单端反激开关电源原理与设计.pdf
- 格式:pdf
- 大小:284.42 KB
- 文档页数:3
12V/5A单端反激开关电源摘要:本文介绍一种以UC3842作为控制核心,根据UC3842的应用特点,设计了一种基于该电流型PWM控制芯片、实现输出电压可调的开关稳压电源电路。
开关电源是利用现代电子技术,控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)和MOSFET构成。
开关电源和线性电源相比,二者的成本都随着输出功率的增加而增长,但二者增长速率各异。
开关电源比普通的线性电源效率高,开关电源的发展与应用在节约能源、节约资源及保护环境方面都具有重要的意义。
关键字:开关电源、UC3842、PWM0:引言开关电源自20世纪90年代问世以来,便显示出强大的生命力,并且以其优良特性倍受人们的青睐。
随着电源技术的飞速发展,高效率的开关电源已经得到越来越广泛的应用。
而直流高频开关电源依靠它的高精度、低纹波及高效率等优越性能,正在逐步取代传统的线性电源。
同时,高频开关电源系统的高速响应性能、输出短路电流限制及稳压和稳流等优点也使其负载的使用寿命大大增加。
随着新型电力电子器件和适于更高开关频率的电路拓扑的不断出现,现代电源技术将在实际需要的推动下快速发展。
特别是在高新技术领域的应用,开关电源推动了高新技术产品的小型化、轻便化。
另外开关电源的发展与应用在节约能源、节约资源及保护环境方面都具有重要的意义。
1:开关电源的概述1.1:开关电源的含义:一般地,开关电源大致由输入电路、变换器、控制电路、输出电路四个主体组成。
开关电源是开关稳压电源的简称,它是一种用脉宽调制(PWM)驱动功率半导体器件作为开关元件,通过周期性通断开关,控制开关元件的占空比来调整输出电压。
它与线性稳压电源(AC-DC 电源)相比,其工作频率为20 kHz-500KHz,效率可达65%-70%,而线性电源的效率只有30%-40%,因而它比线性稳压电源更节能。
1.2:开关电源的现状:电源是各种电气设备补个或缺的组成部分,其性能优越直接关系到电子设备的技术指标级能否安全可靠的工作。
开关电源原理与设计pdf
开关电源原理与设计 pdf,是一本介绍开关电源基本原理和设计
技术的电子书。
开关电源是一种高效、稳定、可靠的电源,广泛应用
于各种电子设备和系统中。
本书从理论和实践两个方面深入介绍了开
关电源的设计和应用。
本书首先介绍了电源基本原理,包括直流电源、交流电源、稳压
电源和调节电源等。
然后详细介绍了开关电源的原理和结构,包括开
关电源的工作原理、PWM调制原理、开关管驱动电路、控制电路和输出滤波电路等,为读者了解开关电源提供了全面深入的基础知识。
本书还介绍了开关电源设计的关键技术,包括电源开关管的选型、电感和电容的设计、输出滤波电路的设计、保护电路的设计等。
通过
实例分析和仿真实验,深入研究了各种开关电源的应用,如DC-DC变
换器、AC-DC变换器和DC-AC逆变器等,具有极高的实用价值和指导意义。
在本书的编写过程中,作者精心设计了许多实例,为读者提供了
大量的实战经验。
此外,作者还提供了许多实用工具和软件,如开关
电源计算器和仿真软件等,方便读者进行实验和研究。
本书涵盖了开关电源的各个方面,从基础理论到具体设计都进行
了全面介绍,可供电子技术工程师、电力工程师、研究人员和学生参
考使用。
本书的阅读水平较高,需要读者具备一定的电子基础知识和
实践能力。
但是,无论是初学者还是专业人士,都能从中获取到丰富和有益的知识,为电子设备和系统的开发和设计提供有力的支持。
《电力电子技术》课程设计报告题目:单端反激式开关电源的设计学院:信息与控制工程学院一、课程设计目的(1)熟悉Power MosFET的使用;(2)熟悉磁性材料、磁性元件及其在电力电子电路中的使用;(3)增强设计、制作和调试电力电子电路的能力;二、课程设计的要求与内容本课程设计要求根据所提供的元器件设计并制作一个小功率的反激式开关电源。
我设计的是一个输入190V,输出9V/1.1A的反激式开关电源,要求画出必要的设计电路图,进行必要的电路参数计算,完成电路的焊接任务。
有条件的可以用protel99 SE进行PCB电路板的印制。
三、设计原理1、开关型稳压电源的电路结构(1)按驱动方式分,有自激式和他激式。
(2)按DC/DC变换器的工作方式分:①单端正激式和反激式、推挽式、半桥式、全桥式等;②降压型、升压型和升降压型等。
(3)按电路组成分,有谐振型和非谐振型。
(4)按控制方式分:①脉冲宽度调制(PWM)式;②脉冲频率调制(PFM)式;③PWM与PFM混合式。
DC/DC变换器用于开关电源时,很多情况下要求输入与输出间进行电隔离。
这时必须采用变压器进行隔离,称为隔离变换器。
这类变换器把直流电压或电流变换为高频方波电压或电流,经变压器升压或降压后,再经整流平滑滤波变为直流电压或电流。
因此,这类变换器又称为逆变整流型变换器。
DC/DC变换器有5种基本类型:单端正激式、单端反激式、推挽式、半桥式和全桥式转换器。
下面重点分析隔离式单端反激转换电路,电路结构图如图1所示。
图1 电路结构图电路工作过程如下:当M1导通时,它在变压器初级电感线圈中存储能量,与变压器次级相连的二极管VD处于反偏压状态,所以二极管VD截止,在变压器次级无电流流过,即没有能量传递给负载;当M1截止时,变压器次级电感线圈中的电压极性反转,使VD导通,给输出电容C充电,同时负载R上也有电流I 流过。
M1导通与截止的等效拓扑如图2所示。
图2 M1导通与截止的等效拓扑2、反激变换器工作原理基本反激变换器如图3所示。
基于UC3842的开关电源设计摘要电源是实现电能变换和功率传递的主要设备。
在信息时代,农业、能源、交通运输、通信等领域迅猛发展,对电影产业提出个更多、更高的要求,如节能、节材、减重、环保、安全、可靠等。
这就迫使电源工作者不断的探索寻求各种乡关技术,做出最好的电源产品,以满足各行各业的要求。
开关电源是一种新型的电源设备,较之于传统的线性电源,其技术含量高、耗能低、使用方便,并取得了较好的经济效益。
UC3842是一种性能优良的电流控制型脉宽调制器。
假如由于某种原因使输出电压升高时,脉宽调制器就会改变驱动信号的脉冲宽度,亦即占空比D,使斩波后的平均值电压下降,从而达到稳压目的,反之亦然。
UC3842可以直接驱动MOS管、IGBT等,适合于制作20~80W小功率开关电源。
由于器件设计巧妙,由主电源电压直接启动,构成电路所需元件少,非常符合电路设计中“简洁至上”的原则。
设计思路,并附有详细的电路图。
关键词:开关电源,uc3842,脉宽调制,功率,IGBT前言 (1)第1章开关电源的简介 (2)1.1 开关电源概述 (2)1.1.1 开关电源的工作原理 (2)1.1.2 开关电源的组成 (3)1.1.3 开关电源的特点 (4)1.2 开关器件 (4)1.2.1开关器件的特征 (4)1.2.2器件TL431. (5)1.2.3电力二极管 (5)1.2.4光耦PC817 (6)1.2.5电力场效应晶体管MOSFET (7)第2章主要开关变换电路 (8)2.1 滤波电路 (8)2.2 反馈电路 (8)2.2.1电流反馈电路 (8)2.2.2电压反馈电路 (9)2.3电压保护电路 (9)第3章UC3842 .................................................. 错误!未定义书签。
3.1 UC3842简介 (10)3.1.1 UC3842的引脚及其功能 (11)3.1.2 UC3842的内部结构 (11)3.1.3 UC3842的使用特点 (13)3.2 UC3842的典型应用电路 (14)3.2.1反激式开关电源 (14)3.2.2 UC3842控制的同步整流电路 (15)3.2.3升压型开关电源 (17)第4章利用UC3842设计小功率电源 (18)4.1 电源设计指标 (18)4.1.1元件的选择 (19)4.1.2电路结构的选择 (20)4.2 启动电路 (21)4.3 PWM脉冲控制驱动电路 (22)4.4 直流输出与反馈电路 (23)4.5 总体电路图分析 (24)结论 (24)参考文献 ............................................................. 错误!未定义书签。
第2章 单端式开关电源实际电路
163║
图2-15 给功率开关变压器铁芯增加气隙的结构图(续)
6.功率开关变压器初级绕组匝数N p 的计算
功率开关变压器铁芯气隙的宽度L g 计算出来以后,
可以利用下式计算功率开关变压器初级绕组匝数N p :
4
max g p p 100.4πB L N I ⨯= (2-41)
将式(2-39)代入上式中,还可以得到功率开关变压器初级绕组匝数N p 的另外一个计算公式为
()4
p p p e max 10L I N A B ⨯= (2-42)
采用式(2-41)和式(2-42)都可以计算出功率开关变压器初级绕组的匝数N p ,结果是相同的。
因此,在设计实际应用电路时可根据已知条件进行灵活运用。
7.功率开关变压器次级绕组匝数N s 的计算
对于单端式反激型开关电源电路来说,一般功率开关变压器的次级绕组不只一组,有几路输出电压就有几组次级绕组,而每一组次级绕组的匝数N s 可由下式来计算:
()()
p o1d max s1i min max 1N U V D N U D +-= (2-43)
式中i min i 1.420U U =-,单位为V ;V d 为输出快速整流二极管的正向压降,单位为V ;U o1为第一路直流输出电压,单位为V 。
2.3.4 单端自激式反激型开关电源的启动电路
在开关电源电路的设计和调试中,单端自激式反激型开关电源中的启动电路常常被人们所忽视,这样就导致了设计出来的开关电源电路在实际调试或实际工作中常常出现不能起振或工作不可靠的问题。
因此,在这里我们将对单端自激式反激型开关电源中的启动电路进行较详细的分析。
单端反激式开关电源研究与设计
1 引言
反激式(Flyback)电路拓扑是最基本的功率变换电路结构之一。
因结构简单、元器件数量少和设计方便等优点而广泛应用于电视机、DVD 和充电器等小功率电器的电源中。
反激变换器工作原理与Boost 电路相似,可以看作隔离式Boost 电路,在开关管导通时变压器原边电感储能,关断时能量经副边整流输出传递
给负载。
2 Flyback 拓扑介绍
2.1 连续导电模式
连续模式(CCM)下,在下一次开关导通时,变压器副边电流尚未降低到零,
变压器总有一个绕组是有电流流过的,其原边电流Ip 和副边电流Is 如图1 所示。
由于二次电流维持时间长,在传递相同功率条件下,尖峰电流约为断续模
式的一半。
连续导电模式的缺点是控制环有一个右半平面零点,使闭环补偿困难。
图1 连续模式变压器原副边电流波形
2.2 断续导电模式
断续模式(DCM)是变压器能量完全传递的工作模式,这样原副边有更大的尖
峰电流,理想状况下电流波形如图2 所示。
开关管开通时,电流已经降到零,因此开关管实现零电流导通,减少了开通损耗。
开关管导通时没有二极管反向
恢复问题,而且由于没有右半平面零点,控制环路的设计更加容易,也不需要
斜率补偿。
与连续工作模式相比,DCM 模式在低功率应用场合更加普遍。
一步一步精通单端反激式开关电源设计目录■系统应用需求 (3)■步骤1_确定应用需求 (3)■步骤2_根据应用需求选择反馈电路和偏置电压VB (4)■步骤3_确定最小和最大直流输入电压VMIN和VMAX,并基于输入电压和PO选择输入存储电容CIN的容量 (6)3.1、选择输入存储电容CIN的容量 (6)3.2、确定最小和最大直流输入电压VMIN和VMAX (8)■步骤4_输入整流桥的选择 (9)■步骤5_确定发射的输出电压VOR以及钳位稳压管电压VCLO (10)■步骤6_对应相应的工作模式及电流波形设定电流波形参数KP:当KP≤1时,KP=KRP;当KP≥1时,KP=KDP (14)■步骤7_根据VMIN和VOR确定DMAX (15)■步骤8_计算初级峰值电流IP、输入平均电流IAVG和初级RMS电流IRMS (16)■步骤9_基于AC输入电压,VO、PO以及效率选定MOS管芯片 (17)■步骤10_设定外部限流点降低的ILIMIT降低因数KI (17)■步骤11_通过IP和ILIMIT的比较验证MOS芯片选择的正确性 (17)■步骤12_计算功率开关管热阻选择散热片验证MOS芯片选择的正确性 (17)■步骤13_计算初级电感量LP (18)■步骤14_选择磁芯和骨架,再从磁芯和骨架的数据手册中得到AA,AA,AA,和BW的参考值 (18)■步骤15_设定初级绕组的层数L以及次级绕组圈数AA(可能需要经过迭代的过程) (24)■步骤16_计算次级绕组圈数AA以及偏置绕组圈数AA (25)■步骤17_确定初级绕组线径参数OD、DIA、AWG (25)■步骤18_步骤23-检查AA、AAA以及AA。
如果有必要可以通过改变L、AA或AA或磁芯/骨架的方法对其进行迭代,知道满足规定的范围 (25)■步骤24 –确认AA≤4200高斯。
如有必要,减小限流点降低因数AA (26)■步骤25 –计算次级峰值电流AAA (26)■步骤26 –计算次级RMS电流AAAAA (26)■步骤27 –确定次级绕组线径参数AA A、AAA A、AAA A (26)■步骤28 –确定输出电容的纹波电流AAAAAAA (27)■步骤29 –确定次级及偏置绕组的最大峰值反向电压AAAA,AAAA (27)■步骤30 –参照表8,基于VOR及输出类型选择初级钳位电路中使用的钳位稳压管以及阻断二极管 (27)■步骤31 –根据表9选择输出整流管 (28)■步骤32 –输出电容的选择 (28)■步骤33 –后级滤波器电感L和电容C的选择 (29)■步骤34 –从表10选择偏置绕组的整流管 (29)■步骤35 –偏置绕组电容的选择 (29)■步骤36 –控制极引脚电容及串联电阻的选择 (29)■步骤37 –根据图3、4、5及6中所示的参考反馈电路的类型,选用相应的反馈电路元件 (29)■步骤38 –环路动态补偿设计 (30)■系统应用需求交流输入最小电压:VACMIN,单位V交流输入最大电压:VACMAX,单位V交流输入电压频率:FL,单位HZ开关频率:FS,单位KHZ输出电压:Vo,单位V输出电流:IO,单位A电源效率:η负载调整率:SI损耗分配因子:Z空载功率损耗:P_NO_LOAD,单位MW输出纹波电压:VRIPPLE,单位MV■步骤1_确定应用需求●交流输入最小电压:VACMIN●●交流输入电压频率:FL50HZ或者60HZ,详见世界电网频率表。
一种新颖的单端反激式隔离开关稳压电源的设计及应用作者:吴勇军,刘政波,杨旭引言在大功率开关电源中,经常需要几组隔离电源对控制、开关管的门极驱动和保护电路进行单独供电。
简单实用,性能可靠的隔离稳压电源将是开关电源可靠运行、性能优良的保证。
正因如此,我们选择了控制器作为隔离开关稳压电源的核心器件,并力求电源简单实用、性能可靠。
控制器简介是一种高性能的固定频率电流型控制器,单端输出,可直接驱动双极型晶体管和,具有管脚数量少、外围电路简单、安装与调试简便、性能优良、价格低廉等优点。
能通过高频变压器与电网隔离,适于构成无工频变压器的(~)小功率开关电源.由于器件设计巧妙,构成电路所需的元件极少,非常符合“适用、够用、好用”的原则。
在一些只有直流电压供电的场合,更是起着不可或缺的作用,有着很好的应用前景。
其内部电路主要有以下性能:最高开关频率可达。
采用图腾柱输出电路,能够提供大电流输出,输出电流可达,可直接对双极型晶体管和进行驱动。
内部有高稳定度的基准电压源,典型值为,允许有±的偏差。
温度系数为℃稳压性能好。
其电压调整率可达%,能同第二代线性集成稳压器相媲美.启动电流小于,正常工作电流为。
带锁定的,可以进行逐个脉冲的电流限制。
具有内部可调整的参考电源,可以进行欠压锁定。
图为控制器的内部结构框图.其内部基准电路产生+基准电压作为内部电源,经衰减得电压作为误差放大器基准,并可作为电路输出的电源。
振荡器产生方波振荡,振荡频率取决于外接定时元件,接在脚与脚之间的电阻与接在脚与地之间的电容共同决定了振荡器的振荡频率,.反馈电压由脚接误差放大器反相端。
脚外接网络以改变误差放大器的闭环增益和频率特性;脚输出驱动开关管的方波为图腾柱输出。
脚为电流检测端,用于检测开关管的电流,当脚电压≥时,就关闭输出脉冲,保护开关管不至于过流损坏。
控制器设有欠压锁定电路,其开启阈值为,关闭阈值为.正因如此,可有效地防止电路在阈值电压附近工作时的振荡.图的内部结构框图图单端反激式开关电源电路原理图图单端反激式开关电源实际电路原理图图原、副边绕组电压波形图脚和脚波形图检测电阻的电流波形单端反激式隔离开关稳压电源的原理与设计图为单端反激式隔离开关电源电路原理图。
单端反激开关电源工作原理
单端反激开关电源工作原理如下:
1. 输入变压器:交流电源首先经过输入变压器,将输入的交流电源转换为所需要的较高或较低的交流电压。
2. 整流电路:经过输入变压器的交流电被整流电路转换为脉冲状的直流电。
3. 滤波电路:经过整流后得到的直流电,经过滤波电路使电压变得更加平滑稳定。
4. 开关电路:滤波后得到的直流电经过开关电路,由开关芯片控制开关管的导通和截止,产生一系列短暂的高频脉冲。
5. 变压器:开关电路产生的高频脉冲信号经过变压器,通过变压器的变比关系将电压转换为所需要的输出电压。
6. 输出滤波:经过变压器转换后得到输出电压,再经过输出滤波电路,进一步平滑和稳定输出电压。
7. 输出电路:最后将输出电压提供给负载进行使用,保证输出电流的稳定性和质量。
以上就是单端反激开关电源的工作原理,通过交流输入变压器、整流电路、滤波电路、开关电路、变压器、输出滤波、输出电路等组成,完成从输入交流电源到输出直流电压的转换。
本文设计的开关电源将作为智能仪表的电源,最大功率为10 W。
为了减少PCB的数量和智能仪表的体积,要求电源尺寸尽量小并能将电源部分与仪表主控部分做在同一个PCB上。
考虑10W的功率以及小体积的因素,电路选用单端反激电路。
单端反激电路的特点是:电路简单、体积小巧且成本低。
单端反激电路由输入滤波电路、脉宽调制电路、功率传递电路(由开关管和变压器组成)、输出整流滤波电路、误差检测电路(由芯片TL431及周围元件组成)及信号传递电路(由隔离光耦及电阻组成)等组成。
本电源设计成表面贴装的模块电源,其具体参数要求如下:输出最大功率:10W输入交流电压:85~265V输出直流电压/电流:+5V,500mA;+12V,150mA;+24V,100mA纹波电压:≤120mV单端反激式开关电源的控制原理所谓单端是指TOPSwitch-II系列器件只有一个脉冲调制信号功率输出端一漏极D。
反激式则指当功率MOSFET导通时,就将电能储存在高频变压器的初级绕组上,仅当MOSFET关断时,才向次级输送电能,由于开关频率高达100kHz,使得高频变压器能够快速存储、释放能量,经高频整流滤波后即可获得直流连续输出。
这也是反激式电路的基本工作原理。
而反馈回路通过控制TOPSwitch器件控制端的电流来调节占空比,以达到稳压的目的。
TOPSwitch-Ⅱ系列芯片选型及介绍TOPSwitch-Ⅱ系列芯片的漏极(D)与内部功率开关器件MOSFET相连,外部通过负载电感与主电源相连,在启动状态下通过内部开关式高压电源提供内部偏置电流,并设有电流检测。
控制极(C)用于占空比控制的误差放大器和反馈电流的输入引脚,与内部并联稳压器连接,提供正常工作时的内部偏置电流,同时也是提供旁路、自动重起和补偿功能的电容连接点。
源极(S)与高压功率回路的MOSFET的源极相连,兼做初级电路的公共点与参考点。
内部输出极MOSFET的占空比随控制引脚电流的增加而线性下降,控制电压的典型值为5.7 V,极限电压为9 V,控制端最大允许电流为100 mA。