用示波法显示稳压二极管的伏安特性曲线
- 格式:doc
- 大小:44.50 KB
- 文档页数:4
XXXXXX大学物理设计性实验测定稳压二极管的伏安特性曲线设计报告姓名:XX学号:2009XXXX专业:XXXXX班级:XXXX学院:XXXXXX指导老师:XXX2010年12月9日一、题目选择电路中二极管的应用比比皆是,有整流二极管、开关元件、限幅元件、继流二极管、变容二极管、稳压二极管等多种类型。
为了进一步了解二极管的工作原理,首先要了解它们的伏安特性曲线。
本实验通过对二极管伏安特性曲线的测定,了解二极管的单向导电性的实质。
二、实验原理1、原理及基础知识二极管是常见的非线性元件,其伏安特性曲线如图所示:当对二极管加上正向偏置电压,则有正向电流流过二极管,且随正向偏置电压的增大而增大。
开始电流随电压变化较慢,而当正向偏压增到接近二极管的导通电压,电流明显变化。
在导通后,电压变化少许,电流就会急剧变化。
当加反向偏置电压时,二极管处于截止状态,但不是完全没有电流,而是有很小的反向电流。
该反向电流随反向偏置电压增加得很慢,但当反向偏置电压增至该二极管的击穿电压时,电流剧增,二极管PN结被反向击穿。
2、通过对二极管不同电压下电流的测定,得出一系列电压和电流的数值,在坐标纸上作出U-I曲线,从而得出二极管的伏安特性曲线,进一步形象的认识二极管的单向导电性。
由此分析可知,能够达到精度、范围、功能的要求。
3、可行性分析运用所学过的电学实验的基础知识(电桥法测电阻、伏安法测电阻等),采用实验室已有的电学实验元器件(直流电源、电压表、电流表、滑线变阻器等),设计出一个测定二极管伏安特性曲线的电路。
通过对实验电路的控制,得出一系列电压和电流值,从而绘制二极管的伏安特性曲线。
三、方案设计测定非线性电阻可采用伏安法、电桥法、电势差计法、非平衡电桥法等,现对伏安法、非平衡电桥法进行介绍,进行比较之后选用一种合适的方法来测定二级管的伏安特性曲线。
1、 伏安法伏安法测二极管的伏安特性曲线,测量电路图如图所示:图(a )是测定二极管正向导通状态的伏安特性曲线的电路。
探索利用教学示波器显示二极管的伏安特性曲线王小云南京师范大学物理技术科学院05 级教硕210097实验日期: 2006.7.28天气:多云室温:33℃J2458 系列教学示波器一般用来显示电压随时间变化的关系。
Y 方向输入信号电压, X 方向接内置的锯齿波形的扫描电压,如图 1 所示。
当 Y 方向的信号电压频率 f y与 X 方向上的扫描电压频率u xf x相等时,即 f y=f x时,在示波器的荧光屏上正好显示一个完整稳定的波形,若 f y=nf x,则显示 n 个完整稳定的波形,其它0情况则不能显示完整稳定的波形。
t 当 X 方向外接信号电压,可显示其它图形,但 X 方向无衰减旋钮,效果不佳,这使教学示波器的使用有很大的局限。
图 1 正在推广的高中新课程标准,在物理选修3— 1 内容标准中要求“观察并尝试识别常见的电路原器件,初步了解它们在电路中的作用,在活动建议中要求描绘二极管的伏安特性曲线,那么教师如何利用教学示波器显示二极管的伏安特性曲线呢?问题一:示波器的两输入端只能输入电压信号,如何反映通过二极管的电流?解决方案:用一较小阻值的定值电阻(如R=100Ω)与二极管串联,则通过二极管的电流 I 与电阻上的电流I 相同,而电阻两端的电压 U =I R∝ I , 即可输入电阻 R 上的电压来反D R R R D映通过二极管的电流。
实验:器材:信号发生器、教学示波器、稳压二极管、正弦信号电压电阻箱各一,导线若干。
电路如图 2 所示:结果:只在水平方向有一亮线,增大信号电压,水平亮线延长,实验失败。
失败原因猜测:可能是在 X 方向不能加足够的电压使二极管导通。
100ΩY输入X 输入图 2问题二:如何验证,必须知道水平方向一格代表多大电压,即如何给X 轴定标?解决方案:利用 Y 方向的标准,一格表示100mV 及示波管的原理,偏移量与电压成正比。
将信号发生器的正弦信号接示波器的Y 输入,调节信号电压大小使竖直方向共四格长,表示所加信号电压的最大值为200mV ,然后把这一信号从X 方向输入示波器,荧光屏上有一长为 6.6 格的水平亮线,因此,X 方向的一格表示60mV 。
硅稳压二极管的伏安特性曲线和稳压电路硅稳压管利用特别工艺制成具有稳压作用的特别二极管。
形状与一般二极管基本相同,电路符号有所差别,文字符号用V表示。
硅稳压二极管的伏安特性曲线如图所示,由曲线可以看出:(1)硅稳压二极管的正向特性与一般二极管相同。
(2)反向特性曲线比一般二极管陡峭。
在反向电压较小时,管子只有极微的反向电流。
当反向电流达到某一数值Uw时,管子突然导通,电压即使增加很少也会引起较大电流。
这种现象叫“击穿”,Uw叫击穿电压(即稳压管的稳定电压)。
在反向击穿区,稳压管的电流在很大范围内变化,Uw却基本不变(见曲线AB段),这就是稳压管的稳压作用。
由于稳压管是工作在反向击穿状态,所以接到电路中时应当反接(见图),即稳压管的正极应接被稳定电压的负极;稳压管的负极应接被稳定电压的正极。
假如稳压管的极性接反,不能起到稳压作用,此时稳压管两端的正向电压约为0.7V。
硅稳压管稳压电路如图所示。
图中Ui是需要稳定的直流电压,R是限流电阻,RL是负载电阻。
电路的工作过程如下。
(1)设负载电阻RL固定不变。
当输入电压Ui上升时,流过稳压管的电流将增加,流过限流电阻R的电流也相应地增加,则输出电压(也就是负载两端的电压)U0=Ui - UR就能保持不变。
同理,若输入电压减小,限流电阻上的电压也相应削减,从而保证负载两端的电压仍旧稳定。
(2)设输入电压Ui不变。
当负载电阻削减而使负载电流增加、限流电阻上的压降增大时,输出电压将下降。
但输出电压稍有下降,就会引起流过稳压管的电流下降,从而抵消了负载电流变化在限流电阻上造成的电压变化,保证了输出电压的稳定。
同理,当负载电阻增大时,由于稳压管的稳压作用,也能保证输出电压稳定。
可见,除稳压管起稳压作用外,限流电阻不仅有限流作用,也有调压作用,与稳压管协作共同稳定输出电压。
二极管伏安特性曲线测量实验报告一、实验题目:二极管伏安特性曲线测量二、实验目的:1、先搭接一个调压电路,实现电压1-5V连续可调2、在面包板上搭接一个测量二极管伏安特性曲线的电路3、测量二极管正向和反向的伏安特性,将所测的电流和电压列表记录好。
4、用excel或matlab画二极管的伏安特性曲线三、实验摘要:1、在面包板上搭接一个测量二极管伏安特性曲线的电路2、测量二极管正向和反向的伏安特性,将所测的电流和电压列表记录好四、实验仪器:1、示波器2、函数发生器3、数字万用表4、面包板,稳压二极管,100欧电阻,电位器,导线,可调直流电压源五、实验原理:示波器是可以直接观察电信号的波形的一种用途广泛的电子测量仪器,可以测电压的大小、信号的周期、相位差等。
一切可以转化为电压的电学量和非电学量,都可以用示波器来观察和测量。
设计一个测量二极管两端电压和电流的电路。
通过万用表测量出数据,画出伏安特性曲线并验证。
用函数信号发生器产生一个信号,测量二极管两端的信号。
原理图:六、实验步骤及数据为防止电流过高烧毁电路,使用了一个100欧姆的保护电阻。
用万用表测量不同阻值下二极管两端的电压和通过二极管的电流值,观察并记录数据。
为保证精确度,多测量几组数据用数字万用表测出的二极管两端得电压以及对应流过的电流:绘制的二极管伏安特性曲线:用函数信号发生器产生一个信号,加在保护电阻和二极管两端,在示波器的CH1通道显示输入信号的波形。
原理图:波形图:七、实验总结:刚开始接的时候不知道是原件问题还是线路问题还是什么,用万用表测电压时一直没有示数,在面包板上拆了又装了好久都还是不行,这里就浪费了好多时间,最后换了面包板又换了原件换了电源才终于测了出来。
所以在装电路的时候一定要细心还有要弄清原理图的工作原理才能真正做好一个实验。
还有本实验在测电流时记得先将电阻断开再用万用表测,以免烧表。
1.实验题目:二极管伏安特征曲线丈量2.实验纲要:1、先搭接一个调压电路,实现电压连续可调2、在面包板上搭接一个丈量二极管伏安特征曲线的电路3、给二极管测试电路的输入端加Vp-p=6V、f=6KHz的正弦波,用示波器察看该电路的输入输出波形。
激励源加在二极管和电阻的串连电路上,二极管作为响应输出。
4、丈量二极管正向和反向的伏安特征,将所测的电流和电压列表记录好。
5、用excel或matlab画二极管的伏安特征曲线3.实验环境:(1)、电阻若干(1000Ω,100Ω)(2)、台式数字万用表(UNI-TUT805A)(3)、Multisim(画电路图)(4)、导线若干(5)、直流电源(ITECHIT6302)(6)、面包板(7)、镊子(8)、电位器(BOHENG3296)(9).数字函数发生器(RIGOLDG1022U)(10).示波器(TektronixDPO2012B)(11)发光二极管4.实验原理晶体管伏安特征曲线的丈量当对晶体二极管加上正向偏置电压,则有正向电流流过二极管,且随正向偏置电压的增大而增大。
开始电流随电压变化较慢,而当正向偏压增到靠近二极管的导通电压(锗二极管为左右,硅二极管为左右时),电流显然变化。
在导通后,电压变化少量,电流就会急巨变化。
当加反向偏置电压时,二极管处于截止状态,但不是完整没有电流,而是有很小的反向电流。
该反向电流随反向偏置电压增添得很慢,但当反向偏置电压增至该二极管的击穿电压时,电流剧增,二极管PN结被反向击穿5.实验步骤和数据记录:A.记录二极管的正向伏安特征1.搭接一个丈量二极管伏安特征曲线的电路(1.因为万用表只有一个负极接线,因此特地将电流表的正负极接反。
这样一个万用表能够当成一个电流表和电压表同时工作,记录时只要变换按钮即可(2.电位器前应当加一个保护电阻,实验时应当控制电流不超出20mA,实验顶用的是100欧姆的电阻2.记录数据B.记录二极管的反向伏安特征1.连结最简单的串连电路,经过调整电源的电压来丈量2.反接二极管3.调整电源的电压(1,6,10,20,30),记录实验数据C.察看二极管对波形的影响(注意,二极管接地和函数发生器的接地是在一同的,实验中简易起见三个地线都接在一同了)调整函数发生器至,Vpp=6V,输出正弦波察看波形,记录各项数据6.实验结果计算和剖析A.记录二极管的伏安特征曲线电流0(mA)电压0(V)剖析:在电压比较小的时候,电流几乎为0;直至某个临界电压值,电流才会增添,增长速度也不停加速Execl曲线:B.记录二极管的反向伏安特征电压(V) 1 6 10 20 30 电流(mA)0能够看出,在达到必定的电压值时,电流是能够经过的,可是仍是很轻微,说明反向二极管的阻断作用很大C.察看二极管对波形的影响实验数据:频次周期峰峰值最大值最小值Ch1 微秒微秒7.实验总结。
CH25 V 实验四:二极管伏安特定曲线测量一、实验目的:1.了解二极管正向、反向的伏安特性;2.掌握用作图法处理实验数据的方法。
二、实验内容:1、 先搭接一个调压电路,实现电压1-5V 连续可调;2、 在面包板上搭接一个测量二极管伏安特性曲线的电路;3、给二极管测试电路的输入端加Vp-p=3V 的正弦波(交流),用示波器观察该电路的输入输出波形;4、 测量二极管正向和反向的伏安特性,将所测的电流和电压列表记录好;5、 用excel 或matlab 画二极管的伏安特性曲线。
三、实验环境:DT9201数字万用表一个,面包板一个,电路箱一个,导线若干,电阻两个(分别为200Ω左右、2000Ω左右),EE1641C 型函数信号发生器一台,DS1052E 示波器一台,稳压二极管一个,电位器一个。
四、实验原理:1.测量二极管正向伏安特性电路图:2.二极管伏安特性曲线:晶体二极管是常见的非线性元件。
当对晶体二极管加上正向偏置电压,则有正向电流流过二极管,且随正向偏置电压的增大而增大。
开始电流随电压变化较慢,而当正向偏压增到接近二极管的导通电压(锗二极管为0.2左右,硅二极管为0.7左右时),电流明显变化。
在导通后,电压变化少许,电流就会急剧变化。
当加反向偏置电压时,二极管处于截止状态,但不是完全没有电流,而是有很小的反向电流。
该反向电流随反向偏置电压增加得很慢,但当反向偏置电压增至该二极管的击穿电压时,电流剧增,二极管PN 结被反向击穿。
3.二极管测试电路观察输入输出波形测量示意图: 输入输出:五、实验数据:◎输入输出波形图:3. 二极管正向伏安特性曲线:六、数据分析处理及总结:1.二极管测试电路输入输出波形解释:由于二极管的单向导通性,输入电压为正向电压时二极管导通,输入电压为反向电压时,二极管不导通。
所以波形图中,输入波形无变化,而输出波形经过二极管时,反向电压部分未导通。
所以出现如图所示的波形。
用示波法显示稳压二极管的伏安特性曲线【摘要】本实验采用示波法来显示稳压二极管的伏安特性曲线,通过示波器观察此曲线,了解稳压二极管的一些特性。
【关键字】稳压二极管单向导电特性示波器伏安特性曲线【概要】稳压二极管是一种具有单向导电性的半导体元件。
其特点是击穿后,两端的电压基本保持不变。
这样,当把稳压管接入电路以后,若由于电源电压发生波动,或其它原因造成电路中各点电压变动时,负载两端的电压将基本保持不变。
设计实验用示波器测二极管伏安特性,将二极管的电压U加到示波器的“X轴输入”端,将二极管的电流转化为电压后加到示波器的“Y轴输入”端,从而在示波器屏上得到伏安特性曲线图象,直观的显示二极管的伏安特性。
【实验原理】稳压二极管的正向电流与电压、反向电流与电压之间的关系可用I~V特性曲线表示,如图给出了稳压管的伏安特性曲线及其符号。
从图中可以看出,给二极管两端加以正向电压,二极管表现为一个低阻值的非线性电阻,当正向电压较小时,正向电流几乎为零,只有当正向电压超过死区电压(一般硅管约为0.5V,锗管约为0.1V)时,正向电流才明显增大,当正向管压降达到导通时(一般硅管约为0.6~0.7V,锗管约为0.2~0.3V),管子才处在正向导通状态。
迅速增大的电流值有一最大限度,这个最大限度称为二极管的最大正向电流。
给二极管两端加以反向电压,二极管表现为一个高阻值电阻。
当反向电压较小时,反向电流很小,当反向电压超过反向击穿电压(一般在几十伏以上)后,反向电流会突然增大,二极管处于击穿状态。
如右图,在a、b端接上交流电压(其最大输出电压的有效值一般为6~8V左右,并能随时调节)若接上直流电压,屏幕上只显示正向特征曲线。
在A、B之间测出的是近似加在待测元件R0的电压,在C、B间的是电阻R的电压,这个电压正比于R0的电流强度。
因而将二极管的电压U加到示波器的“X轴输入”端,将二极管的电流转化为电压后加到示波器的“Y轴输入”端,从而在示波器屏上得到伏安特性曲线图象。
用示波法显示稳压二极管伏安特性曲线实验者同组实验者:A08电气一班080402116 A08电气一班080402117【引言】:用示波器的X-Y方式显示稳压二极管的伏安特性曲线【摘要】:利用负载电阻对稳压二极管电流特性的模拟,通过双综示波器的调节,使能在示波器屏幕上直接读出稳压二极管的伏安特性曲线,得出稳压二极管是一种用于稳定电压,且工作在反向击穿状态下的二极管。
【关键字】:稳压二极管示波器伏安特性曲线【实验原理】:稳压二极管又称齐纳管,是一种用特殊工艺制造的面结型硅半导体二极管。
稳压二级管具有单向导电性,其稳压作用在于电流增量I很大,只引起很小的电压变化V,伏安特性曲线愈陡,动态电阻r愈小,稳压管的稳定性能愈好。
稳压二级管两端加正向电压时(电压值小于门坎电压),正向电流几乎为零,稳压二级管呈现出一个大电阻,一旦超过门坎电压,稳压管导通,内电场大为削弱,电流因而迅速增大;若稳压二级管加反向电压时,电流很小,当反向电压加到某一定值时,反向电流激增,产生反向击穿,击穿电压即为稳压二级管的稳定电压。
如上图,在电源端输入信号,负载R1为限流电阻,它的作用是使电路有一个合适的工作状态,并限定电路的工作电流。
XE两端测得的是稳压管D两端的电压,YE 两端测得的是R2两端的电压,电阻R2两端的电压与流经稳压二极管的电流强度成正比。
故将稳压二极管的电压U加到示波器的“X轴输入”端,将稳压二极管的电流转化为电压后加到示波器的“Y轴输入”端,从而在示波器屏上得到伏安特性曲线图象。
【测试方案】一.主要仪器:GOS-6021型双踪示波器 EE1410型数字合成函数信号发生器稳压二极管 ZX21型变阻箱两个,导线若干二.实验步骤1、如图a接好实验电路,并做好检查。
2、打开信号源和示波器,按下信号发生器频率按钮,从键盘输入频率f约为50Hz,按下信号发生器幅度按钮,调节峰峰值V PP为在10~20V。
3、示波器打到X-Y档,调节CH1通道及CH2通道的增益旋钮及位移旋钮,得到稳定清晰的伏安特性曲线。
用示波法显示稳压二极管的伏安特性曲线
【摘要】本实验采用示波法来显示稳压二极管的伏安特性曲线,通过示波器观察此曲线,了解稳压二极管的一些特性。
【关键字】稳压二极管单向导电特性示波器伏安特性曲线
【概要】稳压二极管是一种具有单向导电性的半导体元件。
其特点是击穿后,两端的电压基本保持不变。
这样,当把稳压管接入电路以后,若由于电源电压发生波动,或其它原
因造成电路中各点电压变动时,负载两端的电压将基本保持不变。
设计实验用示波器测
二极管伏安特性,将二极管的电压U加到示波器的“X轴输入”端,将二极管的电流转
化为电压后加到示波器的“Y轴输入”端,从而在示波器屏上得到伏安特性曲线图象,
直观的显示二极管的伏安特性。
【实验原理】
稳压二极管的正向电流与电压、反向电流与电压之
间的关系可用I~V特性曲线表示,如图给出了稳压管的
伏安特性曲线及其符号。
从图中可以看出,给二极管两
端加以正向电压,二极管表现为一个低阻值的非线性电
阻,当正向电压较小时,正向电流几乎为零,只有当正
向电压超过死区电压(一般硅管约为0.5V,锗管约为
0.1V)时,正向电流才明显增大,当正向管压降达到导
通时(一般硅管约为0.6~0.7V,锗管约为0.2~0.3V),
管子才处在正向导通状态。
迅速增大的电流值有一最大限度,这个最大限度称为二极管的最大正向电流。
给二极管两端加以反向电压,二极管表现为一个高阻值电阻。
当反向电压较小时,反向电流很小,当反向电压超过反向击穿电压(一般在几十伏以上)后,反向电流会突然增大,二极管处于击穿状态。
如右图,在a、b端接上交流电压(其最大输出电
压的有效值一般为6~8V左右,并能随时调节)若接
上直流电压,屏幕上只显示正向特征曲线。
在A、B
之间测出的是近似加在待测元件R0的电压,在C、B
间的是电阻R的电压,这个电压正比于R0的电流强度。
因而将二极管的电压U加到示波器的“X轴输入”端,将二极管的电流转化为电压后加到示波器的“Y轴输入”端,从而在示波器屏上得到伏安特性曲线图象。
我们希望显示图形从原点往右是X轴正向往上是Y轴的正向,在Y轴加正向电压时,光点往上走,和习惯相同,但对X轴取向,不同示波器有不同情况,连接电路时,根据图形显示情况,可以改变电路的连接方式,使二极管正确的显示。
为了正确的显示波形,示波器的Y轴输入和X 轴输入要有公共端。
在测二极管伏安特性时,有时受实验室现有仪器设备本身结构的限制,可能示波器Y轴信号被短路,因此在实际电路设计中,取B点作为接地点。
这种情况相当于伏安法测量中的电表内接方式,为了减小系统误差,R选用电阻箱,且值尽可能小,消除这个测量误差的影响。
【调试方案设计】
1.1实验仪器:GOS6021双踪示波器; YB1602型数字函数信号发生器;二极管;变阻箱(0~9999Ω)两个;若干导线。
1.2实验步骤:
1、将线路如右上图接好。
2、打开信号源和示波器,调节信号发生器至正弦交流电压档,输出信号频率f为1kHz左右,输出电压为6~8V左右,示波器打到X-Y档,适当调节示波器,即可得到特征曲线。
3、观察出现的波形,调节R1、R和示波器的偏转因素使曲线大小适中。
再确定原点(把CH1和CH2都接地,看亮点是否在示波器的中心点)。
4、最后将特性曲线定量地测绘出来,并记录R1、
R2的阻值,以及信号发生器上的输出频率和输出
电压。
注R1为限流电阻,用以防止通过二极管的电流过大
造成损失,一般将它先调到1kΩ左右。
【实验测量】
1.1 观察伏安特性曲线:
(1)连接好图二或图三的电路,电阻箱的电阻在1K 左右。
调节CH1和CH2的偏转因数,能够看到显示屏上的二极管曲线,为时可以调节信号发生器的频率,使看到清晰的图形。
(2)如果看到曲线显示反向,可以使二极管正负极互换。
1.2 描绘曲线的图形:
实验中,在示波器上显示的图像如上图所示。
【分析及总结】
稳压二极管的稳压原理:
稳压二极管的特点就是击穿后,其两端的电压基本保持不变。
这样,当把稳压管接入电路以后,若由于电源电压发生波动,或其它原因造成电路中各点电压变动时,负载两端的电压将基本保持不变。
故障特点:
稳压二极管的故障主要表现在开路、短路和稳压值不稳定。
在这3种故障中,前一种故障表现出电源电压升高;后2种故障表现为电源电压变低到零伏或输出不稳定
1.2实验过程中遇到的问题及解决方案:
问题一:如何反映通过二极管的电流。
解决方案:用一较小阻值的定值电阻(如R=100Ω)与二极管串联,则通过二极管的电流ID
与电阻上的电流IR相同,而电阻两端的电压UR=IRR∝ID,即可输入电阻R上的电压来反映
通过二极管的电流.。
实验过程装置组装完成后进行实验,结果:只在水平方向有一亮线,增
大信号电压,水平亮线延长,实验失败。
失败原因猜想:可能是在X方向不能加足够的电压使
二极管导通.
问题三:如何在X方向加足够的电压使二极管导通
解决方案:分压电路,两电阻R1R2串联,若R1=9R2则R2上的电压只有总电压的十分之
一,若R1=99R2则R2上的电压只有总电压的百分之一。
实验: 另加两只电阻箱将阻值分别
调为9KΩ和1KΩ.结果: 荧光屏上显示伏安特性曲线,这仍不是二极管的伏安特性曲线,将
示波器X输入旁的同步开关拔到"+"的位置,荧光屏上的图象上下颠倒, 到此,得到的实际上
是电阻与二极管串联组合体的伏安特性曲线,并非真正的二极管的伏安特性曲线。
问题四: 电阻与二极管串联组合体的伏安特性曲线与真正的二极管的伏安特性曲线的
关系如何,电阻的阻值对曲线的影响如何。
理论分析: 二极管虽不是线性元件,但对不同的电压,电流,仍有对应的阻值RD=UD/ID 根据
串联分压,我们可求出直接加在二极管两端的电压,再描点作图.。
问题二:实验失败的猜测原因正确吗?
解决方案:利用y方向的标准,当衰减旋钮置×l挡时,一格表示100 mV,根据示波管的原理,偏移量与电压成正比.将信号发生器的正弦信号接示波器的y输入(衰减旋钮置×l挡),调节
信号电压大小使竖直方向共4格长(上下各2格),表示所加信号电压的最大值为200 mv,然后
把这一信号从X方向输入示波器,荧光屏上有一长为6.6格的水平亮线,因此,X方向的一格
表示约为60 mV.X方向左右各5格,最大只能加±300 mV的电压,达不到二极管的最低导通
电压为0.7 V,所以,水平方向为一亮线.
【实验心得】:1.尽量避免使用低压齐纳管。
2.用齐纳管做保护要合理选择UZ,使UWMAX+UM3.设计电路要有"动态"的
概念,电路跟人,跟一切机器一样都有反应迟钝的问题,区别只在于"更迟钝"
和"更不迟钝"。
4.记住墨菲定律:"事情凡是能够更糟糕的,就一定会更糟糕"。
设计性实验要求学生具有创新的思维,这对我们是一个很大的挑战,在无人指导情况下,
独立的完成本次实验。
经过和同组同学的配合,基本上完成了实验的要求。
本人在这次实验
中得到了经验就是要敢于实践和动手。
参考文献竺江峰等主编。
大学物理实验和本书实验十五:示波器的使用。