旋压成形工艺分析
- 格式:pptx
- 大小:4.07 MB
- 文档页数:62
金属旋压成形工艺引言金属旋压成形是一种常见的金属成形工艺,通过将金属材料置于旋转的模具中,通过轴向压力和旋转运动对金属材料进行塑性变形,从而得到所需形状和尺寸的产品。
金属旋压成形工艺在制造行业中得到广泛应用,广泛用于制造各种金属产品,如罐体、汽车零部件、工业容器等。
本文将介绍金属旋压成形工艺的原理、应用领域和工艺参数等内容。
原理金属旋压成形的基本原理是通过旋转压力对金属材料进行塑性变形,从而得到所需形状和尺寸的产品。
其具体步骤如下: 1. 将金属材料置于旋转的模具中,并夹紧以防止材料滑动。
2. 施加轴向压力,使金属材料受到压力作用。
3. 同时进行模具的旋转运动,使金属材料在轴向压力和旋转力的作用下发生塑性变形。
4. 根据产品的形状和尺寸要求,逐渐调整模具的位置和形状,使金属材料逐步完成所需的变形。
应用领域金属旋压成形工艺广泛应用于以下领域: 1. 罐体制造:金属旋压成形工艺可用于制造各种罐体,如油罐、气罐、水罐等。
通过金属旋压成形,可以使罐体具有较高的密封性和强度。
2. 汽车零部件:金属旋压成形工艺可用于制造汽车零部件,如汽车油箱、排气管等。
通过金属旋压成形,可以使零部件具有较好的耐压性和密封性。
3. 工业容器:金属旋压成形工艺可用于制造各种工业容器,如储罐、压力容器等。
通过金属旋压成形,可以使容器具有较高的耐压性和耐腐蚀性。
4. 金属管材加工:金属旋压成形工艺可用于加工金属管材,改变其形状和尺寸。
通过金属旋压成形,可以使金属管材具有较好的韧性和强度。
工艺参数金属旋压成形的工艺参数对成形效果和产品质量起着重要的影响。
常见的工艺参数包括: 1. 旋转速度:旋转速度是指旋转模具的转速,通常以每分钟转数(RPM)来表示。
旋转速度的选择要根据金属材料的性质和成形要求来确定,过高或过低的旋转速度都可能影响成形效果。
2. 压力:压力是指施加在金属材料上的轴向压力。
压力的选择要根据金属材料的硬度和成形要求来确定,过高或过低的压力都可能导致成形不良或产生内部应力。
旋压成形工艺分析旋压成形工艺是一种通过金属板料在专用旋压机上的旋转运动和变截面滚动压制,而成形出一种特定形状的金属件的加工方法。
旋压成形工艺具有高效、节能、节材等优点,广泛应用于汽车、航空航天、电子、建筑等领域。
本文将从旋压成形工艺的原理、工艺参数、设备特点和应用等方面进行详细分析。
首先,旋压成形工艺的原理是通过旋压机将金属板料置于一对针轮中间,并通过控制旋压机的转速和压力,使得针轮以一定的角速度旋转,同时向板料施加压力,使得板料在针轮的作用下产生塑性变形,从而得到特定形状的金属件。
其次,旋压成形工艺的工艺参数包括旋压工序的旋压角度、旋压速度和旋压压力等。
旋压角度是指旋压过程中针轮旋转角度的大小,一般情况下,旋压角度越大,所得到的零件曲线形状越复杂。
旋压速度是指旋压过程中针轮的旋转速度,旋压速度过快容易导致金属板料的撕裂,过慢则容易产生切削。
旋压压力是指施加在针轮上的压力大小,旋压压力的大小直接影响到成形件的表面质量和几何形状的精度。
再次,旋压成形工艺的设备特点主要有以下几个方面。
首先,旋压机具有高度自动化和智能化的特点,能够实现连续运行和自动控制。
其次,旋压机具有较小的占地面积和较高的生产效率,能够满足大规模生产的需求。
此外,旋压机具有结构简单、操作方便等特点,易于实现工艺参数的调整和产品的定型。
最后,旋压成形工艺的应用主要集中在汽车、航空航天、电子、建筑等领域。
在汽车领域,旋压成形工艺可以用于制造汽车零部件,如车轮罩、车身饰条等。
在航空航天领域,旋压成形工艺可以应用于制造薄壁管件、舵面部件等。
在电子领域,旋压成形工艺可以用于制造散热器、天线等。
在建筑领域,旋压成形工艺可以应用于制造门窗框、屋顶构件等。
总之,旋压成形工艺是一种高效、节能的金属加工方法,具有广泛的应用前景。
通过分析旋压成形工艺的原理、工艺参数、设备特点和应用等方面,可以更好地了解旋压成形工艺的特点和应用领域,为相关行业的生产和技术改进提供一定的指导和参考。
数控旋压成形工艺的实例应用与探讨山东鲁南机床有限公司王绍存王传河汪玉伟宋允臣旋压工艺成形技术是利用旋轮对旋转中的金属毛坯(板料、筒形件或锥形件)逐点施以压力,使之变形,金属材料晶粒重新排列,以获得所需形状、尺寸、强度要求的零件的加工方法,它综合了挤压、拉伸、轧制、弯曲和滚压等工艺特点,特别适合薄壁、回转体零件的成形加工。
旋压工艺基本分为普通旋压和强力旋压两种,该工艺是真正少无切削绿色环保的工艺。
旋压成形工艺涉及的工艺参数较多,在普通旋压机床上,未经系统培训的操作人员感觉较难掌握。
随着数控技术应用于旋压设备,操作人员经简单培训即可完成旋压工艺过程,因此越来越受到旋压成形加工企业的欢迎,进一步推动了数控旋压设备的进步和数控旋压技术的完善。
1.强力旋压强力旋压的正旋律原理:强力旋压时必须先予留出旋轮与芯模之间间隙Δ,也就是需确定经旋压后零件的壁厚,这遵循一个基本原理——旋压变形之正弦律。
以平板强旋圆锥形件(图1)为例;图1旋压后工件的壁厚tf ,与毛坯原始厚度t和锥形件的半锥角α之间的关系符合正弦律,即:t f = t0 Sinα式中:tf——旋压后工件的壁厚t——毛坯原始厚度α——工件的半锥角2.普旋工艺普旋工艺的原理:依据正旋率的计算分多道次旋压,采用正反渐开线组合运用,即所谓的贝齐埃凸凹曲线,该轨迹方式的运用能降低材料的减薄率,使变薄均匀,实现平稳旋压。
实际在数控旋压设备运用时,考虑数控系统的经济性选型,将分段圆弧代替渐开线,辅以直线过渡,再配合适当的往返点及相应的旋压参数,可以较便利的旋压出合格的产品(编程时可以借助CAD找正程序点)。
曲母线零件普旋工艺示意图(图2):图23.典型数控旋压工艺及模具设计实例以下典型工艺均在我公司PXK350A数控旋压机床上完成,单轮旋压,配置广州数控系统GSK980TDa。
3.1自动单循环强力旋压通常如图1中α>15°的锥体能在一道次中旋制,能产生较大的材料变薄成形,获得底厚边薄的产品。
近20年来,旋压成形技术突飞猛进,高精度数控和录返旋压机不断出现并迅速推广应用,目前正向着系列化和标准化方向发展。
在许多国家,如美国、俄罗斯、德国、日本和加拿大等国己生产出先进的标准化程度很高的旋压设备,这些旋压设备己基本定型,旋压工艺稳定,产品多种多样,应用范围日益广泛。
了解该产品之前我先来了解一下,液压成形工艺和旋压成形工艺,然后做出一个对比。
一、液压技术液压成形技术就是采用水、油或其它液体介质传递压力,使坯料在液体介质压力作用下紧贴刚性凸模或凹模成形。
与传统板材成形相比,板材液压成形技术的工艺难度大,设备结构复杂。
在国外,液压成形通常有专用的液压成形设备,但其价格昂贵,超过国内很多厂家的购买力。
二、旋压成形工艺介绍旋压是一种综合了锻造、挤压、拉伸、弯曲、环轧、横轧和滚挤等工艺特点的少无切削加工的先进工艺,将金属筒坯、平板毛坯或预制坯用尾顶顶在旋压机芯模上,由主轴带动芯棒和坯料旋转,同时旋压轮从毛坯一侧将材料挤压在旋转的芯模上,使材料产生逐点连续的塑性变形,从而获得各种母线形状的空心旋转体零件。
板料旋压成型通用于等断面制件的大批量生产。
由于使用多对辊轮的连续成型,可以滚制出许多壁薄、质轻、刚度大而且断面形状复杂的制件型材。
加上顺序旋压过程中可以与起状、卷筒、等多种工艺装置连动,形成流水作业,故生产效率极高,成本低廉,是现代加工制品中广泛应用和大力推广的特种工艺加工方法。
如自行车钢圈的生产,自来水管的生产,塑料龙骨的生产,波汶板的生产以及国外广为应用的不锈钢窗框的生产基本原理金属旋压技术的基本原理相似于古代的制陶生产技术。
旋压成型的零件一般为回转体筒形件或碟形件,旋压件毛坯通常为厚壁筒形件或圆形板料。
旋压机的原理与结构类似于金属切削车床。
在车床大拖板的位置,设计成带有有轴向运动动力的旋轮架,固定在旋轮架上的旋轮可作径向移动;与主轴同轴联接的是一芯模(轴),旋压毛坯套在芯模(轴)上;旋轮通过与套在芯模(轴)上的毛坯接触产生的摩擦力反向被动旋转;与此同时,旋轮架在轴向大推力油缸的作用下,作轴向运动。
材料加工技术学报103(2000)114-119金属成形:旋压过程的分析爱尔兰.达布林.Tallagh技术研究院机械工程研究室爱尔兰.达布林.Trinity学院机械制造工程研究室摘要:旋压经常用来制造那些冲压工具不能够适合其尺寸及体积的轴对称形状的工件。
旋压同时也有能力生产那些深冲压无法生产出来的部件。
在这篇论文中所提到的旋压就是不产生厚度变化的旋转成形过程。
它生产出的成品的厚度与毛坯的几乎一样。
通过改变形状把毛坯变成所需要的产品的方法通常有旋压和冲压这两种。
一个金属零件的冲压过程会受到其材料韧性的限制。
与工件旋压成形有关的更多是其压应变和由于弯曲断裂和拉断所引起的成形极限。
以前的作者作了许多关于旋压方面的研究。
这些研究分析主要强调的是旋压加工过程的局限性。
有一个关于旋压的分析介绍了不同旋压技术产生不同的应变而硬气极其不同的结果的情况。
这些实验结果对分步旋压操作的基本原理作出了解释。
这次实验所用的材料是轻规格的铝板材。
(Al99.0-Werkstoff 30205.材料条件HH,0.2%屈服强度110MP)关键词汇:金属旋压,普通旋压,剪切成形,旋转锻造1、引言这篇论文分析的是由旋压生产的一个简单的实验形状的产品。
这个旋压成形实验选用了多种不同直径的毛坯。
据研究,旋压的理论应变是在两种理想化的模式下产生的。
第一种是等厚度旋压过程;第二种则是纯剪切成形过程。
在加工过程中其周向应变为0,而径向的任意单元的位置是保持不变的,这种成形过程Kobayashi[1]称为剪切成形[4]或者是旋转锻造。
相反地,成形过程中,径向的任意单元的位置产生很大的变化的成形过程则称为普通旋压。
在普通旋压过程中,从毛坯到成品,其厚度保持不变。
从图1中我们可以清楚地看到分步旋压的工作原理。
由于外围半径的减少产生周向压应变和径向拉应变,因此每次旋压后都会产生凸缘。
由此可以认为板厚是不变的。
从图1中所示的成形情况可看出,周向应变εh是压应变,而径向应变εr是拉应变(也就是说圆盘所受的应变相切于板面,方向与旋转轴背离),厚度方向的应变εz 为0。
传统旋压成形技术简介旋压成形是一种板材连续局部塑性成形的技术;是一种综合了锻造、挤压、拉伸、弯曲、环轧、横轧和滚挤等工艺特点的少无切削加工的先进工艺。
传统的旋压工艺将金属筒坯、平板毛坯或预制坯用尾顶顶紧在旋压机芯模上,由主轴带动芯棒和坯料旋转,同时旋压轮从毛坯一侧将材料挤压在旋转的芯模上,使材料产生逐点连续的塑性变形,从而获得各种母线形状的空心旋转体零件。
如图 1.2 所示为旋压工艺的加工原理。
根据不同的分类方法,可以将旋压分为以下几种:(1)根据旋压加工过程中毛坯厚度的变化情况,一般将旋压工艺分为普通旋压和强力旋压两种[36-37]。
普通旋压时,在旋压成形过程中毛坯的厚度基本不发生变化;主要有拉深旋压、缩径旋压、扩径旋压、制梗成形等。
普通旋压是加工薄壁空心回转体零件的无屑加工工艺过程。
它借助旋轮对随芯模转动的金属圆板作进给运动的同时施压,主要改变其直径尺寸使其成为所需工件。
图1.3 为封头旋压工艺过程,是典型的普通旋压。
封头旋压通常是采用板料成形,变形前后壁厚不变化或者变化极小,直径变化较大,或收缩或扩大,旋压时较易失稳或局部拉薄,有单向前进旋压和往复摆动多道次逐步旋压两种方式。
强力旋压又称变薄旋压,是指在旋压成形过程中毛坯的厚度不断在减薄。
借助旋轮对随旋压模转动的金属圆板或管坯作进给运动并施压,加工薄壁空心回转体零件的无屑成形工艺过程。
变薄旋压属体积成形范畴,在成形过程中主要是壁厚减薄而直径尺寸基本不变。
(2)按旋压产品形状的不同,普通旋压又可分为拉深旋压、收颈旋压、扩径旋压、翻边旋压、卷边旋压、切边旋压、压筋旋压及表面精整旋压等;强力旋压又可分为流动旋压(又称筒形件变薄旋压)和剪切旋压(又称锥形件变薄旋压)。
(3)根据旋压过程中金属材料的流动方向不同,流动旋压可分为正旋和反旋。
正旋是指旋压过程中金属材料的流动方向与旋轮的进给方向相同;反旋是指旋压过程中金属材料的流动方向与旋轮的进给方向相反。
旋压的基本原理和加工工艺详解利用旋压工具(旋轮或擀棒)和芯模使毛坯边旋转边成形,生产金属空心回转体件的一种回转成形工艺。
旋压时,金属毛坯随芯模旋转或旋压工具绕毛坯和芯模旋转,旋压工具相对芯模作进给运动,从而使毛坯受压并产生连续局部变形以获得空心回转体零件,如图所示。
旋压时,旋压工具与毛坯接触面积小,毛坯只局部产生塑性变形,所需变形力小,可用小吨位的设备加工大型空心回转体制品。
旋压产品具有较高的尺寸精度和较低的表面粗糙度,力学性能好。
旋压工具制造简单,更换容易。
但旋压产量较低,品种受到一定限制,多适用于小批量多品种的产品。
旋压是一种古老的加工方法。
早在10世纪初,中谚藤:国就使用旋压方法把银锡等金属板旋压成各种器皿。
20世纪以来,旋压工艺在工业上得到广泛应用。
目前旋压工艺不仅用于加工铝、铜及其合金,而且越来越多地用于加工钢铁和稀有金属。
旋压的产品有日常生活用具、化工容器、各种形状的机器零件,航天器、航空器和火箭导弹的各种壳体部件等。
旋压按加工温度分为冷旋压、温旋压和热旋压。
一般多采用冷旋压。
旋压按金属变形特征分为普通旋压和强力旋压。
普通旋压改变毛坯的形状,扩大或缩小直径而基本不改变厚度的旋压方法。
这种旋压多用于成形各种薄壁的铝、铜、不锈钢等生活用具,如灯罩、炊具及手工艺品等。
普通旋压包括缩径旋压(缩旋)和扩径旋压(扩旋)。
此外,还可以完成一些切割、搭接等工作。
普通旋压有手工旋压、半自动旋压和自动旋压等。
缩径旋压使毛坯产生径向收缩的一种普通旋压。
缩旋除在旋压工具作用下使整体旋压成形外,还可以进行收口、收颈、压槽和收边等局部变形。
扩径旋压使毛坯产生径向胀大的一种普通旋压。
它除了整体扩旋成形外,还可以翻边、扩颈、扩口和压槽等局部成形。
扩颈旋压采用芯模在毛坯之外而旋轮在毛坯之内的内旋压法。
普通旋压工艺参数主要考虑坯料的尺寸和性能、旋轮进给量、仿形板的型面、道次间距及旋轮形状等。
普通旋压坯料一般用板坯。
旋轮进给量厂是芯模每转一圈时,旋压工具沿芯模母线移动的距离;常选,f=0.3~3m/r,f过大时制品易起皱,过小时制品易拉薄。
铝合金整体复合气瓶内胆旋压工艺分析摘要:本文通过对铝合金整体复合气瓶内胆旋压工艺进行分析,并结合实际着重分析了铝合金内胆旋压成形的规律以及铝合金内容旋压收口时的技术要点。
希望为关注铝合金整体复合气瓶内胆旋压工艺的人群带来帮助。
关键词:铝合金;旋压成形;流动旋压引言:铝合金整体复合气瓶内胆旋压工艺有着很长时间的发展历史,在旋压作业期间,通过编制旋压收口程序,能够使铝合金内胆通过旋压作业而成形,并保证内胆成形之后的稳定性。
因此,有必要对铝合金整体复合气瓶内胆旋压工艺展开分析。
一、旋压工艺的概述在我国,金属旋压成形工艺拥有约四十年的发展历史,这种金属成形工艺在我国的国防领域中的应用更加广泛。
金属旋压成形工艺可以分为普通以及强力两种旋压成形工艺。
普通旋压成形工艺在应用过程中不会改变毛坯的厚度,只会改变毛坯的形状。
而强力旋压成形工艺在应用过程中能在改变毛坯形状的同时一并改变毛坯的厚度,因此其所需要的旋压力相对较大,其旋压机结构也会比较复杂,在实际应用过程中需要根据具体需求来选择相应的旋压工艺。
二、旋压收口的工艺流程(一)旋压工艺参数确定在旋压工艺中最为主要的两个参数便是主轴转速以及进给量,在旋压过程中旋压机的主轴转速越高,越容易完成旋压收口作业。
如果在旋压过程中,旋压机的主轴转速过低,则会降低零件在旋压成形后的精度,而且还有可能在旋压过程中导致机床出现振动的情况,所以在正式开始旋压作业之前,作业人员需要提前进行旋压测试,以此来保证旋压机主轴的转速符合旋压作业时的要求。
而进给量对于旋压工艺也有着非常大的影响。
从第一道次开始,旋轮的进给量以及压下角不宜偏高,如果旋轮进给量过大,则容易导致金属变形量过大,从而导致毛坯出现问题,引发金属内部裂纹增加。
而通过多次反复测试之后,可以找出最为适当的旋轮进给量区间,这样才能保证旋压工艺作业时符合质量要求,通常情况下,在旋压作业过程中的最佳进给量为0.55-2.5mm/转。
旋压成形的原理、分类、特点及应用金属旋压是一种金属塑性成形工艺,该工艺能较容易的制作各种旋转对称的薄壁回转件和各种管件,因此也称为回转成型工艺。
旋压成形的原理金属旋压工艺是将被加工的金属毛坯(管坯)套在芯模上,而板坯通过尾顶压在芯模的端部,并与芯模一起随主轴旋转,旋轮沿芯模移动。
在旋轮的压力下,利用金属的可塑性,逐点将金属加工成所需要的空心回转体制件。
原理图示旋压成形的分类金属旋压工艺在旋制不同形状的制件时,综合了锻造、挤压、拉伸、弯曲、环轧、横轧和滚压等工艺的特点。
针对不同毛坯的变形特点,一般可以分为普通旋压和强力旋压两种。
●在旋压过程中,改变毛坯的形状而基本不改变其壁厚者称为普通旋压。
●在旋压过程中,既改变毛坯的形状又改变壁厚者称为强力旋压。
普通旋压局限于加工塑性较好和较薄的材料,尺寸准确度不易控制,要求操作者具有较高的技术水平。
强力旋压和普通旋压相比较,坯料凸缘部分在加工时不产生收缩变形,因为不会产生起皱现象。
旋压机床的机床功率较大,对厚度大的材料也能加工,同时制件的厚度沿母线有规律地变薄,较易控制。
旋压工艺的优点1. 金属变形条件好,旋压时由于旋轮与金属接触近乎点接触,因此接触面积小,单位压力高,可达2500~3500MPa以上,因此旋压适于加工高强度难变形的材料,而且,所需总变形力较小,从而使功率消耗大大降低。
加工同样大小的制件,旋压机床的吨位只是压力机吨位的1/20左右。
2. 制品范围广,根据旋压机的能力可以制作大直径薄壁管材、特殊管材、变断面管材已经以及球形、半球形、椭圆形、曲母线形以及带有阶梯和变化薄厚的几乎所有回转体制件,如火箭、导弹和卫星的鼻锥与壳体;潜水艇渗透密封环和鱼雷外壳,雷达反射镜和探照灯外壳;喷气发动机整流罩和原动机零件;液压缸、压气机外壳和圆筒;涡轮轴、喷管、电视锥、燃烧室椎体以及波纹管;干燥机、搅拌机和洗涤机的转筒;浅盘形、半球形封头、牛奶罐和空芯薄壁的日用品等。
二、工艺分析1、旋压过程分析⑴劈开轮劈开轮成形分为劈开、整形二个阶段。
垂直缸快速进给,在接近零件时转为工进并压紧零件(始终保压),主轴带动上下模旋转(见图2)。
X1劈开轮沿径向快速进给,接近工件时转换为工进,当X1进给了8~10mm后,X3整形轮沿径向快速进给(此时X1停留在原地)(图2 b),接近工件时转换为工进,此时X1和X3同时工进,在速度上X3比X1稍快一点。
当X1进给到预定深度,延时0.5~1.5秒后快速退回,X3继续工进,直到零件成形(图2 c)。
图 2 劈开轮旋压过程示意图在此旋压过程中要注意的问题有:1、垂直缸在压紧工件后应始终处于保压状态下,直到零件成形,X3退回;2、X1的进给位置一定要是在毛坯的二分之一处,偏差不能大于0.1mm,否则会产生劈偏现象,造成废品;3、X1和X3工进速度的协调关系(见图3);4、成形后槽型的回弹变形与X3的延时和X3旋轮尺寸之间的关系,当成形旋轮X3进给到位后,零件槽型部分会产生冷作硬化,角度尺寸有部分回弹现象,这时的X3旋轮的最终进给尺寸和延时量可以适当调整,最终保证角度尺寸不会超差。
在设计X3旋轮时也可以将回弹因素考虑进去,X3的旋轮夹角可以在图纸要求的尺寸上增加1°至2°,使之在旋压结束时能补充回弹量。
图3 X1与X3工进速度的协调关系注:当X1的工进速度比X3快或两者相等,都会产生如图a的效果,这时会发生已经被劈开的材料边缘部分受材料内应力的作用向X1旋轮表面靠拢,最终产生相对摩擦。
这样会在X1旋轮表面留下一圈积削,而这些积削会划伤零件表面,从而影响零件表面质量。
只有当X3的进给速度比X1的进给速度稍快一点(但不能快太多,否则到最后会产生X3成了劈开轮,X1没有起到作用的情况),由X3撑开已经被劈开的材料部分,使被劈开的材料部分不会与X1产生相对摩擦。
从而保证产品质量。
⑵折叠轮折叠轮成形分为预成形、整形二个阶段。
垂直缸快速进给,在接近零件时转为工进并压紧零件(没有保压)。
学术研讨Academic research■ 吕勋恩解析铝合金半球壳体旋压成形工艺摘要:近些年,随着我国航天事业的发展,对航天技术的要求更高。
因此需要与之相配套的先进操作工艺。
相对传统工艺,铝合金半球壳体旋压成形工艺具有成本低,装备简单、材料利用率高、变形条件好、精度高和无切削塑性等优势。
因此这项工艺在航天领域应用较广,较大的推动了我国航天事业的发展。
笔者根据相关工作经验,主要探析铝合金半球壳体旋压成形工艺的相关问题,供大家参考和借鉴。
关键词:铝合金半球壳体;旋压成形工艺随着我国科学技术的发展,出现了铝合金半球壳体旋压成形工艺。
铝合金半球壳体旋压成形工艺是一种先进的工艺方法,可以使毛坯连续局部发生塑性积累,使其形成空心回转件。
旋压成形工艺主要分为普通旋压和变薄旋压等。
在工业生产中需要铝合金半球壳体,单纯的旋压工艺无法满足这一使用性能的要求。
因此,技术人员需要将旋压成形和冲压预成型结合起来,使其形成一项完整的操作工艺。
在此基础上相关专业人士可以对铝合金半球壳体的成形工艺进行研究,不断提高操作水平,使其更好的应用于相关领域。
1铝合金半球壳体旋压成形工艺概述经过冲压预成型工艺加工形成的半球形零件,对设备要求不高。
同时这项工艺具有利用率高的优势,因此在生产中应用非常广泛。
冲压预成形件具有带直边椭球封头的特点。
冲压预和旋压件的形状相近度越高,冲压预成形件也就具有越高的工作效率,冲压件成形工艺效果更加显著。
技术人员在具体操作过程中,有一些特别需要注意的地方,即在工业生产旋压时需要保证工件的贴膜性较好,同时也要保证工件具有良好的变形量。
此外,航天器用贮箱箱底的封头主要是椭球形或球形。
现阶段,国内这一工艺获得了较大的发展,各种贮箱封头主要采用的是旋压工艺。
这项工艺的优点是研制周期短和精度高等,大型贮箱封头工艺主要是拼焊或冲压等方式,在国内相关领域使用过程中,取得了良好的操作效果。
2热压预成形工艺分析操作热压预成形工艺需要技术人员遵循相关原则,必须在液压机上操作。