分析单核苷酸多态性,控制大米的蒸煮品质使用无胶基法
- 格式:pdf
- 大小:126.36 KB
- 文档页数:8
PNAS利用主成分分析和GWAS鉴定到控制水稻株型的关键基因水稻株型是受株高、分蘖数以及穗形态影响的复杂性状,是影响水稻产量的重要农艺性状。
因此,对水稻株型遗传调控机制的研究至关重要。
在过去,水稻育种者已培育出具有多种水稻株型的品种,但整体上可以分为两大类,一是穗数类(即,穗数多、穗子小并且植株矮小),二是穗重类(即,穗数少、穗子大并且植株高)【1】。
由于构成株型的各要素之间具有复杂的相关性,以及穗重和穗数之间存在平衡关系,很难在育种中实现数量和大小同时增加。
近些年来,随着生物信息学的发展,主成分分析(principal component analysis, PCA)已成为可以从复杂的表型性状中提取关键信息的有效手段。
PCA通过降维分析,可以简化原始数据并捕获最重要的信息【2】。
全基因组关联分析(genome-wide association study, GWAS)则可以通过结合单核苷酸多态性(single nucleotide polymorphism, SNP)与表型性状信息,快速找出决定某一性状的关键的SNP和基因。
近日,日本名古屋大学 Makoto Matsuoka课题组在PNAS在线发表了一篇题为GWAS with principal component analysis identifies a gene comprehensively controlling rice architecture 的研究论文,基于PCA性状分析并将主成分作为因变量进行全基因组关联分析,鉴定了一个控制水稻株型的基因。
该研究首先对169个粳稻品种中与株型有关的8个性状(开花期、茎长、穗数、穗长、叶轴长、每穗一次枝梗、二次枝梗数和每穗颖花数)并进行了PCA分析,发现在第一主成分PC1得分较高的性状为长茎、大穗以及穗数少;而PC2轴方向主要与开花期和穗数有关。
该研究对PCs和8个性状进行了进一步的GWAS分析,发现PC1的GWAS 鉴定了NAL1和OsGATA28(植物株型有关)而PC2鉴定出了Hd1(与开花时间有关),这同时也表明PC1和PC2分别对植物株型和开花期的提示作用。
米饭蒸煮品质以及质构的QTL定位研究的开题报告
1. 研究背景和意义
米饭是中国传统的主食之一,也是世界范围内广受欢迎的食品。
米饭的品质和口感直接影响消费者对于米饭的认知和满意度,因此对于米饭质量的研究具有重要意义。
近年来,随着生物技术和分子生物学的发展,人们可以利用分子标记等技术对米饭的
品质和质构进行定位研究,进行深入探究。
2. 研究内容和方法
本研究旨在利用基因组信息、表型信息、分子标记技术等手段,对米饭蒸煮品质以及质构的QTL进行定位研究。
具体包括:
(1)测定米饭蒸煮品质和质构相关指标,获取表型信息;
(2)采集具有差异性的米饭品种,进行基因组DNA提取;
(3)利用PCR(聚合酶链式反应)等技术获取分子标记信息;
(4)建立QTL分析模型,对结果进行解释和验证。
3. 研究意义和创新性
本研究将利用分子生物学和分子遗传学的技术,结合传统的农业生产方式,建立米饭蒸煮品质以及质构的QTL定位模型,为提高米饭品质和营养价值,推动农业技术创新,提高农产品竞争力,打好乡村振兴战略落实的基础。
4. 研究预期成果
本研究的预期成果是:明确米饭蒸煮品质和质构的QTL位点,阐明其遗传机制,为进一步开展米饭品种改良、促进农业产业的发展提供科学依据和可行方法。
总之,本研究有助于推动农业技术进步、提高米饭品质和营养价值、促进农业经济发展与乡村振兴。
稻米品质遗传及分子标记辅助育种沈新忠【摘要】系统论述稻米碾磨品质、外观品质、蒸煮品质的遗传规律及特点,介绍分子标记辅助选择的原理、优越性及其在育种方面的应用开发现状,为改良我国稻米品质提供有益参考.【期刊名称】《农业科技与装备》【年(卷),期】2013(000)004【总页数】3页(P7-9)【关键词】水稻;品质遗传;分子标记;辅助育种【作者】沈新忠【作者单位】辽宁省扶贫检测中心,沈阳110001【正文语种】中文【中图分类】S813.3水稻是我国最主要的粮食作物,其产量为粮食总产量的25%。
尽管我国水稻单产水平高,但稻米品质却不容乐观。
农业部稻米品质检测中心对福建省通过审定的35个杂交稻组合进行品质分析后发现,没有一个组合能达到国家一级米标准的全部6项指标。
而对江西省选育及引种的184个水稻品种及组合的分析发现,能够达到国标三级以上的品种只有8个,仅占总数的4.35%。
为加强我国稻米在国际市场的影响力和竞争力,尽快改良稻米品质刻不容缓。
1 稻米品质的遗传规律1.1 碾磨品质很多学者对碾磨品质遗传进行研究,得出的结论也各有倾向。
陈建国等研究发现,种子的加性效应和母体加性效应控制糙米率和精米率,且以母体加性效应为主。
而石春海等则认为,稻米碾磨特性主要受由细胞质基因、母体植株基因和种子基因等多种遗传主效应调控。
张名位等则认为,核基因决定糙米率的遗传,不受其他效应的控制,符合加性一显性效应模型。
谭震波等通过研究发现,基因的加性效应控制杂交稻整精米率。
李欣等认为,杂种Fl的精米率和糙米率与父本及中亲值都呈显著正相关。
总而言之,稻米碾磨特性受很多因素影响,包括环境效应、遗传效应及遗传与环境互作的共同效应。
1.2 外观品质很多研究证实:粒长为数量性状,受微效多基因控制,其中显性效应很普遍,但可能存在某些互作效应,其狭义遗传率可超过90%。
有研究认为,粒长的显隐性关系可能为:长粒对中粒为显性,中粒对短粒为显性,短粒对极短粒也为显性。
2021届山东省实验中学高三生物上学期期中考试试卷及答案解析一、选择题:本题共15小题,每小题2分,共30分。
每小题只有一个选项符合题目要求。
1. 下图是水稻的两种不同的育种方法流程图。
向水稻转入4个特定基因后获得的转基因水稻“黄金大米”能合成β-胡萝卜素。
相关叙述正确的是A.图示两种育种方法都运用了基因重组的原理,具体体现在①①①过程中B.若要获得低产不抗病的植株作研究材料,采用左侧的方法更简便易操作C.用图示方法无法获得“黄金大米”,但是可用诱变育种的方法来尝试获得D.图中的①过程一般无需处理所有的幼苗,且①、①过程可以调换次序做2. 鸟类的性染色体是Z和W,哺乳类的性染色体是X和Y,下列相关叙述错误的是()A.若某种鸟有2n条染色体,进行基因测序时需要测n+1条染色体上的DNAB.鸟类和哺乳类的后代雌雄比例接近1①1C.人类Y染色体上的基因都与性别决定有关D.人类红绿色盲具有隔代遗传现象3. 景观式人工生态湿地兼有观赏与污水处理的功能,解决了城镇化发展带来的水污染问题。
如图表示某人工湿地部分成分之间的关系,下列说法正确的是()A. 流经该湿地的总能量等于生产者固定的太阳能B. 人工湿地中增种芦苇会呈“J”型增长并成为优势种C. 该生态湿地通过负反馈调节实现了物质的循环流动和水质净化D. 合理配置植物种类可增强景观的直接价值,提高湿地的恢复力稳定性4. 下列关于细胞的结构和生命活动的叙述,错误的是()A. 溶菌酶能破坏酵母菌和乳酸菌的细胞壁B. 细胞的核膜、内质网膜和细胞膜中都含有磷元素C. 两个相邻细胞的细胞膜接触可实现细胞间的信息传递D. 高尔基体主要进行蛋白质的分拣和转运5. 下列有关实验的叙述正确的是()A.当渗透装置中长颈漏斗内液面不再升高时,漏斗内溶液浓度等于烧杯内溶液浓度B.观察质壁分离及复原现象实验操作流程:取材→滴加质量分数为0.3g/mL的蔗糖溶液→制片→观察一清水换液→观察C.探究温度对淀粉酶活性的影响,不可用斐林试剂对产物进行检测D.分离叶绿体中色素的实验中,色素带的宽度反映了色素在层析液中溶解度的大小6. 端粒是真核细胞染色体末端的一段DNA-蛋白质复合体,在新细胞中,细胞每分裂一次,端粒就缩短一小段,缩短到一定程度,细胞停止分裂。
单元质检卷十现代生物科技专题(时间:90分钟满分:120分)非选择题(共120分)1.(15分)(河南平顶山二模)黄金大米是一种新型转基因大米,其β-胡萝卜素含量是普通大米的23倍,因大米在抛光后呈黄色而得名。
八氢番茄红素合酶(其基因用psy表示)和胡萝卜素脱饱和酶(其基因用crtI表示)参与β-胡萝卜素的合成。
pmi为磷酸甘露醇异构酶基因,它编码的蛋白质可使细胞在特殊培养基上生长。
科学家将psy和crtI基因转入水稻,使水稻胚乳中含有β-胡萝卜素,由此生产出的大米称为“黄金大米”。
(1)科学家在培育“黄金大米”时,将psy和crtI基因导入含pmi基因的质粒中,构建了质粒pSYN12424。
基因表达载体都含有标记基因,其作用是。
该项研究的标记基因是。
(2)在PCR技术中,引物的作用是,若用PCR技术扩增psy或crtI基因,需要分别在不同的PCR扩增仪中加入种引物。
psy基因和crtI基因进入水稻细胞并在细胞内维持稳定和表达的过程称为。
(3)在构建质粒载体时,目的基因的内部(不包括两端)能否含有用到的限制酶识别序列? ,原因是。
(4)我国对农业转基因生物实施标识制度,比如由转基因大米加工制成的麦芽糖,标注为“本产品加工原料中含有转基因大米,但本产品已不再含有转基因成分”,其相关的生物学依据是。
2.(15分)(安徽淮南模拟)抗凝血酶Ⅲ是一种血浆糖蛋白,临床上主要用于血液性疾病的治疗。
如图表示培育转基因奶牛获得抗凝血酶Ⅲ的流程。
回答下列问题。
(1)在基因工程操作步骤中,过程①称为,该过程中通常需要用到的酶有。
在重组质粒中除了抗凝血酶Ⅲ基因外,还需要有和复制原点。
(2)若在体外获取大量抗凝血酶Ⅲ基因通常采用PCR技术,该技术的原理是。
PCR反应体系中除含缓冲液、模板DNA、四种脱氧核苷酸外,还应含有。
(3)图中早期胚胎所处的时期是。
在不影响胚胎发育的基础上,对图中早期胚胎的性别进行鉴定,可以进行的操作是。
利用ARMS-Tm-shift-qPCR技术检测水稻低直链淀粉含量基因Wx-mq陈峰;徐建第;姜明松;张全芳;朱文银;李广贤;周学标;杨连群【摘要】Wx-mq基因是水稻低直链淀粉性状控制基因,与米饭食味品质密切相关.本研究根据水稻控制低直链淀粉含量Wx-mq基因第497位存在的G>A单核苷酸变异,将基于SYBR Green Ⅰ的ARMS和Tmshift的两种实时PCR基因分型方法相结合,建立了可准确区分Wx-mq基因第497位的GG纯合、从纯合及GA杂合三种类型的实时荧光定量PCR体系.试验表明这种基于SYBR Green Ⅰ的ARMS-Tm-shift实时PCR基因分型方法无需合成探针,试验设计简单,是一种快速、简便、特异性好的基因分型方法,可用于Wx-mq基因分子标记辅助育种中基因的高通量分型.%Wx-mq gene is a low amylose trait controlled gene and closely relates with the eating quality of rice.According to the rice low amylose starch content control gene Wx-mq No.497 position existing G >A single nucleotide variants,two real-time PCR genotyping methods,ARMS and Tm-shift based on SYBR Green Ⅰ,was combined to establish the fluorescence real-time quantitative PCR system,which could accurately distinguish the GG homozygote,AA homozygote and GA heterozygosis of Wx-mq gene No.497 position.The experiment results showed that the ARMS-Tm-shift real-time PCR genotyping method based on SYBR GreenⅠ did not need probe synthesis with simple designs.It was a rapid,simple and specific genotyping method.It could be used in high-throughput genotyping of Wx-mq gene in molecular marker assisted breeding.【期刊名称】《山东农业科学》【年(卷),期】2017(049)010【总页数】5页(P15-19)【关键词】水稻;Wx-mq基因;低直链淀粉含量;ARMS-Tm-shift-qPCR【作者】陈峰;徐建第;姜明松;张全芳;朱文银;李广贤;周学标;杨连群【作者单位】山东省水稻研究所,山东济南250100;山东省水稻研究所,山东济南250100;山东省水稻研究所,山东济南250100;山东省农业科学院生物技术研究中心,山东济南250100;山东省水稻研究所,山东济南250100;山东省水稻研究所,山东济南250100;山东省水稻研究所,山东济南250100;山东省水稻研究所,山东济南250100;山东省农业科学院生物技术研究中心,山东济南250100【正文语种】中文【中图分类】S511.01近年来, 随着人民生活水平的提高, 消费者对稻米食味品质的要求越来越高。
水稻抗稻瘟病基因Pi25、Pi56(t)、Pit和Pita的分子鉴定作者:梅文强刘佩钎洪博文穆换青秋丙子沙爱华郭嗣斌来源:《湖北农业科学》2016年第24期摘要:根据抗病基因在抗病材料和感病材料中的SNP位点设计引物,通过PCR扩增或CAPS标记,对16份水稻材料中的4个抗病基因Pi25、Pi56(t)、Pit和Pita进行了鉴定。
结果表明,9份水稻材料中携带Pi25,6份材料中携带Pita,1份材料中携带Pit(杂合型),无材料携带Pi56(t)。
关键词:稻瘟病;抗病基因;分子鉴定中图分类号:S338 文献标识码:A 文章编号:0439-8114(2016)24-6604-04DOI:10.14088/ki.issn0439-8114.2016.24.070稻瘟病菌(Magnaporthe oryzae)引起的稻瘟病是一种世界性的稻作病害,在世界各个水稻生产国每年都有不同程度的发生[1],每年因稻瘟病导致的生产损失约占总产量的10%~15%[2]。
稻瘟菌小种具有高度的变异性,随着抗性基因的持续利用,病原菌群体遗传结构会不断发生变化,出现新的生理小种,从而导致小种专化抗性丧失,多数抗性品种在种植几年后会逐渐丧失抗病性[3]。
因此,鉴定和发掘新的抗病基因是有效解决稻瘟病的新途径。
随着水稻品种稻瘟病抗性基因的不断鉴定,截至2014年,在不同的稻种资源中鉴定的稻瘟病主效抗病基因超过86个,微效基因(Quantitative trait loci,QTL)约350个[4,5],分布于水稻的12条染色体。
这些已鉴定的稻瘟病抗性基因绝大部分都是显性的,其中45%来源于粳稻,51%来源于籼稻,剩下4%来源于野生稻[6,7]。
虽然通过发掘和鉴定抗病基因能够使水稻品种对稻瘟病的抗性不断增强,但由于稻瘟菌生理小种的高度变异性,所以有必要鉴定更多的稻瘟病抗性基因,并将这些抗病基因进行聚合。
现代分子生物学和分子标记技术的发展,使得研究者可以采用方便快捷的方法鉴定植物材料中是否存在抗病基因,如单核苷酸多态性(Single nucleotide polymorphisms,SNP)和酶切扩增多态性序列(Cleaved amplified polymorphic sequence,CAPS)。
水稻单核苷酸多态性及其应用刘传光;张桂权【期刊名称】《遗传》【年(卷),期】2006(28)6【摘要】单核苷酸多态性(single nucleotide polymorphisms, SNPs)在水稻中数量多,分布密度高,最高SNPs数量可达80 127个,每154个碱基就存在一个SNP,平均SNP频率为0.65%左右.SNPs水稻亚种内品种间也很丰富,亲缘关系近的品种(或品系)间,即使用其他传统的分子标记方法难以找到多态性位点,用SNPs标记法也能找到数量可观的多态性位点.水稻SNP频率在各染色体间存在显著差异,而且在每条染色体上的分布也不均匀,存在明显的SNPs富集区域和稀缺区域.水稻SNPs 的发现方法主要有对样本DNA的PCR产物直接测序、从SSR区段检测SNPs,以及从基因组序列和EST数据库直接搜索等.目前已有多种基因分型(genotyping) 技术运用到了水稻SNPs检测,SNPs检测的高度自动化使水稻SNPs基因分型非常方便,SNPs检测还可以转化为CAPS(或dCAPS)标记或等位基因特异的PCR标记进行SNPs的基因分型.单核苷酸多态性在水稻遗传图谱的构建、基因克隆和功能基因组学研究、标记辅助选择育种、遗传资源分类及物种进化等方面的应用具有巨大潜力.【总页数】8页(P737-744)【作者】刘传光;张桂权【作者单位】广东省农业科学院水稻所,广州,510640;华南农业大学农学院,广州,510642【正文语种】中文【中图分类】Q94【相关文献】1.利用等位基因特异性PCR检测水稻可溶性淀粉合酶基因的单核苷酸多态性 [J], 彭小松;朱昌兰;林华;欧阳林娟;贺晓鹏;陈小荣;傅军如;贺浩华2.焦磷酸测序技术及其在水稻单核苷酸多态性研究中的应用 [J], 袁群英;金庆生3.利用EcoTILLING简化技术进行水稻基因型鉴定及单核苷酸多态性(SNP)检测[J], 滕斌;李泽福;罗志祥;吴敬德;朱学桂;宣红;张瑛4.单核苷酸多态性及其在水稻中的应用(综述) [J], 谢媛;田云;卢向阳5.单核苷酸多态性在水稻遗传育种中的应用 [J], 吴秀兰;孔详礼;唐文武;包劲松因版权原因,仅展示原文概要,查看原文内容请购买。
专利名称:一种利用CRISPR/Cas9技术降低稻米蛋白质含量提升蒸煮食味品质的方法
专利类型:发明专利
发明人:严长杰,杨宜豪,沈子颜,郭旻,孙生远
申请号:CN202111430116.5
申请日:20211129
公开号:CN114107375A
公开日:
20220301
专利内容由知识产权出版社提供
摘要:本发明公开了一种利用CRISPR/Cas9技术降低稻米蛋白质含量提升蒸煮食味品质的方法,将水稻谷蛋白合成基因经过基因编辑技术进行突变,以降低水稻谷蛋白合成基因表达量或者阻断其蛋白的产生。
本发明的实验证明,稻米谷蛋白含量的下降随着谷蛋白合成基因敲除数目的增多而越明显,稻米总蛋白也发生不同程度的降低;虽然醇溶蛋白和球蛋白有一定的补偿作用,但谷蛋白含量的下降可以快速使自身总蛋白质含量偏高的稻米品种下降到市场上优质稻米的需求,通常7%左右;稻米蛋白质含量的下降降低了米饭的硬度提升了蒸煮食味品质,且对种子的加工和外观品质无任何负面影响。
申请人:扬州大学
地址:225009 江苏省扬州市大学南路88号
国籍:CN
代理机构:南京禹为知识产权代理事务所(特殊普通合伙)
更多信息请下载全文后查看。
分子标记辅助选择改良珍汕97B和97A的稻米外观品质的
开题报告
一、选题背景和意义
稻米作为我国主要的粮食作物,其生产和品质一直备受关注。
稻米外观品质是衡量稻米品质的一个重要指标。
经过多年的研究,已经发现了许多与稻米外观品质相关的基因。
其中,珍汕97B和珍汕97A是我国常见的优质稻品种,其稻米外观品质都非常好。
然而,在实际生产中,这两个品种的稻米外观品质存在一定的差异。
因此,本研究旨在通过分子标记辅助选择的方法,改良珍汕97B和珍汕97A的稻米外观品质。
二、研究内容和方法
1. 分析珍汕97B和珍汕97A的稻米外观品质,并筛选出差异显著的性状。
2. 通过参考数据库和文献综述,筛选出与稻米外观品质相关的基因。
3. 根据筛选出的相关基因,设计引物,进行PCR扩增和测序。
4. 通过分析PCR产物的核苷酸序列,筛选出具有与稻米外观品质相关的单核苷酸多态性(SNP)位点。
5. 利用分子标记技术,对珍汕97B和珍汕97A进行基因型分析,并筛选出具有优良稻米外观品质的候选芯片位点。
6. 在实际生产中,应用所筛选出的候选芯片位点,进行分子标记辅助选择,选择出具有优良稻米外观品质的杂交后代。
三、预期结果和意义
1. 通过分子标记辅助选择方法,改良珍汕97B和珍汕97A的稻米外观品质。
2. 为我国稻米生产提供新的方法和思路,推进稻米品质改良的研究。
3. 为农业科技的发展提供技术支持和理论指导。
Euphytica128:261–267,2002.©2002Kluwer Academic Publishers.Printed in the Netherlands.261Analysis of a single nucleotide polymorphism that controls the cooking quality of rice using a non-gel based assayConcetta A.Bormans1,Richard B.Rhodes2,4,Daniel D.Kephart2,Anna M.McClung3& William D.Park1,∗1Borlaug Center for Southern Crop Improvement,Department of Biochemistry and Biophysics,Texas A&M Uni-versity,College Station,TX77843,U.S.A.;2Promega Corporation,2800Woods Hollow Road,Madison,WI53711, U.S.A.;3USDA-ARS,1509Aggie Dr.,Beaumont,TX77713,U.S.A.;4Present address:Minnesota Molecular and Cellular Therapeutics,University of Minnesota,Minneapolis,MN55455,U.S.A.;(∗author for correspondence, e-mail:wdpark@)Received22July2001;accepted15April2002Key words:amylose,granule-bound starch synthase,READIT TM assay,single-nucleotide polymorphism,waxy geneSummaryThe waxy gene encoding granule-bound starch synthase(GBSS)is responsible for the synthesis of amylose in developing grain.Recent work has shown that a G-T polymorphism in the leader intron5’splice site of GBSS plays a key role in determining the cooking and processing quality of rice.Cultivars with sequence AGGTATA at this location splice GBSS pre-mRNA efficiently and produce relatively large amounts of amylose.These varieties generally a havefirm texture when cooked and the grains remain separate.In contrast,GBSS pre-mRNA splicing is temperature sensitive and generally less efficient in cultivars with the sequence AGTTATA.As a result,these cul-tivars generally have lower amylose content and produce soft and sticky cooked rice.We have used the READIT TM assay,a non-gel based assay that uses the ability of DNA polymerase to perform pyrophosphoralysis,the reverse of DNA polymerization,to screen the critical G-T polymorphism in more than750samples from U.S.and Asian germplasm.We observed complete concordance between the results obtained using DNA sequencing or restriction enzyme digestion and the READIT TM assay.It also gave accurate results with both heterozygous plants and with complex mixtures as might result when grain from advanced generation plants is pooled to obtain larger samples. Abbreviations:GBSS–granule-bound starch synthase;PMP–paramagnetic particle;SNP–single-nucleotide polymorphism;RLU–relative light unit;RRR–relative response ratioIntroductionAmylose content is the single most important char-acteristic for predicting the cooking and processing quality of rice(Juliano,1985).Varieties with low amylose are typically soft and sticky,while varieties with intermediate and high amylose tend to befirm and dry,and remain separate after cooking.The waxy gene encoding granule bound starch synthase(GBSS)is primarily responsible for amyl-ose synthesis in rice as in other cereals(Sano,1984). At least eight different alleles of GBSS in rice can be distinguished based on a CT repeat and a single nucleotide polymorphism(SNP)at the5’leader in-tron splice site.These alleles accounted for more than 85%of the variation in amylose content in an extended pedigree of89US rice cultivars(Ayres et al.,1997). Strikingly,all of the varieties examined in this study which had amylose contents of more than18%were found to have the sequence AGGTATA at the5’splice site,while those with less than18%amylose had the sequence AGTTATA as this position.262Subsequent work has shown that this G-T poly-morphism plays a key role in GBSS pre-mRNA splicing.Varieties with the sequence AGGTATA at this location splice efficiently and accumulate large amounts of only the mature GBSS mRNA.In con-trast,varieties with the sequence AGTTATA generally have lower levels of mature GBSS mRNA,accumulate GBSS pre-mRNA that still contains the leader intron, and utilize a variety of alternate splice sites(Bligh et al.,1998).Interestingly the effect of the G-T poly-morphism is temperature dependent.At18◦C,this polymorphism has little effect on the steady state level of GBSS mRNA,while at25◦C or32◦C,the presence of a‘T’at the critical position dramatically reduces the accumulation of mature GBSS mRNA.The vari-ety‘Toro-2’,for example,has20.8%amylose when grown at18◦C.When the temperature was increased to32◦C,the amylose content decreased to11.9% (Larkin&Park,1999).The temperature sensitivity of amylose synthesis represents a problem for traditional methods of assay-ing rice quality.If a particular breeding plot happens to mature under unusual environmental conditions,its amylose content may not reflect the breeding lines’typical grain quality.Rather than trying to predict amylose content across years and locations based on a singlefield plot,it would be much better to directly assay the specific DNA differences that determine amylose content and thus grain quality.Directly as-saying the G-T polymorphism would also avoid the problem of dominance and allow heterozygous plants to be accurately distinguished from homozygotes in early generation screening.For use in marker-assisted selection in a breeding program,mutation detection assays must meet sev-eral criteria.Allelic scoring and must be reproducible and reliable,and the ability to detect heterozygotes is essential.Perhaps most important,assays must be fast,inexpensive,and at least partially amenable to automation to allow for high throughput screening.A plant breeder can have thousands of progeny each year,which must be screened for multiple traits.All of this must be done within a budget that requires a much lower price per sample than what is customary in clinical diagnostic settings.Because of this,any assay employed in a breeding program must be easy to de-velop and test while requiring the minimum amount of cost associated with new probe design and testing.The use of standard oligonucleotides and common reagent formats for a detection of a wide variety of sequence variations is an additional benefit.The READIT TM assay is a novel,non-gel based assay for DNA mutation detection(Promega Corpor-ation,Madison,WI).This assay takes advantage of the fact that in the presence of high concentrations of pyrophosphate,the DNA polymerase reaction can perform the reverse of DNA polymerization to pro-duce dNTPs.Coupled enzymes use the dNTPs that are generated to convert ADP to ATP,which is then quantified using luciferase.In the absence of3’to5’exonuclease activity,the ability of DNA polymerase to move backwards is completely dependent upon complementary pairing between interrogation oligo-nucleotides specific for individual alleles and sample DNA(Figure1).Materials and methodsPCR analysisTo compare the READIT TM Technology assay to con-ventional assays,wefirst analyzed182U.S.and Asian rice cultivars representing long,short,and medium grains,as well as both the indica and ja-ponica subspecies.Within the japonica subspecies, we included both temperate japonica and javonica cultivars.Samples included high,medium and low amylose cultivars,as well as one glutinous cultivar that contains essentially no amylose.In addition,we also utilized the assay in a more diagnostic fash-ion by screening576varieties obtained from the USDA-ARS National Small Grains Collection pre-viously reported to have low amylose content.For sample analysis,approximately20ng of purified genomic DNA was amplified by Polymerase Chain Reaction(PCR)using50pmol of upstream primer(5’-TCTCAAGACACAAATAACTGCAG)and50pmol downstream primer(5’-CCCAACACCTTACAGA-AATTAGC)designed to amplify a240bp(bases25–265,Genbank Accession AF031162)segment of the rice granule-bound starch synthase(Waxy)gene.The downstream primer was synthesized to contain3con-secutive phosphorothioate linkages at the5’end.PCR reactions contained1.25units Taq DNA Polymerase (Promega),1.5mM MgCl2,and200µM dNTP mix. Thermocycling was performed under the following conditions;1cycle of2min at94◦C;35cycles of 0.5min at94◦C,1min at60◦C,and1min at70◦C; 1cycle of5min at70◦C.263 Figure1.Flow chart demonstrating the READIT TM assay.The target DNA is denatured and master mix containing the following is added: allele specific probe,polymerase,magnesium,pyrophosphate,ADP,and kinase.The reaction results in the release of dNTPs from the probe and subsequent formation of ATP by the kinase.Addition of luciferase results in the conversion of ATP to light,which is then detected using a luminometer.PCR product purificationAliquots of each PCR reaction(25µl)were treatedwith12.5units of T7Gene6exonuclease(United States Biochemical,Cleveland,OH)for30minutes at37◦C.Nuclease treated amplification productswere then purified using MagneSil TM paramagnetic particles(PMPs)(Promega)on a Biomek 2000ro-botics workstation(Beckman Coulter,Inc.,Fullerton,CA)using robotics protocols provided by the man-ufacturer.Briefly,150µl of the PMPs in guanidine thiocyanate binding buffer were added to each sample in the wells of a96-well plate.Samples were incubated for2minutes at room temperature,and the PMPs were rapidly captured using a96-well magnetic pin array (Promega).PMPs in each well were washed with three 150µl exchanges of70%ethanol.Water was added to each well(50µl),the PMPs were resuspended,and 150µl of binding buffer were added to facilitate a second capture of the PCR products onto the same bed of PMPs.After magnetic capture of the PMPs, three additional150µl washes of70%ethanol were performed.Purified samples were eluted in100µl of nuclease-free water.READIT TM Technology InterrogationAutomated READIT TM assay reactions were per-formed using a Biomek2000instrument.Briefly,5µl of the purified PCR sample were combined with264Figure2.READIT TM Technology analysis of U.S.and Asian germplasm.182genomic DNA samples representing a wide variety of U.S.and Asian germplasm were analyzed with the READIT TM ing probes directed toward the GBSS gene SNP,each sample was characterized for the presence of a‘G’or a‘T’at the SNP site.All samples were correctly called with the READIT TM assay when the data were compared to data previously obtained from amylose analysis.White bars indicate‘T’alleles and black bars indicate‘G’alleles.5µl of0.06N NaOH and samples were incubated at room temperature for5minutes.Tenµl of neutraliz-ation solution(50mM Tris(pH7.3),10mM MgCl2) that contained150pmol of‘G’specific probe(5’–AGAACATCTGCAAGG),or‘T’specific probe(5’–AGAACATCTGCAAGT)were added.Neutralization solution alone was added to a third tube to serve as reaction background.Chemically denatured samples were incubated for5minutes at37◦C and25µl of READIT TM version1.0System Master Mix were in-jected into each sample.The READIT TM version1.0 Master Mix contained1×DNA polymerase buffer (Promega),0.1U/µl Klenow exonuclease minus(Pro-mega),2mM sodium pyrophosphate,0.2µM ADP, and0.01U/µl nucleoside diphosphate kinase(Sigma, St.Louis,MO).After addition of Master Mix,samples were incubated for15minutes at37◦C.One hun-dredµl of L/L Reagent(Promega)were injected per well and Relative Light Units(RLUs)for each well were integrated for10seconds in a EG&G LB96V luminometer(Perkin Elmer,Gaithersberg,MD).The READIT TM assay was compared to a con-ventional gel based method for the evaluation of het-erozygotes.Genomic DNA samples of the varieties ‘Lemont’and‘Teqing’,which have the‘G’and‘T’alleles,respectively,were mixed in the following ra-tios:30/70%G/T,50/50%G/T,60/40%G/T,80/20% G/T,and90/10%G/T.Reactions were amplified inparallel reactions as described above.In one set of amplifications,10µCi of32P dCTP were added.The resulting radiolabeled PCR products were digestedwith the restriction enzyme Acc I.One microliter of 25mM MgCl2and10units of Acc I were added to10µl of PCR product.The digestions proceeded at 37◦C for1h.The digested products were run on a10%acrylamide gel.The gel was dried for1h at65◦C,followed by exposure to a Fluorimager screen(Molecular Dynamics,Sunnyvale,CA)for1 h.For each heterozygote sample,the exposed areas onthe screen representing the digested(120bp)and undi-gested(240bp)PCR product were integrated.Ratios of the digested and undigested counts to total counts were then calculated.Data analysis was performed using the READIT TM Technology Calculator©software provided by Pro-mega Corporation.Relative light units(RLUs)ob-tained from‘G’and‘T’interrogation reactions were adjusted by subtracting background RLUs obtained in the absence of interrogation probe.A Relative Re-sponse Ratio(RRR)was calculated by dividing the265adjusted‘G’allele RLUs by the summed RLUs from both‘G’and‘T’alleles.Since there was a greater than 6standard deviation separation between the RRRs of each allele,in some cases genotypes were called automatically by setting the calling windows as three standard deviations from the mean of each genotype population.ResultsThe G-T polymorphism in the GBSS gene of182rice varieties,representing a wide range of U.S.and Asian germplasm,were analyzed by direct sequencing or re-striction enzyme digest with Acc I.Results from the READIT TM assay agreed100%with sequencing and Acc I digest.As shown in Figure2,there was a large difference in the relative response ratio of homozygous ‘G’and‘T’alleles in both the U.S.and Asian samples, which allowed unambiguous allele assignments.To determine the assay’s sensitivity in detecting heterozygotes,varieties homozygous for the‘G’or ‘T’allele were also mixed in known ratios.A lin-ear relationship(R2=0.99)was observed between the RRR obtained and the allelic frequency observed in samples of artificial mixtures as determined by re-striction enzyme digestion.For heterozygote calling of single samples,a calling window is defined and samples that fall within the defined range are called as heterozygotes.However,READIT TM analysis of samples with known ratios of the‘T’and‘G’alleles accurately determined the frequencies of these two al-leles(Figure3).This indicates that the assay is linear under our conditions.The extreme accuracy of the assay allowed us to use it to screen for mutants having the‘G’allele and inefficient splicing,resulting in low amylose.Low amylose varieties from the National Small Grains Col-lection were assayed as described.However,since varieties with low amylose are expected to have only the‘T’allele,those with a relative response ratio of 0.3or greater wereflagged for further analysis(Fig-ure4).Twenty of the NSGC low amylose varieties were called homozygous for the‘G’allele and were confirmed by DNA sequencing.RV A analysis of each homozygous‘G’variety revealed that all but three were high amylose as expected from this genotype. The three low amylose‘G’varieties will be subjected to further analysis.DiscussionSingle nucleotide polymorphisms,though used ex-tensively as markers in animal and human research, have not yet been developed to such a degree in agricultural research.However,current genome se-quencing projects for Arabidopsis,rice,maize,wheat, and other crop species are providing a wealth of new sequencing data,which will serve to accelerate SNP discovery.SNPs linked to disease resistance genes have been identified in soybean and common bean (Phaseolus vulgaris L.)(Meksem et al.,2001;Melotto &Kelly,2001),and it has been shown that the DNA of chromosome1in maize has a higher ratio of SNPs per base pairs than that of both Drosophila melanogaster and humans(Tenaillon et al.,2001).Clearly,a robust and reliable system for SNP detection is needed.Cur-rent methods using gel electrophoresis are time con-suming and labor intensive unless one has access to ex-pensive automated electrophoresis apparatus.Newer methods such as mass spectrometry and molecular beacons can be automated,but they also require ex-pensive,specialized equipment and reagents(Haff& Smirnov,1997;Tyagi et al.,1997).The READIT TM assay is a high throughput,non-gel based system that can be performed using relatively inexpensive lumino-meters,standard enzymes and oligonucleotide primers available from several companies.Our results demonstrate a very clear separation of GBSS alleles in a very wide range of germplasm(Fig-ure2).We also found that the assay can accurately detect not only50/50%heterozygotes,but also the wide range of allelic frequencies found in artificial mixtures or F5derived,F3pools(data not shown). The ability to accurately score complex heterozygotes is extremely useful in breeding for rice grain quality, since progeny from many plants must often be pooled to obtain sufficient material for processing and sens-ory analysis.The ability to accurately score other than 50/50%heterozygotes would also be useful for SNP detection in polyploid genomes.Additionally,detec-tion of more than two alleles at a single locus can be done by the addition of another interrogation primer to the assay.Another important feature for a high throughput genotype assay is the ability to distinguish a failed reaction and not misscore it.For example,in scor-ing the G-T polymorphism using Acc I,failure of the Acc I digest could falsely indicate the presence of the ‘T’allele.Since scores are determined by dividing the Relative Light Units(RLUs)of the corrected‘G’allele266parison of the READIT TM assay with conventional restriction enzyme digest assays.(a)Templates containing the‘G’or‘T’base at the SNP position were prepared as described in the text and analyzed with both the READIT TM assay and Acc I restriction enzyme digests.The mixtures of templates were probed with both the‘G’and‘T’interrogation oligonucleotides and the percentage of‘G’(white bars)or‘T’template(black bars)in each mixture was then determined with the READIT TM assay.(b)The same samples were analyzed in a PCR reaction containing32P-dCTP followed by PAGE and scanning densitometry.(c)Accuracy of the READIT TM assay and conventional restriction digest assays for identification of heterozygotes.The percent‘G’allele(Y-axis)as determined by both methods was compared for each of the heterozygote samples H5-H9.by the total RLUs from both alleles to obtain a relat-ive response ratio,failed reactions are automatically marked as candidates for reevaluation if the RLUs are not significantly higher than the background signal.In a typical reaction of a‘G’homozygote,we obtained 458,265RLUs with the‘G’specific oligonucleotide, 95,890RLUs with the‘T’specific oligonucleotide, and92,591RLUs for background.For a‘T’homo-zygote,we typically obtained141,633RLUs with the ‘G’specific oligonucleotide,575,781RLUs with the ‘T’specific oligonucleotide,and137,968RLUs for background.Theoretically,the optimum response ra-tios for each allele are0and1.However,when the RLUs of one allele are less than that of the background reaction,it is possible to obtain ratios outside these limits,as can be seen with the low amylose varieties obtained from the NSGC(Figure4).The ability to set limits for each allele,as well as for heterozygotes, allows rapid genotyping while singling out individu-als that may require further analysis.For example, of the576low amylose varieties,only20had relat-ive response ratios of greater than0.75,classifying them as homozygous for the‘G’allele.The geno-types of those samples were then confirmed by DNA267 Figure4.READIT TM Technology analysis of low amylose varieties.576varieties that have been classified as low(<18%)amylose were obtained from the National Small Grains Collection and analyzed with the READIT TM assay.As expected,most samples were scored as homozygous for the‘T’allele(white bars).Samples having a Relative Response Ratio(RRR)between0.33and0.66were called"ambiguous’(gray bars).Samples with a RRR greater than0.75were called homozygous for the‘G’allele(black bars).All of the ambiguous and homo-zygous‘G’varieties were confirmed by DNA sequencing,and subsequent amylose assays showed that all but three of them in fact had high amylose contents as expected with this genotype.sequencing.The amylose contents of those individu-als were assayed and all but three were high amylose varieties.This again demonstrated the advantage of measuring genotype rather than phenotype.It is pos-sible that previous measurements were affected by growth conditions such as temperature.In summary,this technique provides a method for detecting a variety of DNA polymorphisms without requiring large amounts of sample,costly instrument-ation,reagents,or large amounts of time for analysis. AcknowledgementsWe thank Grace Walker for her invaluable assistance in sample preparation and organization.This research was supported by a grant from the Texas Grain and Grass Initiative.ReferencesAyres,N.M.,A.M.McClung,rkin,H.F.D.Bligh,C.A.Jones &W.D.Park,1997.Microsatellites and a single nucleotide poly-morphism differentiate apparent amylose classes in an extended pedigree of US rice germplasm.Theor Appl Genet94:773–781.Bligh,H.F.J.,rkin,P.S.Roach,C.A.Jones,H.Fu&W.D.Park,e of alternate splice sites in granule-bound starch synthase mRNA from low-amylose varieties.Plant Molec Biol 38:407–415.Haff,L.&I.Smirnov,1997.Single-nucleotide polymorphism identification assays using a thermostable DNA polymerase and delayed extraction MALDI-TOF mass spectrometry.Genome Meth7:378–388.Juliano, B.O.,1985.Rice Chemistry and Technology.American Association of Cereal Chemists,St Paul,MN.Larkin,P.D.&W.D.Park,1999.Transcript accumulation and utiliz-ation of alternate and non-consensus splice sites in rice granule-bound starch synthase are temperature-sensitive and controlled by a single-nucleotide polymorphism.Plant Molec Biol40: 719–727.Meksem,K., E.Ruben, D.L.Hyten,M.E.Schmidt& D.A.Lightfoot,2001.High-throughput genotyping for a polymorph-ism linked to soybean cyst nematode resistance gene Rhg4by using Taqman TM probes.Molec Breed7:63–71.Melotto,M.&J.D.Kelly,2001.Fine mapping of the Co-4locus of common bean reveals a resistance gene candidate,COK-4,that encodes a protein kinase.Theor Appl Genet103:508–517. Sano,Y.,1984.Differential regulation of waxy gene expression in rice endosperm.Theor Appl Genet68:467–473.Tenaillon,M.I.,M.C.Sawkins,A.D.Long,R.L.Gaut,J.F.Doebley &B.S.Gaut,2001.Patterns of DNA sequence polymorphism along chromosome1of maize(Zea mays ssp mays L.).Proc Nat Acad Sci98:9161–9166.Tyagi,S., D.Bratu&F.Kramer,1998.Multicolor molecular beacons for allele discrimination.Nature Biotech16:49–53.。