(D)(–1,+∞)(3)执行如图所示的程序框图,输出的s值为(A)2(B)3 2(C )53(D )85(4)若x ,y 满足,则x + 2y 的最大值为(A )1 (B )3 (C )5 (D )9(5)已知函数1(x)33xx f ⎛⎫=- ⎪⎝⎭,则(x)f(A )是奇函数,且在R 上是增函数 (B )是偶函数,且在R 上是增函数 (C )是奇函数,且在R 上是减函数(D )是偶函数,且在R 上是减函数(6)设m,n 为非零向量,则“存在负数λ,使得m n λ=”是“m n 0⋅<”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(7)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为(A )32 (B )23 (C )22 (D )2(8)根据有关资料,围棋状态空间复杂度的上限M 约为,而可观测宇宙中普通物质的原子总数N 约为.则下列各数中与MN最接近的是 (参考数据:lg3≈0.48)(A )1033 (B )1053 (C )1073 (D )1093第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
绝密★启封并使用完毕前2017年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)若集合A={x|–2x1},B={x|x–1或x3},则AB=(A){x|–2x–1} (B){x|–2x3}(C){x|–1x1}(D){x|1x3}(2)若复数(1–i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是(A)(–∞,1)(B)(–∞,–1)(C)(1,+∞)(D)(–1,+∞)(3)执行如图所示的程序框图,输出的s值为(A)2(B)3 2(C )53(D)85(4)若x ,y 满足,则x + 2y 的最大值为(A )1 (B)3 (C)5 (D )9(5)已知函数1(x)33xx f ⎛⎫=- ⎪⎝⎭,则(x)f(A)是奇函数,且在R 上是增函数 (B )是偶函数,且在R 上是增函数 (C )是奇函数,且在R 上是减函数(D )是偶函数,且在R 上是减函数(6)设m,n 为非零向量,则“存在负数λ,使得m n λ=”是“m n 0⋅<"的 (A)充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(7)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为(A)32 (B )23 (C)22 (D)2(8)根据有关资料,围棋状态空间复杂度的上限M 约为,而可观测宇宙中普通物质的原子总数N 约为。
则下列各数中与MN最接近的是 (参考数据:lg3≈0。
48)(A)1033 (B )1053 (C)1073 (D )1093第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
2017年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)若集合A={x|–2<x<1},B={x|x<–1或x>3},则A∩B=(A){x|–2<x<–1} (B){x|–2<x<3}(C){x|–1<x<1} (D){x|1<x<3}(2)若复数(1–i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是(A)(–∞,1)(B)(–∞,–1)(C)(1,+∞)(D)(–1,+∞)(3)执行如图所示的程序框图,输出的s值为(A )2(B )(C )(D )(4)若x ,y 满足,则x + 2y 的最大值为(A )1 (B )3 (C )5 (D )9(5)已知函数,则(A )是奇函数,且在R 上是增函数(B )是偶函数,且在R 上是增函数3253851(x)33xxf ⎛⎫=- ⎪⎝⎭(x)f(C )是奇函数,且在R 上是减函数(D )是偶函数,且在R 上是减函数(6)设m,n 为非零向量,则“存在负数,使得”是“”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(7)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为(A )(B )(C )(D )2(8)根据有关资料,围棋状态空间复杂度的上限M 约为,而可观测宇宙中普通物质的原子总数N约为.则下列各数中与最接近的是 λm n λ=m n 0⋅<MN(参考数据:lg3≈0.48)(A )1033 (B )1053 (C )1073 (D )1093第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
2017 年普通高等学校招生全国统一考试(北京卷) 数学(理科)第一部分(选择题 共 40 分)一、选择题:本大题共 8 小题,每小题 5 分,共 40 分,在每小题列出的四个选项中,选出符合题目要求的一项.(1)【2017 年北京,理 1,5 分】若集合 A {x | –2 x 1} , B {x | x –1或x 3},则 A B =( )(A) {x | –2 x 1}(B) {x | –2 x 3}(C) {x | –1 x 1}(D) {x |1 x 3}【答案】A【解析】 A B x 2 x 1,故选 A.() 【2017 年北京,理 2,5 分】若复数 1 ia i 在复平面内对应的点在第二象限,则实数 a 的取值范围是()(A) ,1(B) , 1(C)1, (D)1, 【答案】B【解析】z1iaia11ai,因为对应的点在第二象限,所以a1 0,解得: a 1 ,故选1 a 0B.() 【2017 年北京,理 3,5 分】执行如图所示的程序框图,输出的 s 值为( )(A)23 (B)2(C) 5 3(D)8 5【答案】C【解析】k 0 时,0 3 成立,第一次进入循环11k 1, s 2 ,1 3 成立,第二次进入循环,1k2, s2 13,23成立,第三次进入循环k3,s3 21 5,33否,输出22332s5,3故选 C.x 3,() 【2017 年北京,理 4,5 分】若 x y 满足 x y 2,则 x 2 y 的最大值为( ),y x,(A)1(B)3(C)5(D)9【答案】D【解析】如图,画出可行域, z x 2 y 表示斜率为 1 的一组平行线,当过点 C 3, 3时,2目标函数取得最大值zmax323 f(9x),故3x选 (1D.() 【2017 年北京,理 5,5 分】已知函 数)x ,则 f (x) ( ) 3 (B)是偶函数,且在 R 上是增函数(A)是奇函数,且在 R 上是增函数(D)是偶函数,且在 R 上是减函数(C)是奇函数,且在 R 上是减函数【答案】A1【解析】 f x 3x 1x 1 x 3x f x,所以函数是奇函数,并且 3x 是增函数, 1x 是减函数,根 3 3 3 据增函数-减函数=增函数,所以函数是增函数故选 A.() 【2017 年北京,理 6,5 分】设 m,n 为非零向量,则“存在负数 ,使得 m n”是“ m n < 0 ”的()(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件【答案】A【解析】若 0 ,使m n,即两向量反向,夹角是1800,那么m n m n cos1800 m n0,反过来, 若 m n0,那么两向量的夹角为900,1800,KS5U 并不一定反向,即不一定存在负数 ,使得m n,所以是充分不必要条件,故选 A.() 【2017 年北京,理 7,5 分】某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为 ()(A) 3 2(B) 2 3(C) 2 2(D)2【答案】B【解析】几何体是四棱锥,如图,红色线为三视图还原后的几何体,最长的棱长为正方体的对角线, l 22 22 22 2 3 ,故选 B.() 【2017 年北京,理 8,5 分】根据有关资料,围棋状态空间复杂度的上限 M 约为 3361 , 而可M观 (测参宇考宙数中据普:通lg物3质 0的.4原8 子)总数 N 约为1080 .则下列各数中与 N 最接近的是( )(A) 1033【答案】D【解析】设 M x 3361N1080(B) 1053(C) 1073(D) 109333613618093.28,两边取对数,lgxlg 1080lg 3 lg10 361 lg 3 80 93.28 ,所以 x 10,即 M 最接近1093 ,故选 D. N第二部分(非选择题 共 110 分)二、填空题:共 6 小题,每小题 5 分,共 30 分。
绝密★启封并使用完毕前2017年普通高等学校招生全国统一考试数学〔理〕〔卷〕本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试完毕后,将本试卷和答题卡一并交回。
第一局部〔选择题共40分〕一、选择题共8小题,每题5分,共40分。
在每题列出的四个选项中,选出符合题目要求的一项。
〔1〕假设集合A={x|–2x1},B={x|x–1或x3},那么AB=〔A〕{x|–2x–1}〔B〕{x|–2x3}〔C〕{x|–1x1} 〔D〕{x|1x3}〔2〕假设复数〔1–i〕(a+i)在复平面内对应的点在第二象限,那么实数a的取值范围是〔A〕(–∞,1)〔B〕(–∞,–1)〔C〕(1,+∞)〔D〕(–1,+∞)〔3〕执行如下图的程序框图,输出的s值为〔A〕2〔B〕3 2〔C 〕53〔D 〕85〔4〕假设x ,y 满足,那么x + 2y 的最大值为〔A 〕1 〔B 〕3 〔C 〕5 〔D 〕9〔5〕函数1(x)33xx f ⎛⎫=- ⎪⎝⎭,那么(x)f〔A 〕是奇函数,且在R 上是增函数 〔B 〕是偶函数,且在R 上是增函数 〔C 〕是奇函数,且在R 上是减函数〔D 〕是偶函数,且在R 上是减函数〔6〕设m,n 为非零向量,那么“存在负数λ,使得m n λ=〞是“m n 0⋅<〞的 〔A 〕充分而不必要条件 〔B 〕必要而不充分条件 〔C 〕充分必要条件〔D 〕既不充分也不必要条件〔7〕某四棱锥的三视图如下图,那么该四棱锥的最长棱的长度为〔A 〕32 〔B 〕23 〔C 〕22 〔D 〕2〔8〕根据有关资料,围棋状态空间复杂度的上限M 约为,而可观测宇宙中普通物质的原子总数N 约为.那么以下各数中与MN最接近的是 〔参考数据:lg3≈0.48〕〔A 〕1033 〔B 〕1053 〔C 〕1073 〔D 〕1093第二局部〔非选择题 共110分〕二、填空题共6小题,每题5分,共30分。
绝密★启封并使用完毕前2017年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共 页, 分。
考试时长 分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题共40分)一、选择题共 小题,每小题 分,共 分。
在每小题列出的四个选项中,选出符合题目要求的一项。
( )若集合 – , – 或 ,则( ) – – ( ) –( ) – ( )( )若复数( – ) 在复平面内对应的点在第二象限,则实数 的取值范围是( ) –∞,( ) –∞,–( ) , ∞( ) – , ∞( )执行如图所示的程序框图,输出的 值为( )( )3 2( )53( )85( )若 , 满足,则 的最大值为( ) ( )( ) ( )( )已知函数1(x)33xxf⎛⎫=- ⎪⎝⎭,则(x)f( )是奇函数,且在 上是增函数 ( )是偶函数,且在 上是增函数 ( )是奇函数,且在 上是减函数( )是偶函数,且在 上是减函数( )设 为非零向量,则“存在负数λ,使得m n λ=”是“m n 0⋅<”的 ( )充分而不必要条件 ( )必要而不充分条件 ( )充分必要条件 ( )既不充分也不必要条件( )某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( ) 2 ( ) 3 ( ) 2 ( )( )根据有关资料,围棋状态空间复杂度的上限 约为,而可观测宇宙中普通物质的原子总数 约为则下列各数中与MN最接近的是 (参考数据: )( ) ( ) ( ) ( )第二部分(非选择题 共 分)二、填空题共 小题,每小题 分,共 分。
( )若双曲线221y x m-=,则实数 ( )若等差数列{}n a 和等比数列{}n b 满足 , ,则22a b ( )在极坐标系中,点 在圆22cos 4sin 40ρρθρθ--+=,点 的坐标为 ,则 的最小值为( )在平面直角坐标系 中,角 与角 均以 为始边,它们的终边关于 轴对称。
绝密★启封并使用完毕前2017年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分.考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)若集合A={x|–2x1},B={x|x–1或x3},则AB=(A){x|–2x–1}(B){x|–2x3}(C){x|–1x1} (D){x|1x3}(2)若复数(1–i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是(A)(–∞,1)(B)(–∞,–1)(C)(1,+∞)(D)(–1,+∞)(3)执行如图所示的程序框图,输出的s值为(A)2(B)3 2(C)53(D)85(4)若x ,y 满足,则x + 2y 的最大值为(A)1 (B )3 (C)5 (D)9(5)已知函数1(x)33xx f ⎛⎫=- ⎪⎝⎭,则(x)fﻩ(A )是奇函数,且在R 上是增函数 (B)是偶函数,且在R 上是增函数(C)是奇函数,且在R 上是减函数ﻩ(D)是偶函数,且在R上是减函数(6)设m,n 为非零向量,则“存在负数,使得m n λ=”是“m n 0⋅<”的 ﻩ(A)充分而不必要条件 ﻩ(B)必要而不充分条件 (C)充分必要条件(D)既不充分也不必要条件(7)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为(A )3 (B)2 (C)2 (D)2(8)根据有关资料,围棋状态空间复杂度的上限M约为,而可观测宇宙中普通物质的原子总数N 约为。
则下列各数中与MN最接近的是 (参考数据:lg 3≈0。
48)(A)1033 (B)1053 (C )1073 (D )1093第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分.(9)若双曲线221y x m-=的离心率为,则实数m =_______________. (10)若等差数列{}n a 和等比数列{}n b 满足a1=b 1=–1,a 4=b 4=8,则22a b =__________。
2017-2018北京市丰台区高考数学一模试卷(理科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.i是虚数单位,=()A.1﹣i B.﹣1﹣i C.1+i D.﹣1+i2.已知全集U=R,函数y=ln(x﹣1)的定义域为M,集合N={x|x2﹣x<0},则下列结论正确的是()A.M∩N=N B.M∩(∁U N)=∅C.M∪N=U D.M⊆(∁U N)3.“”是“e a>e b”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件4.执行如图所示的程序框图,输出的S值为()A.42 B.19 C.8 D.35.在△ABC中,角A,B,C,的对边分别为a,b,c,若(a2+c2﹣b2)tanB=ac,则角B的值为()A.B.或C.D.或6.某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是()(注:结余=收入﹣支出)A.收入最高值与收入最低值的比是3:1B.结余最高的月份是7月C.1至2月份的收入的变化率与4至5月份的收入的变化率相同D.前6个月的平均收入为40万元7.某三棱锥的三视图如图所示,则该三棱锥的体积是()A.B.C.1 D.8.若圆x2+(y﹣1)2=r2与曲线(x﹣1)y=1没有公共点,则半径r的取值范围是()A.0<r<B.0<r<C.0<r<D.0<r<二、填空题共6小题,每小题5分,共30分.9.若复数是纯虚数,则实数a的值为.=﹣2(n=1,2,3,…),那么a8等于.10.在数列{a n}中,a1=1,a n•a n+111.若抛物线y2=2px的焦点与双曲线﹣y2=1的右顶点重合,则p=.12.如果将函数f(x)=sin(3x+φ)(﹣π<φ<0)的图象向左平移个单位所得到的图象关于原点对称,那么φ=.13.将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,则不同的分法的总数是.(用数字作答)14.已知.①当a=1时,f(x)=3,则x=;②当a≤﹣1时,若f(x)=3有三个不等实数根,且它们成等差数列,则a=.三、解答题共6小题,共80分.解答应写出文字说明、演算步骤或证明过程.15.(12分)已知a,b,c分别是△ABC的三个内角A,B,C的三条对边,且c2=a2+b2﹣ab.(Ⅰ)求角C的大小;(Ⅱ)求cosA+cosB的最大值.16.(12分)某超市从现有甲、乙两种酸奶的日销售量(单位:箱)的1200个数据(数据均在区间(0,50]内)中,按照5%的比例进行分层抽样,统计结果按(0,10],(10,20],(20,30],(30,40],(40,50]分组,整理如下图:(Ⅰ)写出频率分布直方图(图乙)中a的值;记所抽取样本中甲种酸奶与乙种酸奶日销售量的方差分别为,,试比较与的大小(只需写出结论);(Ⅱ)从甲种酸奶日销售量在区间(0,20]的数据样本中抽取3个,记在(0,10]内的数据个数为X,求X的分布列;(Ⅲ)估计1200个日销售量数据中,数据在区间(0,10]中的个数.17.(14分)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P﹣ABCD中,侧棱PD⊥底面ABCD,且PD=CD,E为PC中点,点F在PB上,且PB⊥平面DEF,连接BD,BE.(Ⅰ)证明:DE⊥平面PBC;(Ⅱ)试判断四面体DBEF是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(Ⅲ)已知AD=2,,求二面角F﹣AD﹣B的余弦值.18.(14分)已知函数f(x)=1nx.(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求证:当x>0时,;(Ⅲ)若x﹣1>a1nx对任意x>1恒成立,求实数a的最大值.19.(14分)已知椭圆E: +=1(a>b>0)过点(0,1),且离心率为.(Ⅰ)求椭圆E的方程;(Ⅱ)设直线l:y=+m与椭圆E交于A、C两点,以AC为对角线作正方形ABCD,记直线l与x轴的交点为N,问B,N两点间距离是否为定值?如果是,求出定值;如果不是,请说明理由.20.(14分)已知集合R n={X|X=(x1,x2,…,x n),x i∈{0,1},i=1,2,…,n}(n≥2).对于A=(a1,a2,…,a n)∈R n,B=(b1,b2,…,b n)∈R n,定义A与B之间的距离为d(A,B)=|a1﹣b1|+|a2﹣b2|+…|a n﹣b n|=.(Ⅰ)写出R2中的所有元素,并求两元素间的距离的最大值;(Ⅱ)若集合M满足:M⊆R3,且任意两元素间的距离均为2,求集合M中元素个数的最大值并写出此时的集合M;(Ⅲ)设集合P⊆R n,P中有m(m≥2)个元素,记P中所有两元素间的距离的平均值为,证明.2017-2018北京市丰台区高考数学一模试卷(理科)参考答案与试题解析一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.i是虚数单位,=()A.1﹣i B.﹣1﹣i C.1+i D.﹣1+i【考点】复数代数形式的乘除运算.【分析】两个复数代数形式的乘除法,两个复数相除,分子和分母同时乘以分母的共轭复数,运算求得结果.【解答】解:===1+i,故选C.2.已知全集U=R,函数y=ln(x﹣1)的定义域为M,集合N={x|x2﹣x<0},则下列结论正确的是()A.M∩N=N B.M∩(∁U N)=∅C.M∪N=U D.M⊆(∁U N)【考点】交、并、补集的混合运算.【分析】分别解出关于M,N的范围,然后判断即可.【解答】解:由x﹣1>0,解得:x>1,故函数y=ln(x﹣1)的定义域为M=(1,+∞),由x2﹣x<0,解得:0<x<1,故集合N={x|x2﹣x<0}=(0,1),∴∁U N={x|x≥1或x≤0},∴M⊆(∁U N),故选:D.3.“”是“e a>e b”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】“”等价于a>b,可得“e a>e b”,反之不成立,例如取a=2,b=﹣1.即可判断出结论.【解答】解:∵“”⇔a>b⇒“e a>e b”,反之不成立,例如取a=2,b=﹣1.∴“”是“e a>e b”的充分不必要条件.故选:A.4.执行如图所示的程序框图,输出的S值为()A.42 B.19 C.8 D.3【考点】程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,依次写出每次循环得到的S,i的值,当i=4时不满足条件i<4,退出循环,输出S的值为19.【解答】解:模拟执行程序,可得i=1,S=1满足条件i<4,S=3,i=2满足条件i<4,S=8,i=3满足条件i<4,S=19,i=4不满足条件i<4,退出循环,输出S的值为19.故选:B.5.在△ABC中,角A,B,C,的对边分别为a,b,c,若(a2+c2﹣b2)tanB=ac,则角B的值为()A.B.或C.D.或【考点】余弦定理.【分析】利用余弦定理表示出cosB,整理后代入已知等式,利用同角三角函数间基本关系化简,求出sinB的值,即可确定出B的度数.【解答】解:∵cosB=,∴a2+c2﹣b2=2accosB,代入已知等式得:2ac•cosBtanB=ac,即sinB=,则B=或.故选:B.6.某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是()(注:结余=收入﹣支出)A.收入最高值与收入最低值的比是3:1B.结余最高的月份是7月C.1至2月份的收入的变化率与4至5月份的收入的变化率相同D.前6个月的平均收入为40万元【考点】函数的图象与图象变化.【分析】根据折现统计图即可判断各选项.【解答】解:由图可知,收入最高值为90万元,收入最低值为30万元,其比是3:1,故A正确,由图可知,结余最高为7月份,为80﹣20=60,故B正确,由图可知,1至2月份的收入的变化率为与4至5月份的收入的变化率相同,故C正确,由图可知,前6个月的平均收入为(40+60+30+30+50+60)=45万元,故D错误,故选:D.7.某三棱锥的三视图如图所示,则该三棱锥的体积是()A.B.C.1 D.【考点】由三视图求面积、体积.【分析】由三视图可知:该几何体为如图所示的三棱锥,CB⊥侧面PAB.利用体积计算公式即可得出.【解答】解:由三视图可知:该几何体为如图所示的三棱锥,CB⊥侧面PAB.该几何体的体积V=××1=.故选:A.8.若圆x2+(y﹣1)2=r2与曲线(x﹣1)y=1没有公共点,则半径r的取值范围是()A.0<r<B.0<r<C.0<r<D.0<r<【考点】圆与圆锥曲线的综合.【分析】求得圆的圆心和半径,设圆与曲线y=相切的切点为(m,n),代入曲线的方程,求出函数的导数和切线的斜率,由两点的斜率公式和两直线垂直的条件:斜率之积为﹣1,解方程可得切点,进而得到此时圆的半径,结合图象即可得到所求范围.【解答】解:圆的圆心为(0,1),半径为r,设圆与曲线y=相切的切点为(m,n),可得n=,①y=的导数为y′=﹣,可得切线的斜率为﹣,由两点的斜率公式可得•(﹣)=﹣1,即为n﹣1=m(m﹣1)2,②由①②可得n4﹣n3﹣n﹣1=0,化为(n2﹣n﹣1)(n2+1)=0,即有n2﹣n﹣1=0,解得n=或,则有或.可得此时圆的半径r==.结合图象即可得到圆与曲线没有公共点的时候,r的范围是(0,).故选:C.二、填空题共6小题,每小题5分,共30分.9.若复数是纯虚数,则实数a的值为1.【考点】复数代数形式的乘除运算.【分析】利用两个复数代数形式的乘除法法则求得z的值,再根据它是纯虚数,求得实数a的值.【解答】解:∵复数==为纯虚数,故有a﹣1=0,且a+1≠0,解得a=1,故答案为:1.【点评】本题主要考查复数的基本概念,两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题.=﹣2(n=1,2,3,…),那么a8等于﹣2.10.在数列{a n}中,a1=1,a n•a n+1【考点】数列递推式.【分析】由已知求得a2,且得到a n﹣1•a n=﹣2(n≥2),与原递推式两边作比可得(n≥2),即数列{a n}中的所有偶数项相等,由此求得a8的值.【解答】解:由a1=1,a n•a n+1=﹣2,得a2=﹣2,•a n=﹣2(n≥2),又a n﹣1∴(n≥2),∴数列{a n}中的所有偶数项相等,则a8=﹣2.故答案为:﹣2.【点评】本题考查数列递推式,考查等比关系的确定,是中档题.11.若抛物线y2=2px的焦点与双曲线﹣y2=1的右顶点重合,则p=4.【考点】抛物线的标准方程.【分析】确定双曲线﹣y2=1的右顶点坐标,从而可得抛物线y2=2px的焦点坐标,由此可得结论.【解答】解:双曲线﹣y2=1的右顶点坐标为(2,0),∵抛物线y2=2px的焦点与双曲线﹣y2=1的右顶点重合,∴=2,∴p=4.故答案为:4.【点评】本题考查双曲线、抛物线的几何性质,确定双曲线的右焦点坐标是关键.12.如果将函数f(x)=sin(3x+φ)(﹣π<φ<0)的图象向左平移个单位所得到的图象关于原点对称,那么φ=﹣.【考点】函数y=Asin(ωx+φ)的图象变换.【分析】利用y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,求得φ的值.【解答】解:将函数f(x)=sin(3x+φ)(﹣π<φ<0)的图象向左平移个单位,所得到y=sin[3(x+)+φ]=sin(3x++φ)的图象,若所得图象关于原点对称,则+φ=kπ,k∈Z,又﹣π<φ<0,∴φ=﹣,故答案为:.【点评】本题主要考查y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,属于基础题.13.将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,则不同的分法的总数是36.(用数字作答)【考点】排列、组合的实际应用.【分析】本题是一个分步计数问题,先选两个元素作为一个元素,问题变为三个元素在三个位置全排列,得到结果.【解答】解:由题意知本题是一个分步计数问题,4位同学分到三个不同的班级,每个班级至少有一位同学,先选两个人作为一个整体,问题变为三个元素在三个位置全排列,共有C42A33=36种结果,故答案为:36.【点评】本题考查分步计数原理,是一个基础题,也是一个易错题,因为如果先排三个人,再排最后一个人,则会出现重复现象,注意不重不漏.14.已知.①当a=1时,f(x)=3,则x=4;②当a≤﹣1时,若f(x)=3有三个不等实数根,且它们成等差数列,则a=.【考点】分段函数的应用.【分析】①当a=1时,f(x)=3,利用分段函数建立方程,即可求出x的值;②由f(x)=3,求得x=﹣1,或x=4,根据x1<x2<x3,且它们依次成等差数列,可得a≤﹣1,f(﹣6)=3,由此求得a的值.【解答】解:①x≥1,x﹣=3,可得x=4;x<1,2﹣(x+)=3,即x2+x+4=0无解,故x=4;②由于当x>a时,解方程f(x)=3,可得x﹣=3,求得x=﹣1,或x=4.∵x1<x2<x3,且它们依次成等差数列,∴x2=﹣1,x3=4,x1 =﹣6,∴a≤﹣1.∴x<a时,方程f(x)=3只能有一个实数根为﹣6,再根据f(﹣6)=2a+6+=3,求得a=,满足a≤﹣1.故答案为4,.【点评】本题主要考查分段函数,利用函数的单调性求函数的最值,等差数列的性质,体现了分类讨论以及转化的数学思想,属于中档题.三、解答题共6小题,共80分.解答应写出文字说明、演算步骤或证明过程.15.(12分)(2017•丰台区一模)已知a,b,c分别是△ABC的三个内角A,B,C的三条对边,且c2=a2+b2﹣ab.(Ⅰ)求角C的大小;(Ⅱ)求cosA+cosB的最大值.【考点】余弦定理;正弦定理.【分析】(Ⅰ)根据余弦定理直接求解角C的大小.(Ⅱ)根据三角形内角和定理消去B,转化为三角函数的问题求解最大值即可.【解答】解:(Ⅰ)c2=a2+b2﹣ab.即ab=a2+b2﹣c2由余弦定理:cosC==,∵0<C<π,∴C=.(Ⅱ)∵A+B+C=π,C=.∴B=,且A∈(0,).那么:cosA+cosB=cosA+cos()=sin(),∵A∈(0,).∴,故得当=时,cosA+cosB取得最大值为1.【点评】本题主要考查了余弦定理的运用和三角函数的有界限求解最值问题.属于基础题.16.(12分)(2017•丰台区一模)某超市从现有甲、乙两种酸奶的日销售量(单位:箱)的1200个数据(数据均在区间(0,50]内)中,按照5%的比例进行分层抽样,统计结果按(0,10],(10,20],(20,30],(30,40],(40,50]分组,整理如下图:(Ⅰ)写出频率分布直方图(图乙)中a的值;记所抽取样本中甲种酸奶与乙种酸奶日销售量的方差分别为,,试比较与的大小(只需写出结论);(Ⅱ)从甲种酸奶日销售量在区间(0,20]的数据样本中抽取3个,记在(0,10]内的数据个数为X,求X的分布列;(Ⅲ)估计1200个日销售量数据中,数据在区间(0,10]中的个数.【考点】离散型随机变量及其分布列;频率分布直方图.【分析】(Ⅰ)由频率和为1,列方程求出a的值,根据图甲的频率分布比图乙分散些,它的方差较大,得出;(Ⅱ)根据X的所有可能取值,计算对应的概率,写出分布列;(Ⅲ)由甲种和乙种酸奶的日销售量数据在区间(0,10]内的频率和频数,计算在1200个数据中应抽取的数据个数.【解答】解:(Ⅰ)由图(乙)知,10(a+0.02+0.03+0.025+0.015)=1,解得a=0.01,根据图甲的频率分布比图乙分散些,它的方差较大,∴;(Ⅱ)X的所有可能取值1,2,3;则,,,其分布列如下:X123P(Ⅲ)由图(甲)知,甲种酸奶的数据共抽取2+3+4+5+6=20个,其中有4个数据在区间(0,10]内,又因为分层抽样共抽取了1200×5%=60个数据,乙种酸奶的数据共抽取60﹣20=40个,由(Ⅰ)知,乙种酸奶的日销售量数据在区间(0,10]内的频率为0.1,故乙种酸奶的日销售量数据在区间(0,10]内有40×0.1=4个.故抽取的60个数据,共有4+4=8个数据在区间(0,10]内.所以,在1200个数据中,在区间(0,10]内的数据有160个.【点评】本题考查了频率分布直方图与离散型随机变量的分布列问题,是综合题.17.(14分)(2017•丰台区一模)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P﹣ABCD中,侧棱PD⊥底面ABCD,且PD=CD,E为PC中点,点F在PB上,且PB⊥平面DEF,连接BD,BE.(Ⅰ)证明:DE⊥平面PBC;(Ⅱ)试判断四面体DBEF是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(Ⅲ)已知AD=2,,求二面角F﹣AD﹣B的余弦值.【考点】二面角的平面角及求法;直线与平面垂直的判定.【分析】(Ⅰ)推导出BC⊥PD.BC⊥DC,从而BC⊥面PDC,进而DE⊥BC,再求出DE⊥PC,由此能证明DE⊥面PBC.(Ⅱ)四面体DBEF是鳖臑,,.(Ⅲ)以DA,DC,DP所在直线为x轴,y轴,z轴建立空间直角坐标系,利用向量法能求出二面角F﹣AD﹣B的余弦值.【解答】证明:(Ⅰ)因为PD⊥面ABCD,BC⊂面ABCD,所以BC⊥PD.因为四边形ABCD为矩形,所以BC⊥DC.PD∩DC=D,所以BC⊥面PDC.DE⊂面PDC,DE⊥BC,在△PDC中,PD=DC,E为PC中点,所以DE⊥PC.又PC∩BC=C,所以DE⊥面PBC.解:(Ⅱ)四面体DBEF是鳖臑,其中,.(Ⅲ)以DA,DC,DP所在直线为x轴,y轴,z轴建立空间直角坐标系.则D(0,0,0),A(2,0,0),,,.设,则.DF⊥PB得,解得.所以.设平面FDA的法向量,则,令z=1得x=0,y=﹣3.平面FDA的法向量,平面BDA的法向量,,.二面角F﹣AD﹣B的余弦值为.【点评】本题考查线面垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.18.(14分)(2017•丰台区一模)已知函数f(x)=1nx.(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求证:当x>0时,;(Ⅲ)若x﹣1>a1nx对任意x>1恒成立,求实数a的最大值.【考点】利用导数研究函数的单调性;利用导数研究曲线上某点切线方程;导数在最大值、最小值问题中的应用.【分析】(Ⅰ)求出导函数,求出斜率f'(1)=1,然后求解切线方程.(Ⅱ)化简=.求出,令,解得x=1.判断函数的单调性求出极小值,推出结果.(Ⅲ)设h(x)=x﹣1﹣a1nx(x≥1),依题意,对于任意x>1,h(x)>0恒成立.,a≤1时,a>1时,判断函数的单调性,求解最值推出结论即可.【解答】解:(Ⅰ),f'(1)=1,又f(1)=0,所以切线方程为y=x﹣1;(Ⅱ)证明:由题意知x>0,令=.令,解得x=1.易知当x>1时,g'(x)>0,易知当0<x<1时,g'(x)<0.即g(x)在(0,1)单调递减,在(1,+∞)单调递增,所以g(x)min=g(1)=0,g(x)≥g(1)=0即,即x>0时,;(Ⅲ)设h(x)=x﹣1﹣a1nx(x≥1),依题意,对于任意x>1,h(x)>0恒成立.,a≤1时,h'(x)>0,h(x)在[1,+∞)上单调递增,当x>1时,h(x)>h(1)=0,满足题意.a>1时,随x变化,h'(x),h(x)的变化情况如下表:x(1,a)a(a,+∞)h'(x)﹣0+h(x)↘极小值↗h(x)在(1,a)上单调递减,所以g(a)<g(1)=0即当a>1时,总存在g(a)<0,不合题意.综上所述,实数a的最大值为1.【点评】本题考查函数的导数的应用,切线方程,函数的极值以及函数的最值的求法,考查转化思想以及计算能力.19.(14分)(2017•丰台区一模)已知椭圆E: +=1(a>b>0)过点(0,1),且离心率为.(Ⅰ)求椭圆E的方程;(Ⅱ)设直线l:y=+m与椭圆E交于A、C两点,以AC为对角线作正方形ABCD,记直线l与x轴的交点为N,问B,N两点间距离是否为定值?如果是,求出定值;如果不是,请说明理由.【考点】直线与椭圆的位置关系.【分析】(Ⅰ)由题意可知b=1,e===,即可求得a的值,求得椭圆方程;(Ⅱ)将直线方程代入椭圆方程,利用韦达定理及弦长公式求得丨AC丨及丨MN丨,丨BN丨2=丨AC丨2+丨MN丨2=,即可求得B,N两点间距离是否为定值.【解答】解:(Ⅰ)由题意可知:椭圆的焦点在x轴上,过点(0,1),则b=1,由椭圆的离心率e===,则a=2,∴椭圆的标准方程为:;(Ⅱ)设A(x1,y1),B(x2,y2),线段中点M(x0,y0),则,整理得:x2+2mx+2m2﹣2=0,由△=(2m)2﹣4(2m2﹣2)=8﹣4m2>0,解得:﹣<m<,则x1+x2=﹣2m,x1x2=2m2﹣2,则M(﹣m,m),丨AC丨=•=•=由l与x轴的交点N(﹣2m,0),则丨MN丨==,∴丨BN丨2=丨BM丨2+丨MN丨2=丨AC丨2+丨MN丨2=,∴B,N两点间距离是否为定值.【点评】本题考查椭圆的标准方程,直线与椭圆的位置关系,考查韦达定理,弦长公式及中点坐标公式,考查计算能力,属于中档题.20.(14分)(2017•丰台区一模)已知集合R n={X|X=(x1,x2,…,x n),x i∈{0,1},i=1,2,…,n}(n≥2).对于A=(a1,a2,…,a n)∈R n,B=(b1,b2,…,b n)∈R n,定义A与B之间的距离为d(A,B)=|a1﹣b1|+|a2﹣b2|+…|a n﹣b n|=.(Ⅰ)写出R2中的所有元素,并求两元素间的距离的最大值;(Ⅱ)若集合M满足:M⊆R3,且任意两元素间的距离均为2,求集合M中元素个数的最大值并写出此时的集合M;(Ⅲ)设集合P⊆R n,P中有m(m≥2)个元素,记P中所有两元素间的距离的平均值为,证明.【考点】函数的最值及其几何意义;集合的包含关系判断及应用.【分析】(Ⅰ)根据集合的定义,写出R2中的所有元素,并求两元素间的距离的最大值;(Ⅱ)R3中含有8个元素,可将其看成正方体的8个顶点,已知集合M中的元素所对应的点,应该两两位于该正方体面对角线的两个端点,即可求集合M中元素个数的最大值并写出此时的集合M;(Ⅲ),其中表示P中所有两个元素间距离的总和,根据,即可证明结论.【解答】解:(Ⅰ)R2={(0,0),(0,1),(1,0),(1,1)},A,B∈R2,d(A,B)max=2.(Ⅱ)R3中含有8个元素,可将其看成正方体的8个顶点,已知集合M中的元素所对应的点,应该两两位于该正方体面对角线的两个端点,所以M={(0,0,0),(1,1,0),(1,0,1),(0,1,1)}或M={(0,0,1),(0,1,0),(1,0,0),(1,1,1)},集合M中元素个数最大值为4.(Ⅲ),其中表示P中所有两个元素间距离的总和.设P中所有元素的第i个位置的数字中共有t i个1,m﹣t i个0,则由于(i=1,2,…,n)所以从而【点评】本题考查新定义,考查函数的最值,考查集合知识,难度大.。
2017年北京市丰台区高考数学一模试卷(理科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.如果集合A={x∈Z|﹣2≤x<1},B={﹣1,0,1},那么A∩B=()A.{﹣2,﹣1,0,1} B.{﹣1,0,1} C.{0,1} D.{﹣1,0}2.已知a,b∈R,则“b≠0”是“复数a+bi是纯虚数”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件3.定积分=()A.10﹣ln3 B.8﹣ln3 C.D.4.设E,F分别是正方形ABCD的边AB,BC上的点,且,,如果(m,n为实数),那么m+n的值为()A.B.0 C.D.15.执行如图所示的程序框图,若输出的S的值为64,则判断框内可填入的条件是()A.k≤3?B.k<3?C.k≤4?D.k>4?6.某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.7.小明跟父母、爷爷奶奶一同参加《中国诗词大会》的现场录制,5人坐成一排.若小明的父母至少有一人与他相邻,则不同坐法的总数为()A.60 B.72 C.84 D.968.一次猜奖游戏中,1,2,3,4四扇门里摆放了a,b,c,d四件奖品(每扇门里仅放一件).甲同学说:1号门里是b,3号门里是c;乙同学说:2号门里是b,3号门里是d;丙同学说:4号门里是b,2号门里是c;丁同学说:4号门里是a,3号门里是c.如果他们每人都猜对了一半,那么4号门里是()A.a B.b C.c D.d二、填空题共6小题,每小题5分,共30分.9.抛物线y2=2x的准线方程是.10.已知{a n}为等差数列,S n为其前n项和.若a2=2,S9=9,则a8= .11.在△ABC中,若b2=ac,,则∠A= .12.若x,y满足,则的取值范围是.13.在平面直角坐标系xOy中,曲线C1:x+y=4,曲线(θ为参数),过原点O的直线l分别交C1,C2于A,B两点,则的最大值为.14.已知函数f(x)=e x﹣e﹣x,下列命题正确的有.(写出所有正确命题的编号)①f(x)是奇函数;②f(x)在R上是单调递增函数;③方程f(x)=x2+2x有且仅有1个实数根;④如果对任意x∈(0,+∞),都有f(x)>kx,那么k的最大值为2.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.已知函数f(x)=Asin(ωx)(ω>0)的图象如图所示.(Ⅰ)求f(x)的解析式;(Ⅱ)若,求g(x)在上的单调递减区间.16.如图1,平面五边形ABCDE中,AB∥CD,∠BAD=90°,AB=2,CD=1,△ADE是边长为2的正三角形.现将△ADE 沿AD折起,得到四棱锥E﹣ABCD(如图2),且DE⊥AB.(Ⅰ)求证:平面ADE⊥平面ABCD;(Ⅱ)求平面BCE和平面ADE所成锐二面角的大小;(Ⅲ)在棱AE上是否存在点F,使得DF∥平面BCE?若存在,求的值;若不存在,请说明理由.17.某公司购买了A,B,C三种不同品牌的电动智能送风口罩.为了解三种品牌口罩的电池性能,现采用分层抽样的方法,从三种品牌的口罩中抽出25台,测试它们一次完全充电后的连续待机时长,统计结果如下(单位:小时):(Ⅰ)已知该公司购买的C品牌电动智能送风口罩比B品牌多200台,求该公司购买的B品牌电动智能送风口罩的数量;(Ⅱ)从A品牌和B品牌抽出的电动智能送风口罩中,各随机选取一台,求A品牌待机时长高于B品牌的概率;(Ⅲ)再从A,B,C三种不同品牌的电动智能送风口罩中各随机抽取一台,它们的待机时长分别是a,b,c(单位:小时).这3个新数据与表格中的数据构成的新样本的平均数记为μ1,表格中数据的平均数记为μ0.若μ0≤μ1,写出a+b+c的最小值(结论不要求证明).18.已知函数.(Ⅰ)求f(x)的单调区间;(Ⅱ)对任意,都有xln(kx)﹣kx+1≤mx,求m的取值范围.19.已知椭圆C:的离心率为,右焦点为F,点B(0,1)在椭圆C上.(Ⅰ)求椭圆C的方程;(Ⅱ)过点的直线交椭圆C于M,N两点,交直线x=2于点P,设,,求证:λ+μ为定值.20.对于∀n∈N*,若数列{x n}满足x n+1﹣x n>1,则称这个数列为“K数列”.(Ⅰ)已知数列:1,m+1,m2是“K数列”,求实数m的取值范围;(Ⅱ)是否存在首项为﹣1的等差数列{a n}为“K数列”,且其前n项和S n满足?若存在,求出{a n}的通项公式;若不存在,请说明理由;(Ⅲ)已知各项均为正整数的等比数列{a n}是“K数列”,数列不是“K数列”,若,试判断数列{b n}是否为“K数列”,并说明理由.数学试题答案一、1.【考点】交集及其运算.【分析】先分别求出集合A和B,由此利用交集定义能求出A∩B.【解答】解:∵集合A={x∈Z|﹣2≤x<1}={﹣2,﹣1,0},B={﹣1,0,1},∴A∩B={﹣1,0}.故选:D.2.【考点】必要条件、充分条件与充要条件的判断.【分析】a,b∈R,复数a+bi是纯虚数⇔,即可判断出结论.【解答】解:a,b∈R,复数a+bi是纯虚数⇔,∴“b≠0”是“复数a+bii是纯虚数”的必要不充分条件.故选:B.3.【考点】定积分.【分析】求出原函数,即可求出定积分.【解答】解: ==8﹣ln3,故选B.4.【考点】平面向量的基本定理及其意义.【分析】如图所示, ==﹣.即可求得m,n即可.【解答】解:如图所示, ==﹣.∴m=﹣,n=,∴,故选:C5.【考点】程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的k,S的值,当k=4时,退出循环,输出S的值为64,故判断框图可填入的条件是k≤3.【解答】解:模拟执行程序框图,可得:S=1,k=0满足条件,S=1,k=1,满足条件,S=2,k=2,满足条件,S=8,k=3,满足条件,S=64,k=4,由题意,此时应不满足条件,退出循环,输出S的值为64.结合选项可得判断框内填入的条件可以是:k≤3.故选:A.6.【考点】棱柱、棱锥、棱台的体积.【分析】根据已知中的三视图,可得该几何体是一个以俯视图为底面的三棱柱切去一个三棱锥得到的组合体,可得答案.【解答】解:根据已知中的三视图,可得该几何体是一个以俯视图为底面的三棱柱切去一个三棱锥得到的组合体,其底面面积S=×1×1=,柱体的高为:2,锥体的高为1,故组合体的体积V=×2﹣××1=,故选:A.7.【考点】排列、组合的实际应用.【分析】根据题意,分3种情况讨论:①、小明的父母的只有1人与小明相邻且父母不相邻,②、小明的父母的只有1人与小明相邻且父母相邻,③、小明的父母都与小明相邻,分别求出每一种情况下的排法数目,由分类计数原理计算可得答案.【解答】解:根据题意,分3种情况讨论:①、若小明的父母的只有1人与小明相邻且父母不相邻时,先在其父母中选一人与小明相邻,有C21=2种情况,将小明与选出的家长看成一个整体,考虑其顺序有A22=2种情况,当父母不相邻时,需要将爷爷奶奶进行全排列,将整体与另一个家长安排在空位中,有A22×A32=12种安排方法,此时有2×2×12=48种不同坐法;②、若小明的父母的只有1人与小明相邻且父母相邻时,将父母及小明看成一个整体,小明在一端,有2种情况,考虑父母之间的顺序,有2种情况,则这个整体内部有2×2=4种情况,将这个整体与爷爷奶奶进行全排列,有A33=6种情况,此时有2×2×6=24种不同坐法;③、小明的父母都与小明相邻,即小明在中间,父母在两边,将3人看成一个整体,考虑父母的顺序,有A22=2种情况,将这个整体与爷爷奶奶进行全排列,有A33=6种情况,此时,共有2×6=12种不同坐法;则一共有48+24+12=84种不同坐法;故选:C.8.【考点】进行简单的合情推理.【分析】根据题意,条件“四人都只说对了一半”,若甲同学猜对了1﹣b,依次判断3﹣d,2﹣c,4﹣a,再假设若甲同学猜对了3﹣c得出矛盾.【解答】解:根据题意:若甲同学猜对了1﹣b,则乙同学猜对了,3﹣d,丙同学猜对了,2﹣c,丁同学猜对了,4﹣a,根据题意:若甲同学猜对了3﹣c,则丁同学猜对了,4﹣a,丙同学猜对了,2﹣c,这与3﹣c相矛盾,综上所述号门里是a,故选:A.二、9.【考点】抛物线的简单性质.【分析】先根据抛物线方程求得p,进而根据抛物线的性质,求得答案.【解答】解:抛物线y2=2x,∴p=1,∴准线方程是x=﹣故答案为:﹣10.【考点】等差数列的前n项和.【分析】利用等差数列的通项公式和前n项和公式列出方程组,求出首项和公差,由此能求出a8.【解答】解:{a n}为等差数列,S n为其前n项和.a2=2,S9=9,∴,解得∴a8=a1+7d=16.故答案为:16.11.【考点】余弦定理.【分析】根据余弦定理求解出a,c的关系,即可判断角A的大小.【解答】解:由b2=ac,,根据余弦定理cosB=,可得a2+c2=2ac,即(a﹣c)2=0,∴a=c,由b2=ac,可得a=b=c.△ABC是等边三角形.∴A=故答案为:.12.【考点】简单线性规划.【分析】先画出约束条件的可行域,然后分析的几何意义,结合图象,用数形结合的思想,即可求解.【解答】解:满足约束条件的可行域,如下图所示:又∵表示的是可行域内一点与原点连线的斜率当x=,y=时,有最小值;当x=1,y=6时,有最大值6故答案为:[,6]13.【考点】参数方程化成普通方程.【分析】求出曲线(θ为参数)的普通方程,设直线方程为kx﹣y=0,求出|OA|,|OB|,即可求出的最大值.【解答】解:曲线(θ为参数),普通方程为(x﹣1)2+y2=1.设直线方程为kx﹣y=0,圆心到直线的距离d=,∴|OB|=2=,kx﹣y=0与x+y=4联立,可得A(,),∴|OA|=,∴=,设k+1=t(t>0),则=≤=.∴的最大值为.故答案为.14.【考点】函数恒成立问题;命题的真假判断与应用.【分析】根据题意,依次分析4个命题,对于①、由奇函数的定义分析可得①正确;对于②、对函数f(x)=e x﹣e ﹣x求导,分析可得f′(x)>0,分析可得②正确;对于③、g(x)=e x﹣e﹣x﹣x2﹣2x,分析可得g(0)=0,即方程f(x)=x2+2x有一根x=0,进而利用二分法分析可得g(x)有一根在(3,4)之间,即方程f(x)=x2+2x至少有2跟,故③错误,对于④、由函数的恒成立问题的分析方法,分析可得④正确,综合可得答案.【解答】解:根据题意,依次分析4个命题:对于①、f(x)=e x﹣e﹣x,定义域是R,且f(﹣x)=e﹣x﹣e x=﹣f(x),f(x)是奇函数;故①正确;对于②、若f(x)=e x﹣e﹣x,则f′(x)=e x+e﹣x>0,故f(x)在R递增;故②正确;对于③、f(x)=x2+2x,令g(x)=e x﹣e﹣x﹣x2﹣2x,令x=0可得,g(0)=0,即方程f(x)=x2+2x有一根x=0,g(3)=e3﹣﹣13<0,g(4)=e4﹣﹣20>0,则方程f(x)=x2+2x有一根在(3,4)之间,故③错误;对于④、如果对任意x∈(0,+∞),都有f(x)>kx,即e x﹣e﹣x﹣kx>0恒成立,令h(x)=e x﹣e﹣x﹣kx,且h(0)=0,若h(x)>0恒成立,则必有h′(x)=e x+e﹣x﹣k>0恒成立,若e x+e﹣x﹣k>0,即k<e x+e﹣x=e x+恒成立,而e x+≥2,若有k<2,故④正确;综合可得:①②④正确;故答案为:①②④.三、15.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;正弦函数的图象.【分析】(Ⅰ)由图象求得A及周期,再由周期公式求得ω,则f(x)的解析式可求;(Ⅱ)把f(x)代入,整理后由复合函数的单调性求得g(x)在上的单调递减区间.【解答】解:(Ⅰ)由图象可知A=2,设函数f(x)的周期为T,则,求得T=π,从而ω=2,∴f(x)=2sin2x;(Ⅱ)===,∴,即,k∈Z.令k=0,得,∴g(x)在上的单调递减区间为.16.【考点】二面角的平面角及求法;平面与平面垂直的判定.【分析】(Ⅰ)推导出AB⊥AD,AB⊥DE,从而AB⊥平面ADE,由此能平面ADE⊥平面ABCD.(Ⅱ)设AD的中点为O,连接EO,推导出EO⊥AD,从而EO⊥平面ABCD.以O为原点,OA所在的直线为x轴,在平面ABCD内过O 垂直于AD的直线为y轴,OE所在的直线为z轴,建立空间直角坐标系O﹣xyz,利用向量法能求出平面BCE和平面ADE所成的锐二面角大小.(Ⅲ)设BE的中点为G,连接CG,FG,推导出四边形CDFG是平行四边形,从而DF∥CG.由此能求出在棱AE上存在点F,使得DF∥平面BCE,此时.【解答】(本小题共14分)证明:(Ⅰ)由已知得AB⊥AD,AB⊥DE.因为AD∩DE=D,所以AB⊥平面ADE.又AB⊂平面ABCD,所以平面ADE⊥平面ABCD..…解:(Ⅱ)设AD的中点为O,连接EO.因为△ADE是正三角形,所以EA=ED,所以EO⊥AD.因为平面ADE⊥平面ABCD,平面ADE∩平面ABCD=AD,EO⊂平面ADE,所以EO⊥平面ABCD.以O为原点,OA所在的直线为x轴,在平面ABCD内过O 垂直于AD的直线为y轴,OE所在的直线为z轴,建立空间直角坐标系O﹣xyz,如图所示.由已知,得E(0,0,),B(1,2,0),C(﹣1,1,0).所以=(1,﹣1,),=(2,1,0).设平面BCE的法向量=(x,y,z).则,令x=1,则=(1,﹣2,﹣).又平面ADE的一个法向量=(0,1,0),所以cos<>==﹣.所以平面BCE和平面ADE所成的锐二面角大小为.…(Ⅲ)在棱AE上存在点F,使得DF∥平面BCE,此时.理由如下:设BE的中点为G,连接CG,FG,则FG∥AB,FG=.因为AB∥CD,且,所以FG∥CD,且FG=CD,所以四边形CDFG是平行四边形,所以DF∥CG.因为CG⊂平面BCE,且DF⊄平面BCE,所以DF∥平面BCE..…17.【考点】函数模型的选择与应用.【分析】(I)利用该公司购买的C品牌电动智能送风口罩比B品牌多200台,建立方程,即可求该公司购买的B品牌电动智能送风口罩的数量;(Ⅱ)根据古典概型概率计算公式,可求出A品牌待机时长高于B品牌的概率;(Ⅲ)根据平均数的定义,写出a+b+c的最小值.【解答】解:(Ⅰ)设该公司购买的B品牌电动智能送风口罩的数量为x台,则购买的C品牌电动智能送风口罩为台,由题意得,所以x=800.答:该公司购买的B品牌电动智能送风口罩的数量为800台..…(Ⅱ)设A品牌待机时长高于B品牌的概率为P,则.答:在A品牌和B品牌抽出的电动智能送风口罩中各任取一台,A品牌待机时长高于B品牌的概率为..…(Ⅲ)18.…18.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间;(Ⅱ)问题转化为m≥f(x)max,通过讨论k的范围,求出f(x)的最大值,从而求出m的范围即可.【解答】解:由已知得,f(x)的定义域为(0,+∞).(Ⅰ),.令f'(x)>0,得x>1,令f'(x)<0,得0<x<1.所以函数f(x)的单调减区间是(0,1),单调增区间是(1,+∞),(Ⅱ)由xln(kx)﹣kx+1≤mx,得,即m≥f(x)max.由(Ⅰ)知,(1)当k≥2时,f(x)在上单调递减,所以,所以m≥0;.(2)当0<k≤1时,f(x)在上单调递增,所以,所以;(3)当1<k<2时,f(x)在上单调递减,在上单调递增,所以.又,,①若,即,所以1<k<2ln2,此时,所以.②若,即,所以2ln2≤k<2,此时f(x)max=0,所以m≥0综上所述,当k≥2ln2时,m≥0;当0<k<2ln2时,.19.【考点】直线与椭圆的位置关系.【分析】(Ⅰ)由题意b=1,利用椭圆的离心率即可求得a的值,求得椭圆方程;(Ⅱ)设直线MN的方程为y=k(x﹣1),代入椭圆方程,利用韦达定理及向量的坐标运算,即可证明λ+μ=0为定值.【解答】解:(Ⅰ)由点B(0,1)在椭圆C:上,则,即b=1.又椭圆C的离心率为,则,由a2=b2+c2,得.∴椭圆C的方程为…(Ⅱ)证明:由已知得F(1,0),直线MN的斜率存在.设直线MN的方程为y=k(x﹣1),M(x1,y1),N(x2,y2),则P(2,k).由,,得,∴,.联立得(1+2k2)x2﹣4k2x+2k2﹣2=0.∴,.∴==0,∴λ+μ=0为定值…20.【考点】数列的应用.【分析】(Ⅰ)由题意得(m+1)﹣1>1,m2﹣(m+1)>1,联立解出即可得出.(Ⅱ)假设存在等差数列{a n}符合要求,设公差为d,则d>1,由题意,得对n∈N*均成立,化为(n﹣1)d<n.对n分类讨论解出即可得出.(Ⅲ)设数列{a n}的公比为q,则,由题意可得:{a n}的每一项均为正整数,且a n+1﹣a n=a n q﹣a n=a n(q ﹣1)>1>0,可得a1>0,且q>1.由a n+1﹣a n=q(a n﹣a n﹣1)>a n﹣a n﹣1,可得在{a n﹣a n﹣1}中,“a2﹣a1”为最小项.同理,在中,“”为最小项.再利用“K数列”,可得a1=1,q=3或a1=2,q=2.进而得出.【解答】解:(Ⅰ)由题意得(m+1)﹣1>1,①m2﹣(m+1)>1,②解①得 m>1;解②得 m<﹣1或m>2.所以m>2,故实数m的取值范围是m>2.(Ⅱ)假设存在等差数列{a n}符合要求,设公差为d,则d>1,由 a1=﹣1,得,.由题意,得对n∈N*均成立,即(n﹣1)d<n.①当n=1时,d∈R;②当n>1时,,因为,所以d≤1,与d>1矛盾,故这样的等差数列{a n}不存在.(Ⅲ)设数列{a n }的公比为q ,则,因为{a n }的每一项均为正整数,且a n+1﹣a n =a n q ﹣a n =a n (q ﹣1)>1>0,所以a 1>0,且q >1.因为a n+1﹣a n =q (a n ﹣a n ﹣1)>a n ﹣a n ﹣1,所以在{a n ﹣a n ﹣1}中,“a 2﹣a 1”为最小项.同理,在中,“”为最小项.由{a n }为“K 数列”,只需a 2﹣a 1>1,即 a 1(q ﹣1)>1,又因为不是“K 数列”,且“”为最小项,所以,即 a 1(q ﹣1)≤2, 由数列{a n }的每一项均为正整数,可得 a 1(q ﹣1)=2,所以a 1=1,q=3或a 1=2,q=2.①当a 1=1,q=3时,,则,令,则,又=,所以{c n }为递增数列,即 c n >c n ﹣1>c n ﹣2>…>c 1,所以b n+1﹣b n >b n ﹣b n ﹣1>b n ﹣1﹣b n ﹣2>…>b 2﹣b 1.因为,所以对任意的n ∈N *,都有b n+1﹣b n >1,即数列{c n }为“K 数列”.②当a 1=2,q=2时,,则.因为,所以数列{b n }不是“K 数列”.综上:当时,数列{b n }为“K 数列”,当时,数列{b n }不是“K 数列”.。