北京师大附中1高一上学期1月月考数学试卷 含答案
- 格式:pdf
- 大小:993.18 KB
- 文档页数:6
北京市师大附中上学期高一年级期中考试数学试卷(AP 班)说明:本试卷共150分,考试时间120分钟。
一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设集合S ={1,3,5},T ={3,6},则S T 等于A. φB. {3}C.{1,3,5,6}D. R2. 函数f (x )=x -12的定义域是A. (-∞,1)B. (]1,∞-C. RD. (-∞,1) ()∞+,13. 下列函数中在其定义域上是偶函数的是A. y =2xB. y =x 3C. y =x 21D. y =x 2-4. 下列函数中,在区间(0,+∞)上是增函数的是A. y =-x 2B. y = x 2-2C. y =221⎪⎭⎫ ⎝⎛ D. y =log 2x 1 5. 已知函数f (x )=x +1,x ∈R,则下列各式成立的是A. f (x )+f (-x )=2B. f (x )f (-x )=2C. f (x )=f (-x )D. –f (x )=f (-x )6. 设函数f (x )=a x -(a>0),且f (2)=4,则A. f (-1)>f (-2)B. f (1)>f (2)C. f (2)<f (-2)D.f (-3)>f (-2)7. 已知a =log 20.3,b =23.0,c =0.32.0,则a ,b ,c 三者的大小关系是A. a>b>cB. b>a>cC. b>c>aD. c>b>a8. 函数f (x )=log a (x -2)+3,a>0,a ≠1的图像过点(4,27),则a 的值为 A. 22 B. 2 C. 4 D. 21 9. 当0<a<1时,下列不等式成立的是 A. a 1.0<a 2.0B. log a 0.1> log a 0.2C. a 2<a 3D. log a 2< log a 310. A semipro baseball league has teams with 21 players each. League rules state that a player must be paid at least $15,000,and that the total of all players’ salaries for each team cannot exceed $700,000. What is the maximum possible salary ,in dollars ,for a single player ?A. 270,000B. 385,000C. 400,000D. 430,000E.700,000二、填空题:本大题共8小题,每小题4分,共32分。
北京市师大附中-上学期高一年级期中考试数学试卷(满分150分,考试时间1)第Ⅰ卷(模块卷)一、选择题:本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设全集{}8,7,6,5,4,3,2,1=U ,集合{}5,3,1=S ,{}6,3=T ,则)(T S C U 等于( ) A. ∅ B. {}8,7,4,2 C. {}6,5,3,1 D. {}8,6,4,2 2. 给定映射f :)2,2(),(y x y x y x -+→,在映射f 下(3,1)的原象为( )A. (1,3)B. (1,1)C. (3,1)D. (21,21) 3. 下列函数中是偶函数且在(0,1)上单调递减的是( )A. 31x y -= B. 4x y = C. 21x y = D. 2-=x y4. 已知3.0log 2=a ,3.02=b ,2.03.0=c ,则c b a ,,三者的大小关系是( )A. c b a >>B. c a b >>C. a c b >>D. a b c >>5. 设函数3x y =与2)21(-=x y 的图象的交点为),(00y x ,则0x 所在的区间是( )A. (0,1)B. (1,2)C. (2,3)D. (3,4)6. 若函数)(x f y =是函数xa y =(0>a ,且1≠a )的反函数,其图象经过点),(a a ,则=)(x f ( )A. x 2logB. x 21log C.x 21 D. 2x 7. 函数210552)(xx x x f --+-=( )A. 是奇函数但不是偶函数B. 是偶函数但不是奇函数C. 既是奇函数又是偶函数D. 既不是奇函数又不是偶函数8. 已知实数0,0≥≥b a 且1=+b a ,则22)1()1(+++b a 的取值范围为( )A. ⎥⎦⎤⎢⎣⎡5,29B. ⎪⎭⎫⎢⎣⎡+∞,29C. ⎥⎦⎤⎢⎣⎡29,0 D. []5,0二、填空题:本大题共5小题,每小题5分,共25分。
2023北京首都师大附中高一10月月考化 学可能用到的相对原子质量H 1,O 16,Na 23,Cl 35.5,Cu 64第I 卷 (共45分)一、选择题(本大题共15小题,每小题3分,共45分。
在每小题所列出的四个选项中,只有一项是最符合题目要求的)1. 下列物质中氮元素的化合价最低的是 A. 3NaNOB. 2NOC. 4NH ClD. 2N2. 物质是由微观粒子构成的,下列物质由原子直接构成的是 A. 铜B. 水蒸气C. 氯化钠D. 氢氧化铜3. 下列各组物质中,均由分子构成的一组是 A. 2Hg H O 、B. 4NaCl CuSO 、C. 23N NH 、D. 60Fe C 、4. 下列原子在化学变化中易得电子的是A. B. C. D.5. 下列粒子的结构示意图中,表示阴离子的是( )A.B.C.D.6. 高铁酸钾 (K 2FeO 4)是具有紫色光泽的粉末,它是一种集氧化、吸附、凝聚、杀菌、灭藻为一体的新型、高效的多功能水处理剂。
24K FeO 中铁元素的化合价是 A. +5B. +6C. +7D. +87. 分类法是学习和研究化学的一种常用科学方法,下列分类合理的是 ①根据酸分子中所含氢原子的个数将酸分为一元酸、二元酸等 ②碱性氧化物一定是金属氧化物 ③由同种元素组成的物质一定是单质④2SiO 能与NaOH 溶液反应生成23Na SiO 和2H O ,故2SiO 是酸性氧化物 A. ①②B. ②③C. ②④D. ①④8. 下列说法正确的是 A. 纯碱、烧碱均属于碱B. Na 2CO 3·10H 2O 属于纯净物C. 凡是能在水中电离出H +的化合物均属于酸D. 盐类物质一定含有金属阳离子9. 如图表示的一些物质或概念间的从属关系中不正确的是A. X 为含氧酸、Y 为酸、Z 为化合物B. X 为氧化物、Y 为化合物、Z 为纯净物C. X 为强碱、Y 为碱、Z 为化合物D. X 为酸性氧化物、Y 为非金属氧化物、Z 为氧化物 10. 下列物质的分类正确的是A. AB. BC. CD. D11. 常温下,下列物质中易溶于水的是 A. 4MgSOB. 24Ag SOC. 3Fe(OH)D. 3BaCO12. 下列化学方程式书写正确的是A. 铁片与盐酸反应:322Fe 6HCl 2FeCl 3H +=+↑B. 向氯化钙溶液中通入二氧化碳:2223CaCl CO H O CaCO 2HCl ++=+C. 氢氧化钾溶液吸收少量二氧化碳:22322KOH CO K CO H O +=+D. 氢氧化钡溶液与硫酸溶液反应:22442Ba(OH)H SO BaSO H O +=↓+13. 奥运五环代表着全世界五大洲的人民团结在一起。
2020-2021学年北京师大附属中学高一数学文月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 函数y=的单调递增区间为( )A.(﹣∞,0] B.[0,+∞) C.(﹣1,+∞)D.(﹣∞,﹣1)参考答案:A【考点】指数函数的图像变换.【专题】应用题;数形结合;定义法;函数的性质及应用.【分析】根据复合函数单调性之间的关系即可得到结论.【解答】解:∵y=,∴设t=x2﹣1,则y=t,则函数t=x2﹣1在(﹣∞,0],y=t在其定义域上都是减函数,∴y=在(﹣∞,0]上是单调递增,故选:A.【点评】本题主要考查复合函数的单调性的判定,利用指数函数的单调性的性质是解决本题的关键.2. △ABC的内角A,B,C的对边分别为a,b,c,若,则A=()A. B. C. D.参考答案:A【分析】由余弦定理可求出,再求.【详解】由余弦定理可得,又,所以. 故选A.【点睛】本题考查余弦定理.,,,对于余弦定理,一定要记清公式的形式.3. 已知五数成等比数列,四数成等差数列,则()A、 B、 C、 D、参考答案:C略4. 已知函数对任意时都有意义,则实数a的范围是()A. B.C. D.参考答案:A略5. (多选题)已知实数a、b,判断下列不等式中哪些一定是正确的()A. B.C. D.参考答案:CD【分析】当,时,不成立;当,时,不成立;由利用基本不等式即可判断;由,可判断.【详解】当,时,不成立;当时,不成立;;,故,故选:CD.6. 某天,10名工人生产同一零件,生产的件数分别是16,18,15,11,16,18,18,17, 15,13,设其平均数为,中位数为,众数为c,则有A.>>c B.>c> C.c>>D.c>>参考答案:D略7. 已知a,b为非零实数,且a<b,则下列命题一定成立的是()A.a2<b2 B.C.a3b2<a2b3 D.ac2<bc2参考答案:C【考点】基本不等式;不等关系与不等式.【分析】给实数a,b 取2个值,代入各个选项进行验证,A、B、D都不成立.即可得出答案.【解答】解:对于A,若a=﹣3,b=2,则不等式a2<b2不成立;对于B,若a=1,b=2,则不等式不成立;对于C,a3b2﹣a2b3=a2b2(a﹣b)<0,不等式成立;对于D,若c=0,则不等式ac2<bc2不成立.故选C.【点评】通过给变量取特殊值,举反例来说明某个命题不正确,是一种简单有效的方法.8. 函数y = sin x cos x + cos x + sin x + 1的值域是()(A)[ 0,+ ∞ ) (B)( 0,+ ∞ ) (C)[–,+] (D)[ 0,+]参考答案:D9. 一项实验中获得的一组关于变量y,t之间的数据整理后得到如图所示的散点图.下列函数中可以近视刻画y与t之间关系的最佳选择是( )A.y=a t B.y=log a t C.y=at3 D.y=a参考答案:B【考点】函数解析式的求解及常用方法.【专题】函数思想;综合法;函数的性质及应用.【分析】可以判断各选项中的函数的增长速度的大小关系,增长速度相近的是B和D,都显然小于A,C的增长速度,从而来判断B,D应选哪个:若用y=log a t刻画时,根据第一个点(2,1)容易求出a=2,从而可以判断(4,2),(8,3),(16,4)这几个点都满足函数y=log2t,这便说明用该函数刻画是可以的,而同样的方法可以说明不能用D选项的函数来刻画.【解答】解:各选项函数的增长速度的大小关系为:y=a t和y=at3的增长速度显然大于的增长速度,现判断是函数y=log a t和中的哪一个:(1)若用函数y=log a t刻画:由图看出1=log a2,∴a=2;∴log24=2,log28=3,log216=4;显然满足图形上几点的坐标;∴用y=log a t刻画是可以的;(2)若用函数y=a刻画:由1=a得,;∴,而由图看出t=8时,y=3;∴不能用函数来刻画.故选B.【点评】考查函数散点图的概念,清楚指数函数,对数函数和幂函数的增长速度的关系,清楚本题各选项中函数的图象,待定系数求函数解析式的方法,通过几个特殊点来验证一个函数解析式能否来反映散点图中两个变量关系的方法.10. 已知扇形的弧长是8,其所在圆的直径是4,则扇形的面积是()A. 8B. 6C. 4D. 16参考答案:A【分析】直接利用扇形的面积公式求解.【详解】扇形的弧长,半径,由扇形的面积公式可知,该扇形的面积.故选:A【点睛】本题主要考查扇形面积的计算,意在考查学生对该知识的理解掌握水平和分析推理能力. 二、填空题:本大题共7小题,每小题4分,共28分11. 若函数参考答案:.解析:∴由①注意到由①得:②再注意到当且仅当于是由②及得12. 集合A={﹣1,0,1},B={a+1,2a},若A∩B={0},则实数a的值为_____________.参考答案:-1略13. 若直线与直线互相垂直,那么的值等于。
2019-2020学年北京师大附中高一(上)第一次月考数学试卷一、选择题共8小题,每小题4分,共32分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.(4分)设集合A={0,1,2,3},集合B={2,3,4},则A∩B=()A.{2,3}B.{0,1}C.{0,1,4}D.{0,1,2,3,4} 2.(4分)命题“∃x0∈R,x02+x0+1<0”的否定为()A.不存在x0∈R,B.∃x0∈R,C.∀x∈R,x2+x+1<0D.∀x∈R,x2+x+1≥03.(4分)设四边形ABCD的两条对角线为AC,BD,则“四边形ABCD为菱形”是“AC ⊥BD”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.(4分)对于任意实数a,b,c,d以下四个命题中,其中正确的有()①ac2>bc2,则a>b,②若a>b,c>d,则a+c>b+d;③若a>b,c>d,则ac>bd;④若a>b,则.A.4个B.3个C.2个D.1个5.(4分)已知正数x,y满足xy=16,则x+y()A.有最大值4B.有最小值4C.有最大值8D.有最小值8 6.(4分)如图,I是全集,M、P、S是I的3个子集,则阴影部分所表示的集合是()A.(M∩P)∩S B.(M∩P)∪S C.(M∩P)∩∁I S D.(M∩P)∪∁I S 7.(4分)已知集合A={a﹣2,a2+4a,10},若﹣3∈A,则实数a的值为()A.﹣1B.﹣3C.﹣3或﹣1D.无解8.(4分)在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为()A.甲、乙、丙B.乙、甲、丙C.丙、乙、甲D.甲、丙、乙二、填空题共8小题,每小题4分,共32分9.(4分)不等式组的解集为.10.(4分)若集合A={x||x﹣1|<1},B={x|x2﹣x=0},则A∪B=.11.(4分)关于x的不等式ax2+bx+2>0的解集是{x|﹣1<x<2},则a+b=.12.(4分)已知x>1,当x=时,则有最小值为.13.(4分)若不等式ax2+ax﹣1>0的解集为∅,则实数a的取值范围是.14.(4分)已知集合A={x|<0},若1∉A,则实数a的取值范围为.15.(4分)已知集合A={x|x<a},B={x|x2﹣5x+4≥0},若P:“x∈A”是Q:“x∈B”的充分不必要条件,则实数a的取值范围为.16.(4分)设a+b=2019,b>0,则当a=时,+取得最小值.三、解答题共4小题,共36分。
师大附中高一第一学期月考试卷
一、选择题
1.下列说法正确的是
A.三点确定一个平面
B.四边形一定是平面图形
C.梯形一定是平面图形
D.共点的三条直线确定一个平面
2.把边长为a的正方形卷成圆柱形,则圆柱的体积是
A.
3.下列说法正确的是
A.平面和平面只有一个公共点
B.不共面的四点中,任何三点不共线
C.两两相交的三条直线共面
D.有三个公共点的两平面必重合
4.设是两条不同的直线,是两个不同的平面,其中正确的命题是
5.在正方体中,异面直线与所成的角为
6.在三棱柱中,各棱长相等,侧棱垂直于底面,点是侧面的中心,则与平面所成角的大小是
7.如图,三棱柱中,侧棱底面,底面三角形是正三角形,是中点,则下列叙述正确的是
A.为异面直线,且
B.平面
C.。
大联考湖南师大附中2025届高三月考试卷(一)数学命题人:高三数学备课组 审题人:高三数学备课组时量:120分钟 满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,1. 已知{}()260,{lg 10}A x x x B x x =+-≤=-<∣∣,则A B = ( )A. {}32xx -≤≤∣ B. {32}x x -≤<∣C. {12}xx <≤∣ D. {12}xx <<∣【答案】D【解析】【分析】通过解一元二次不等式和对数函数的定义域,求出集合,A B ,再求交集.【详解】集合{}()32,{lg 10}{12}A x x B x x x x =-≤≤=-<=<<∣∣∣,则{12}A B xx ⋂=<<∣,故选:D .2. 若复数z 满足()1i 3i z +=-+(i 是虚数单位),则z 等于( )A. B. 54 C. D. 【答案】C【解析】【分析】由复数的除法运算计算可得12i z =-+,再由模长公式即可得出结果.【详解】依题意()1i 3i z +=-+可得()()()()3i 1i 3i 24i 12i 1i 1i 1i 2z -+--+-+====-+++-,所以z ==.故选:C 3. 已知平面向量()()5,0,2,1a b ==- ,则向量a b + 在向量b 上的投影向量为( )A. ()6,3-B. ()4,2-C. ()2,1- D. ()5,0【答案】A【解析】【分析】根据投影向量的计算公式即可求解.【详解】()()7,1,15,a b a b b b +=-+⋅=== 所以向量a b + 在向量b 上的投影向量为()()236,3||a b b b b b +⋅==- .故选:A4. 记n S 为等差数列{}n a 的前n 项和,若396714,63a a a a +==,则7S =( )A. 21B. 19C. 12D. 42【答案】A【解析】【分析】根据等差数列的性质,即可求解公差和首项,进而由求和公式求解.【详解】{}n a 是等差数列,396214a a a ∴+==,即67a =,所以67769,a a a a ==故公差76162,53d a a a a d =-=∴=-=-,()767732212S ⨯∴=⨯-+⨯=,故选:A 5. 某校高二年级下学期期末考试数学试卷满分为150分,90分以上(含90分)为及格.阅卷结果显示,全年级1200名学生的数学成绩近似服从正态分布,试卷的难度系数(难度系数=平均分/满分)为0.49,标准差为22,则该次数学考试及格的人数约为( )附:若()2,X N μσ~,记()()p k P k X k μσμσ=-≤≤+,则()()0.750.547,10.683p p ≈≈.A. 136人B. 272人C. 328人D. 820人【答案】B【解析】【分析】首先求出平均数,即可得到学生的数学成绩2~(73.5,22)X N ,再根据所给条件求出(5790)P X ≤≤,即可求出(90)P X ≥,即可估计人数.【详解】由题得0.4915073.5,22μσ=⨯==,()()(),0.750.547p k P k X k p μσμσ=-≤≤+≈ ,()5790P X ∴≤≤()0.750.547p =≈,()()900.510.5470.2265P X ≥=⨯-=,∴该校及格人数为0.22651200272⨯≈(人),故选:B .6. 已知()π5,0,,cos ,tan tan 426αβαβαβ⎛⎫∈-=⋅= ⎪⎝⎭,则αβ+=( )A. π6 B. π4 C. π3 D. 2π3【答案】D【解析】【分析】利用两角差的余弦定理和同角三角函数的基本关系建立等式求解,再由两角和的余弦公式求解即可.【详解】由已知可得5cos cos sin sin 6sin sin 4cos cos αβαβαβαβ⎧⋅+⋅=⎪⎪⎨⋅⎪=⋅⎪⎩,解得1cos cos 62sin sin 3αβαβ⎧⋅=⎪⎪⎨⎪⋅=⎪⎩,,()1cos cos cos sin sin 2αβαβαβ∴+=⋅-⋅=-,π,0,2αβ⎛⎫∈ ⎪⎝⎭,()0,παβ∴+∈,2π,3αβ∴+=,故选:D .7. 已知12,F F 是双曲线22221(0)x y a b a b-=>>的左、右焦点,以2F 为圆心,a 为半径的圆与双曲线的一条渐近线交于,A B 两点,若123AB F F >,则双曲线的离心率的取值范围是( )A. ⎛ ⎝B. ⎛ ⎝C. (D. (【答案】B【解析】【分析】根据双曲线以及圆的方程可求得弦长AB =,再根据不等式123AB F F >整理可得2259c a <,即可求得双曲线的离心率的取值范围.【详解】设以()2,0F c 为圆心,a 为半径的圆与双曲线的一条渐近线0bx ay -=交于,A B 两点,则2F 到渐近线0bx ay -=的距离d b ==,所以AB =,因为123AB F F >,所以32c ⨯>,可得2222299a b c a b ->=+,即22224555a b c a >=-,可得2259c a <,所以2295c a <,所以e <,又1e >,所以双曲线的离心率的取值范围是⎛ ⎝.故选:B 8. 已知函数()220log 0x a x f x x x ⎧⋅≤=⎨>⎩,,,,若关于x 的方程()()0f f x =有且仅有两个实数根,则实数a 的取值范围是( )A. ()0,1 B. ()(),00,1-∞⋃ C. [)1,+∞ D. ()()0,11,+∞ 【答案】C【解析】【分析】利用换元法设()u f x =,则方程等价为()0f u =,根据指数函数和对数函数图象和性质求出1u =,利用数形结合进行求解即可.【详解】令()u f x =,则()0f u =.①当0a =时,若()0,0u f u ≤=;若0u >,由()2log 0f u u ==,得1u =.所以由()()0f f x =可得()0f x ≤或()1f x =.如图所示,满足()0f x ≤的x 有无数个,方程()1f x =只有一个解,不满足题意;②当0a ≠时,若0≤u ,则()20uf u a =⋅≠;若0u >,由()2log 0f u u ==,得1u =.所以由()()0f f x =可得()1f x =,当0x >时,由()2log 1f x x ==,可得2x =,因为关于x 的方程()()0ff x =有且仅有两个实数根,则方程()1f x =在(,0∞-]上有且仅有一个实数根,若0a >且()(]0,20,x x f x a a ≤=⋅∈,故1a ≥;若0a <且()0,20xx f x a ≤=⋅<,不满足题意.综上所述,实数a 的取值范围是[)1,+∞,故选:C .二、多选题:本题共36分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分9. 如图,在正方体111ABCD A B C D -中,E F M N ,,,分别为棱111AA A D AB DC ,,,的中点,点P 是面1B C 的中心,则下列结论正确的是( )A. E F M P ,,,四点共面B. 平面PEF 被正方体截得的截面是等腰梯形C. //EF 平面PMND. 平面MEF ⊥平面PMN【答案】BD 【解析】【分析】可得过,,E F M 三点的平面为一个正六边形,判断A ;分别连接,E F 和1,B C ,截面1C BEF 是等腰梯形,判断B ;分别取11,BB CC 的中点,G Q ,易证EF 显然不平行平面QGMN ,可判断C ;EM ⊥平面PMN ,可判断D.【详解】对于A :如图经过,,E F M 三点的平面为一个正六边形EFMHQK ,点P 在平面外,,,,E F M P ∴四点不共面,∴选项A 错误;对于B :分别连接,E F 和1,B C ,则平面PEF 即平面1C BEF ,截面1C BEF 是等腰梯形,∴选项B 正确;对于C :分别取11,BB CC 的中点,G Q ,则平面PMN 即为平面QGMN ,由正六边形EFMHQK ,可知HQ EF ,所以MQ 不平行于EF ,又,EF MQ ⊂平面EFMHQK ,所以EF MQ W = ,所以EF I 平面QGMN W =,所以EF 不平行于平面PMN ,故选项C 错误;对于D :因为,AEM BMG 是等腰三角形,45AME BMG ∴∠=∠=︒,90EMG ∴∠=︒,EM MG ∴⊥,,M N 是,AB CD 的中点,易证MN AD ∥,由正方体可得AD ⊥平面11ABB A ,MN ∴⊥平面11ABB A ,又ME ⊂平面11ABB A ,EM MN ∴⊥,,MG MN ⊂ 平面PMN ,EM ∴⊥平面GMN ,EM ⊂ 平面MEF ,∴平面MEF ⊥平面,PMN 故选项D 正确.故选:BD .10. 已知函数()5π24f x x ⎛⎫=+ ⎪⎝⎭,则( )A. ()f x 的一个对称中心为3π,08⎛⎫ ⎪⎝⎭B. ()f x 的图象向右平移3π8个单位长度后得到的是奇函数的图象C. ()f x 在区间5π7π,88⎡⎤⎢⎥⎣⎦上单调递增D. 若()y f x =在区间()0,m 上与1y =有且只有6个交点,则5π13π,24m ⎛⎤∈ ⎥⎝⎦【答案】BD【解析】【分析】代入即可验证A ,根据平移可得函数图象,即可由正弦型函数的奇偶性求解B ,利用整体法即可判断C ,由5πcos 24x ⎛⎫+= ⎪⎝⎭求解所以根,即可求解D.【详解】对于A ,由35π3π2π0848f ⎛⎫⎛⎫=+⨯=≠ ⎪ ⎪⎝⎭⎝⎭,故A 错误;对于B ,()f x 的图象向右平移3π8个单位长度后得:3π3π5ππ228842y f x x x x ⎡⎤⎛⎫⎛⎫⎛⎫=-=-+=+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,为奇函数,故B 正确;对于C ,当5π7π,88x ⎡⎤∈⎢⎥⎣⎦时,则5π5π2,3π42x ⎡⎤+∈⎢⎥⎣⎦,由余弦函数单调性知,()f x 在区间5π7π,88⎡⎤⎢⎥⎣⎦上单调递减,故C 错误;对于D ,由()1f x =,得5πcos 24x ⎛⎫+= ⎪⎝⎭ππ4x k =+或ππ,2k k +∈Z ,()y f x =在区间()0,m 上与1y =有且只有6个交点,其横坐标从小到大依次为:ππ5π3π9π5π,,,,,424242,而第7个交点的横坐标为13π4,5π13π24m ∴<≤,故D 正确.故选:BD11. 已知定义在R 上的偶函数()f x 和奇函数()g x 满足()()21f x g x ++-=,则( )A. ()f x 的图象关于点()2,1对称B. ()f x 是以8为周期的周期函数C. ()20240g =D. 20241(42)2025k f k =-=∑【答案】ABC【解析】【分析】根据函数奇偶性以及所满足的表达式构造方程组可得()()222f x f x ++-=,即可判断A 正确;利用对称中心表达式进行化简计算可得B 正确,可判断()g x 也是以8为周期的周期函数,即C 正确;根据周期性以及()()42f x f x ++=计算可得20241(42)2024k f k =-=∑,可得D 错误.【详解】由题意()()()(),f x f x g x g x -=-=-,且()()()00,21g f x g x =++-=,即()()21f x g x +-=①,用x -替换()()21f x g x ++-=中的x ,得()()21f x g x -+=②,由①+②得()()222f x f x ++-=所以()f x 的图象关于点(2,1)对称,且()21f =,故A 正确;由()()222f x f x ++-=,可得()()()()()42,422f x f x f x f x f x ++-=+=--=-,所以()()()()82422f x f x f x f x ⎡⎤+=-+=--=⎣⎦,所以()f x 是以8为周期的周期函数,故B 正确;由①知()()21g x f x =+-,则()()()()882121g x f x f x g x +=++-=+-=,故()()8g x g x +=,因此()g x 也是以8为周期的周期函数,所以()()202400g g ==,C 正确;又因为()()42f x f x ++-=,所以()()42f x f x ++=,令2x =,则有()()262f f +=,令10x =,则有()()10142,f f +=…,令8090x =,则有()()809080942f f +=,所以1012(2)(6)(10)(14)(8090)(8094)2222024f f f f f f ++++++=+++= 个所以20241(42)(2)(6)(10)(14)(8090)(8094)2024k f k f f f f f f =-=++++++=∑ ,故D 错误.故选:ABC【点睛】方法点睛:求解函数奇偶性、对称性、周期性等函数性质综合问题时,经常利用其中两个性质推得第三个性质特征,再进行相关计算.三、填空题:本题共3小题,每小题5分,共15分.12. 6(31)x y +-的展开式中2x y 的系数为______.【答案】180-【解析】【分析】根据题意,由条件可得展开式中2x y 的系数为213643C C (1)⋅-,化简即可得到结果.【详解】在6(31)x y +-的展开式中,由()2213264C C 3(1)180x y x y ⋅⋅-=-,得2x y 的系数为180-.故答案为:180-.13. 已知函数()f x 是定义域为R 的奇函数,当0x >时,()()2f x f x '->,且()10f =,则不等式()0f x >的解集为__________.【答案】()()1,01,-⋃+∞【解析】【分析】根据函数奇偶性并求导可得()()f x f x ''-=,因此可得()()2f x f x '>,可构造函数()()2x f x h x =e并求得其单调性即可得()f x 在()1,+∞上大于零,在()0,1上小于零,即可得出结论.【详解】因为()f x 为奇函数,定义域为R ,所以()()f x f x -=-,两边同时求导可得()()f x f x ''--=-,即()()f x f x ''-=且()00f =,又因为当0x >时,()()2f x f x '->,所以()()2f x f x '>.构造函数()()2x f x h x =e ,则()()()22x f x f x h x '-'=e,所以当0x >时,()()0,h x h x '>在()0,∞+上单调递增,又因为()10f =,所以()()10,h h x =在()1,+∞上大于零,在()0,1上小于零,又因为2e 0x >,所以()f x 在()1,+∞上大于零,在()0,1上小于零,因为()f x 为奇函数,所以()f x 在(),1∞--上小于零,在()1,0-上大于零,综上所述,()0f x >的解集为()()1,01,-⋃+∞.故答案为:()()1,01,-⋃+∞14. 已知点C 为扇形AOB 的弧AB 上任意一点,且60AOB ∠=,若(),R OC OA OB λμλμ=+∈ ,则λμ+的取值范围是__________.【答案】⎡⎢⎣【解析】【分析】建系设点的坐标,再结合向量关系表示λμ+,最后应用三角恒等变换及三角函数值域求范围即可.【详解】方法一:设圆O 的半径为1,由已知可设OB 为x 轴的正半轴,O 为坐标原点,过O 点作x 轴垂线为y 轴建立直角坐标系,其中()()1,1,0,cos ,sin 2A B C θθ⎛ ⎝,其中π,0,3BOC θθ⎡⎤∠=∈⎢⎥⎣⎦,由(),R OC OA OB λμλμ=+∈ ,即()()1cos ,sin 1,02θθλμ⎛=+ ⎝,整理得1cos sin 2λμθθ+==,解得cos λμθ==,则ππcos cos ,0,33λμθθθθθ⎛⎫⎡⎤+==+=+∈ ⎪⎢⎥⎝⎭⎣⎦,ππ2ππ,,sin 3333θθ⎤⎡⎤⎛⎫+∈+∈⎥⎪⎢⎥⎣⎦⎝⎭⎦所以λμ⎡+∈⎢⎣.方法二:设k λμ+=,如图,当C 位于点A 或点B 时,,,A B C 三点共线,所以1k λμ=+=;当点C 运动到AB的中点时,k λμ=+==,所以λμ⎡+∈⎢⎣故答案为:⎡⎢⎣四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. ABC V 的内角,,A B C 的对边分别为,,a b c ,已知22cos a b c B +=.(1)求角C ;(2)若角C 的平分线CD 交AB于点,D AD DB ==CD 的长.【答案】(1)2π3C = (2)3CD =【解析】【分析】(1)利用正弦定理及两角和的正弦定理整理得到()2cos 1sin 0C B +=,再利用三角形的内角及正弦函数的性质即可求解;(2)利用正弦定理得出3b a =,再由余弦定理求出4a =,12b =,再根据三角形的面积建立等式求解.【小问1详解】由22cos a b c B +=,根据正弦定理可得2sin sin 2sin cos A B C B +=,则()2sin sin 2sin cos B C B C B ++=,所以2sin cos 2cos sin sin 2sin cos B C B C B C B ++=,整理得()2cos 1sin 0C B +=,因为,B C 均为三角形内角,所以(),0,π,sin 0B C B ∈≠,因此1cos 2C =-,所以2π3C =.【小问2详解】因为CD 是角C的平分线,AD DB ==所以在ACD 和BCD △中,由正弦定理可得,,ππsin sin sin sin 33AD CD BD CDA B ==,因此sin 3sin B ADA BD==,即sin 3sin B A =,所以3b a =,又由余弦定理可得2222cos c a b ab C =+-,即222293a a a =++,解得4a =,所以12b =.又ABC ACD BCD S S S =+△△△,即111sin sin sin 222ab ACB b CD ACD a CD BCD ∠∠∠=⋅⋅+⋅⋅,即4816CD =,所以3CD =.16. 已知1ex =为函数()ln af x x x =的极值点.(1)求a 的值;(2)设函数()ex kxg x =,若对()120,,x x ∀∈+∞∃∈R ,使得()()120f x g x -≥,求k 的取值范围.【答案】(1)1a = (2)(]()10,-∞-+∞ ,【解析】【分析】(1)直接根据极值点求出a 的值;(2)先由(1)求出()f x 的最小值,由题意可得是求()g x 的最小值,小于等于()f x 的最小值,对()g x 求导,判断由最小值时的k 的范围,再求出最小值与()f x 最小值的关系式,进而求出k 的范围.【小问1详解】()()111ln ln 1a a f x ax x x x a x xα--=='+⋅+,由1111ln 10e e e a f a -⎛⎫⎛⎫⎛⎫=+= ⎪ ⎪⎪⎝⎭⎝⎭'⎭⎝,得1a =,当1a =时,()ln 1f x x ='+,函数()f x 在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e∞⎛⎫+ ⎪⎝⎭上单调递增,所以1ex =为函数()ln af x x x =的极小值点,所以1a =.【小问2详解】由(1)知min 11()e e f x f ⎛⎫==- ⎪⎝⎭.函数()g x 的导函数()()1exg x k x -=-'①若0k >,对()1210,,x x k ∞∀∈+∃=-,使得()()12111e 1e k g x g f x k ⎛⎫=-=-<-<-≤ ⎪⎝⎭,即()()120f x g x -≥,符合题意.②若()0,0k g x ==,取11ex =,对2x ∀∈R ,有()()120f x g x -<,不符合题意.③若0k <,当1x <时,()()0,g x g x '<在(),1∞-上单调递减;当1x >时,()()0,g x g x '>在(1,+∞)上单调递增,所以()min ()1ek g x g ==,若对()120,,x x ∞∀∈+∃∈R ,使得()()120f x g x -≥,只需min min ()()g x f x ≤,即1e ek ≤-,解得1k ≤-.综上所述,k 的取值范围为(](),10,∞∞--⋃+.17. 已知四棱锥P ABCD -中,平面PAB ⊥底面,ABCD AD ∥,,,2,BC AB BC PA PB AB AB BC AD E ⊥====为AB 的中点,F 为棱PC 上异于,P C 的点.(1)证明:BD EF ⊥;(2)试确定点F 的位置,使EF 与平面PCD【答案】(1)证明见解析(2)F 位于棱PC 靠近P 的三等分点【解析】【分析】(1)连接,,PE EC EC 交BD 于点G ,利用面面垂直的性质定理和三角形全等,即可得证;(2)取DC 的中点H ,以E 为坐标原点,分别以,,EB EH EP 所在直线为,,x y z 轴建立,利用线面角公式代入即可求解.小问1详解】如图,连接,,PE EC EC 交BD 于点G .因为E 为AB 的中点,PA PB =,所以PE AB ⊥.因为平面PAB ⊥平面ABCD ,平面PAB ⋂平面,ABCD AB PE =⊂平面PAB ,所以PE ⊥平面ABCD ,因为BD ⊂平面ABCD ,所以BD ⊥.因为ABD BCE ≅ ,所以CEB BDA ∠∠=,所以90CEB ABD ∠∠+= ,所以BD EC ⊥,因为,,PE EC E PE EC ⋂=⊂平面PEC ,所以BD ⊥平面PEC .因为EF ⊂平面PEC ,所以BD EF ⊥.【小问2详解】如图,取DC 的中点H ,以E 为坐标原点,分别以,,EB EH EP 所在直线为,,x y z 轴建立空间直角坐标系,【设2AB =,则2,1,BC AD PA PB ====则()()()()0,0,1,1,2,0,1,1,0,0,0,0P C D E -,设(),,,(01)F x y z PF PC λλ=<<,所以()(),,11,2,1x y z λ-=-,所以,2,1x y z λλλ===-,即(),2,1F λλλ-.则()()()2,1,0,1,2,1,,2,1DC PC EF λλλ==-=-,设平面PCD 的法向量为(),,m a b c =,则00DC m PC m ⎧⋅=⎪⎨⋅=⎪⎩,,即2020a b a b c +=⎧⎨+-=⎩,,取()1,2,3m =--,设EF 与平面PCD 所成的角为θ,由cos θ=sin θ=.所以sin cos ,m EF m EF m EF θ⋅====整理得2620λλ-=,因为01λ<<,所以13λ=,即13PF PC = ,故当F 位于棱PC 靠近P 的三等分点时,EF 与平面PCD18. 在平面直角坐标系xOy 中,抛物线21:2(0)C y px p =>的焦点到准线的距离等于椭圆222:161C x y +=的短轴长,点P 在抛物线1C 上,圆222:(2)E x y r -+=(其中01r <<).(1)若1,2r Q =为圆E 上的动点,求线段PQ长度的最小值;(2)设()1,D t 是抛物线1C 上位于第一象限的一点,过D 作圆E 的两条切线,分别交抛物线1C 于点,M N .证明:直线MN 经过定点.【答案】(1(2)证明见解析【解析】【分析】(1)根据椭圆的短轴可得抛物线方程2y x =,进而根据两点斜率公式,结合三角形的三边关系,即可由二次函数的性质求解,(2)根据两点坐标可得直线,MN DM 的直线方程,由直线与圆相切可得,a b 是方程()()()2222124240rx r x r -+-+-=的两个解,即可利用韦达定理代入化简求解定点.【小问1详解】由题意得椭圆的方程:221116y x +=,所以短半轴14b =所以112242p b ==⨯=,所以抛物线1C 的方程是2y x =.设点()2,P t t ,则111222PQ PE ≥-=-=≥,所以当232ι=时,线段PQ.【小问2详解】()1,D t 是抛物线1C 上位于第一象限的点,21t ∴=,且()0,1,1t D >∴设()()22,,,M a a N b b ,则:直线()222:b a MN y a x a b a --=--,即()21y a x a a b -=-+,即()0x a b y ab -++=.直线()21:111a DM y x a --=--,即()10x a y a -++=.由直线DMr =,即()()()2222124240r a r a r -+-+-=..同理,由直线DN 与圆相切得()()()2222124240r b r b r -+-+-=.所以,a b 是方程()()()2222124240r x r x r -+-+-=的两个解,22224224,11r r a b ab r r --∴+==--代入方程()0x a b y ab -++=得()()222440x y r x y +++---=,220,440,x y x y ++=⎧∴⎨++=⎩解得0,1.x y =⎧⎨=-⎩∴直线MN 恒过定点()0,1-.【点睛】圆锥曲线中定点问题的两种解法(1)引进参数法:先引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:先根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.技巧:若直线方程为()00y y k x x -=-,则直线过定点()00,x y ;若直线方程为y kx b =+ (b 为定值),则直线过定点()0,.b 19. 龙泉游泳馆为给顾客更好的体验,推出了A 和B 两个套餐服务,顾客可选择A 和B 两个套餐之一,并在App 平台上推出了优惠券活动,下表是该游泳馆在App 平台10天销售优惠券情况.日期t 12345678910销售量千张1.91.982.22.362.432592.682.762.70.4经计算可得:10101021111 2.2,118.73,38510i i i i i i i y y t y t =======∑∑∑.(1)因为优惠券购买火爆,App 平台在第10天时系统出现异常,导致当天顾客购买优惠券数量大幅减少,已知销售量y 和日期t 呈线性关系,现剔除第10天数据,求y 关于t 的经验回归方程结果中的数值用分数表示;..(2)若购买优惠券的顾客选择A 套餐的概率为14,选择B 套餐的概率为34,并且A 套餐可以用一张优惠券,B 套餐可以用两张优惠券,记App 平台累计销售优惠券为n 张的概率为n P ,求n P ;(3)记(2)中所得概率n P 的值构成数列{}()N n P n *∈.①求n P 的最值;②数列收敛的定义:已知数列{}n a ,若对于任意给定的正数ε,总存在正整数0N ,使得当0n N >时,n a a ε-<,(a 是一个确定的实数),则称数列{}n a 收敛于a .根据数列收敛的定义证明数列{}n P 收敛.参考公式:()()()1122211ˆˆ,n niii ii i nniii i x x y y x y nx yay bx x x xnx====---==---∑∑∑∑.【答案】(1)673220710001200y t =+ (2)433774nn P ⎛⎫=+⋅- ⎪⎝⎭(3)①最大值为 1316,最小值为14;②证明见解析【解析】【分析】(1)计算出新数据的相关数值,代入公式求出 ,ab 的值,进而得到y 关于t 的回归方程;(2)由题意可知1213,(3)44n n n P P P n --=+≥,其中12113,416P P ==,构造等比数列,再利用等比数列的通项公式求解;(3)①分n 为偶数和n 为奇数两种情况讨论,结合指数函数的单调性求解;②利用数列收敛的定义,准确推理、运算,即可得证.【小问1详解】解:剔除第10天的数据,可得 2.2100.42.49y ⨯-==新,12345678959t ++++++++==新,则9922111119.73100.4114,73,38510285i i i i t y t ==⎛⎫⎛⎫=-⨯==-= ⎪ ⎪⎝⎭⎝⎭∑∑新新,所以912922119114,7395 2.4673ˆ2859560009i i i i t y t y b t t ==⎛⎫- ⎪-⨯⨯⎝⎭===-⨯⎛⎫- ⎪⎝⎭∑∑新新新新新,可得6732207ˆ 2.4560001200a=-⨯=,所以6732207ˆ60001200yt =+.【小问2详解】解:由题意知1213,(3)44n n n P P P n --=+≥,其中12111313,444416P P ==⨯+=,所以11233,(3)44n n n n P P P P n ---+=+≥,又由2131331141644P P +=+⨯=,所以134n n P P -⎧⎫+⎨⎬⎩⎭是首项为1的常数列,所以131,(2)4n n P P n -+=≥所以1434(2)747n n P P n --=--≥,又因为1414974728P -=-=-,所以数列47n P ⎧⎫-⎨⎬⎩⎭是首项为928-,公比为34-的等比数列,故143)74n n P --=-,所以1934433(()2847774n n n P -=--+=+-.【小问3详解】解:①当n 为偶数时,19344334()(28477747n n n P -=--+=+⋅>单调递减,最大值为21316P =;当n 为奇数时,19344334()(28477747n n n P -=--+=-⋅<单调递增,最小值为114P =,综上可得,数列{}n P 的最大值为1316,最小值为14.②证明:对任意0ε>总存在正整数0347[log ()]13N ε=+,其中 []x 表示取整函数,当 347[log ()]13n ε>+时,347log ()34333333()()()7747474n n n P εε-=⋅-=⋅<⋅=,所以数列{}n P 收敛.【点睛】知识方法点拨:与新定义有关的问题的求解策略:1、通过给出一个新的定义,或约定一种新的运算,或给出几个新模型来创设新问题的情景,要求在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实心信息的迁移,达到灵活解题的目的;2、遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、运算、验证,使得问题得以解决.方法点拨:与数列有关的问题的求解策略:3、若新定义与数列有关,可得利用数列的递推关系式,结合数列的相关知识进行求解,多通过构造的分法转化为等差、等比数列问题求解,求解过程灵活运用数列的性质,准确应用相关的数列知识.。
福建师大附中2024-2025学年第一学期高一第一次月考数学试卷一、单选题(每小题5分,共40分)1. 已知集合{}0,1A =,{}1,2B =,则A B 中元素的个数为A. 1B. 2C. 3D. 42. 设集合2{|0}M x x x =−≥,{|2}N x x =<,则M N = ( ) A. {|0}x x ≤ B. {|12}x x ≤< C {|01}x x ≤≤ D. {|0x x ≤或12}x ≤<3. 函数()f x =的定义域为( )A. [)3,∞−+B. [)2,−+∞C. [)2,+∞D. [)4,+∞4. 已知函数2()ln f x x ax ax =−+恰有两个零点,则实数a 的取值范围为( ) A. (,0)−∞ B. (0,)+∞C. (0,1)(1,)∪+∞D. (,0){1}−∞5. 偶函数在区间[0,a](a>0)上是单调函数,且f (0)·f (a )<0,则函数在区间[-a,a]内零点的个数是 A 1B. 2C. 3D. 06. 已知函数()32log ,041,0x x f x x x x >=++≤ ,函数()() F x f x b =−有四个不同零点1x 、2x 、3x 、4x ,且满足:1234x x x x <<<,则221323432x x x x x x +−的取值范围是A. )+∞B. 833,9C. [)3,+∞D. 8397. 定义域为R 的函数()f x 满足(2)3()f x f x +=,当[0,2]x ∈时,2()2f x x x =−,若[4,2]x ∈−−时,13()()18≥−f x t t恒成立,则实数t 的取值范围是( ) A. (](],10,3−∞−B.((,−∞C [)[)1,03,−+∞D.))+∞..的.8. 设函数()f x 的定义域为R ,且()()113f x f x =+,当(]1,0x ∈−时,()()1f x x x =+,若对任意(],x m ∈−∞,都有()8116f x ≥−,则实数m 的取值范围是( ) A. 7,3−∞B. 11,4−∞C. 9,4−∞D. (],3−∞二、多选题(每小题6分,共18分)9. 已知0a >,0b >,且1a b +=,则( ) A. 14ab ≥B. 2212a b +≥C. 22a b +≥D. ln 0a b +>10. 某数学课外兴趣小组对函数()()21lg 0,R +=≠∈x f x x x x的性质进行了探究,得到下列四个命题,其中正确的命题有( ) A. 函数()f x 的图象关于y 轴对称B. 当0x >时,()f x 是增函数,当0x <时,()f x 是减函数C. 函数()f x 的最小值是lg2D. 函数()f x 与2x =有四个交点11. 已知定义在R 上的函数()f x 满足()()()22024f x f x f ++=,且()21f x +是奇函数,则( ) A. ()f x 的图象关于点()1,0对称 B. ()()04f f = C. ()21f =D. 若1122f = ,则1001102i ifi =−=∑ 三、填空题(每小题5分,共15分)12. 已知集合{}A x x k =<,{}12B x x =<<,且A B B = ,则实数k 的取值范围是______.13. 已知函数()1log 1ayax −在[]0,2上单调递减,则实数a 取值范围是______.14. 设正数a ,b 满足, 11316a b a b +++=,则a bb a +的最大值是________.四、解答题(共77分)的15. 已知f (x )=x 2+2x -5,x ∈[t ,t +1],若f (x )的最小值为h (t ),写出h (t )的表达式.16. 已知集合26112x x A x −−=<∣,{22}B x x a =||+−<∣,若A B =∅ . (1)求实数a 的取值范围;(2)求2()23163a a y f a ==⋅−⋅的最值.17. 已知函数()x f x b a =⋅(,a b 为常数且0,1a a >≠)的图象经过点(1,8)A ,(3,32)B (1)试求,a b 的值;(2)若不等式11()()0xxm a b+−≥在(,1]x ∈−∞时恒成立,求实数m 的取值范围.18. 已知函数()()log 0,1a f x x a a =>≠. (1)若()()43f a f a +≤,求实数a 的取值范围;(2)设2a =,函数()()()()()232201g x f x m f x m m =−+−++<≤.(i )若1,2mx ∈ ,证明:()103g x ≤; (ii )若1,22x ∈,求()g x 的最大值()h m .19. 已知函数()()ln 1eaxf x bx =+−是偶函数,e 是自然对数的底数,e 2.71828≈(1; (2)当1b =时, (i )令()()()11g x f x f x =−++,[]11x ∈−,,求()g x 的值域;(ii )记121...nin i aa a a ==+++∑,已知12i x −≤≤,()1,2,...,1000i =,且100011000i i x ==∑,当()10001i i f x =∑取最大值时,求222121000...x x x +++的值.。