细菌纤维素的基本特性与其应用
- 格式:pdf
- 大小:211.56 KB
- 文档页数:4
细菌纳米纤维素市场发展现状引言细菌纳米纤维素是一种具有广泛应用前景的新兴材料,由于其独特的结构和性质,正在逐渐在各个领域得到应用。
本文将对细菌纳米纤维素市场的发展现状进行分析和总结,探讨其市场前景和潜在的挑战。
细菌纳米纤维素的定义和特点细菌纳米纤维素是一种由细菌合成的纳米级纤维素材料。
与其他纤维素材料相比,细菌纳米纤维素具有以下独特特点:1.高纯度:细菌纳米纤维素具有较高的纯度,不含杂质,能够满足多种高端领域的需求。
2.高强度:细菌纳米纤维素的强度远高于传统纤维素材料,具有优异的机械性能和抗拉强度。
3.可调性:细菌纳米纤维素的结构和性能可以通过调整细菌培养条件进行控制,满足不同应用的需求。
细菌纳米纤维素市场概况目前,细菌纳米纤维素市场正呈现出快速增长的趋势。
主要原因包括:1.应用领域的扩大:细菌纳米纤维素在医疗、纺织、食品和包装等领域的应用需求不断增加,推动了市场的发展。
2.技术进步:近年来,细菌纳米纤维素的合成技术得到了很大的改进,提高了生产效率和纤维素的品质,降低了生产成本。
3.政策支持:政府对于可持续发展和环境友好型材料的政策支持,进一步促进了细菌纳米纤维素市场的发展。
细菌纳米纤维素市场应用前景细菌纳米纤维素在各领域的应用前景广阔,以下为几个主要领域的展示:医疗领域细菌纳米纤维素在医疗领域具有重要应用潜力,可用于制备生物可降解的医用材料,如医用纱布、人工血管等,具有较好的生物相容性和可降解性。
纺织领域由于细菌纳米纤维素具有优异的物理性能和可调性,可用于制作高强度、透气性好的纺织材料。
例如,可用于生产功能性衣物、运动装备等。
食品领域细菌纳米纤维素可用作食品包装材料,具有良好的防潮性和抗菌性,可以延长食品的保鲜期,减少食品浪费。
环境保护领域由于细菌纳米纤维素具有可降解性和可再生性,可用于制备环境友好型材料,如可降解塑料和纸张等,有助于减少对自然环境的污染。
细菌纳米纤维素市场挑战与展望尽管细菌纳米纤维素市场前景广阔,但仍然面临一些挑战:1.生产成本高:目前,细菌纳米纤维素的生产成本较高,限制了其大规模应用。
复合细菌纤维素材料的研究进展摘要:细菌纤维素(BC)是一类由微生物合成的可降解环保型生物高分子材料。
近年来,国内外研究者致力于对BC进行生物和化学改性,研制出多种复合细菌纤维素材料。
复合细菌纤维素材料在一定程度上优化了BC的理化和生物学、材料学性能,拓宽了BC的应用范围和领域。
本文简要介绍细菌纤维素的性质和应用,并对发展前景进行展望。
关键词:细菌纤维素、复合、应用细菌纤维素(简称BC)是由微生物发酵合成的多孔性网状纳米级生物高分子聚合物,因其由细菌合成而命名为细菌纤维素。
目前已知的细菌纤维素生产菌属有醋杆菌属、无色杆菌属、假单胞菌属、根瘤菌属、八叠球菌属、气杆菌属、固氮菌属、土壤杆菌属和产碱杆菌属等,其中研究最多、合成能力最强、生产潜力最大的菌种是木醋杆菌。
BC的纤维直径在纳米范围内,其相互交错无序排列形成微纳米级的孔隙,为许多小分子进入提供了合适的空间。
以BC为模板,利用其纳米级的超细网络结构以及其表面大量的活泼羟基,通过化学修饰、材料复合等途径,可以赋予BC更多特殊性能。
一、细菌纤维素的特性1、1 纳米结构细菌纤维素具有独特的束状纤维,其宽度约100nm,厚度为3—8nm,单根细丝纤维直径为2—5nm,属于纳米级纤维,其大小为人工合成纤维的1/10,在纤维研究中是目前发现最细的天然纤维。
1、2 高持水性和高透气性细菌纤维素分子内有大量的亲水基团及很多孔道,因此具有良好的透气、透水和持水性能。
根据实验条件不同,细菌纤维素可吸收比自身干重大60—700倍的水分,细菌纤维素膜的持水性能为600%—1000%。
1、3 高抗张强度和弹性模量细菌纤维素因其分子内存在大量的氢键,而具有高杨氏模量,其经处理后,弹性模量可达1.5×109Pa,这一性能满足其作为医用敷料、医用组织器官及其他产品的要求。
细菌纤维素抗撕拉能力是同样厚度的聚乙烯和聚氯乙烯膜的6倍,证明了细菌纤维素膜比人类的动脉和静脉更有弹性。
中国组织工程研究 第18卷 第3期 2014–01–15出版Chinese Journal of Tissue Engineering Research January 15, 2014 Vol.18, No.3P .O. Box 10002, Shenyang 110180 420www.CRTER .org黄建文,男,1984年生,江西省千县人,汉族,上海交通大学附属第六人民医院在读博士,医师,主要从事泌尿系组织工程研究。
doi:10.3969/j.issn.2095-4344. 2014.03.015 []中图分类号:R318 文献标识码:A 文章编号:2095-4344 (2014)03-00420-06 稿件接受:2013-10-27Huang Jian-wen, Studying for doctorate, Physician,Department of Urology Surgery, Sixth People’s Hospital of Shanghai Jiao Tong University, Shanghai 200233, ChinaAccepted: 2013-10-27细菌纤维素在组织工程中的应用黄建文,徐月敏(上海交通大学附属第六人民医院泌尿外科,上海市 200233)文章亮点:1 此问题已知的信息:细菌纤维素是一种天然的生物材料,主要由木醋杆菌产生。
由于具有独特的机械和生物特性2 文章增加的新信息:近年来,细菌纤维素在组织工程应用研究中受到越来越多的关注。
目前已开始将细菌纤维素应用于其他系统的组织器官重建中,如泌尿系组织。
3 临床应用意义:利用细菌纤维素的高持水性、高机械强度、可降解性、良好的生物相容性和超细三维纳米网状纤维结构等独特特性,有望成为在不同组织修复重建中的重要生物材料。
关键词:生物材料;纳米材料;细菌纤维素;组织工程;改性修饰;皮肤组织工程;血管组织工程;骨组织工程;生物活性分子的载体主题词:生物相容性材料;纤维素;纳米纤维;支架摘要背景:细菌纤维素是纳米级纤维,具有许多独特的理化和机械性能及良好的生物相容性和可降解性等特性,目前已成为国际上新型组织工程材料的研究热点。
·405·细菌纤维素的制取方法及在服装设计中的应用叶 为(苏州中学园区校,江苏 苏州 215000)摘 要:在艺术设计领域,生物技术的运用是近年较为引人注目的创新之一。
本文试就生物技术中的细菌纤维素在服饰设计中的运用作一个方法技术的阐述,提供服装创意设计的一种新方法新思路。
关键词:细菌纤维素;制取;服装设计;应用生物技术是利用、改造生物体进行物质制造或服务应用的新兴技术,不仅运用于医药、食品、工业和环境保护领域,也是艺术领域的新兴实践对象。
在当今艺术领域,与生物技术的跨界合作具有相当的前沿性和话题性,也取得了一些引人注目的成就。
因此,设计受艺术思潮影响,从生物技术领域寻找灵感也是一种可见的趋势。
其中,细菌纤维素就是生物技术运用的一种。
1 细菌纤维素简述1.1 细菌纤维素的特点纤维素是自然界中最丰富的天然高分子。
我们的食物(蔬菜)中就含有丰富的植物纤维素,是植物细胞壁的组成部分。
用天然合成和人工化学合成的方法可以获取纤维素,纤维素可以组成纤维,在造纸、纺织行业运用最广。
细菌纤维素是生物纤维素的一种,也称微生物纤维素,是由微生物发酵合成的葡萄糖发生缩聚反应而形成的纤维素。
不同于植物纤维素,它不是细胞壁的结构成分,是细菌分泌到细胞外的一种高聚物,呈独立的丝状纤维形态,某些细菌在培养液中的自由运动能形成高度发达的精细网络结构。
常温下的细菌纤维素多为乳白色凝胶态膜状物,弹性、吸水性和生物相容性都非常出色。
古代文献《齐民要术》中,就有食醋酿制过程中出现凝胶状物质的记载,所说的正是细菌纤维素。
细菌纤维素中的纤维素含量高于植物细胞壁,而且不掺杂果糖、木质素。
因此,在工业运用前,无需进行繁杂的预处理来去除这些杂质,提取处理都较为简便,具有可工业化生产的一个优势。
1.2 细菌纤维素的种类最早对菌膜进行研究并确定其本质的学者则是英国的R.M.Brown。
他于1886年在乙酸发酵实验中确定发酵产生的“凝胶”化学本质是纤维素,并把产生这种纤维素的细菌命名为“木醋杆菌”。
1. 细菌纤维素的简介细菌纤维素(Bacterial cellulose, 简称BC)是由微生物合成的一种新型生物材料。
是一种超微超纯的纤维素,与自然界中植物或海藻产生的天然纤维素具有相同的分子结构单元,但细菌纤维素纤维却有许多独特的性质。
细菌纤维素与植物纤维素相比无木质素、果胶和半纤维素等伴生产物,具有超高的纯度,而且具有高结晶度(一般80%以上,最高可达95%,植物纤维素的为65%)和高的聚合度(DP值2000~8000)。
衍射强度(cps)衍射角(°)细菌纤维素纤维是由直径3~4纳米的微纤组合成40~60纳米粗的纤维束,并相互交织形成发达的超精细网络结构,要远小于一般植物纤维的直径。
图:细菌纤维素放大图数张放大5000和50000倍的细菌纤维素细菌纤维素的弹性模量为一般植物纤维的数倍至十倍以上,抗张强度高。
细菌纤维素有很强的持水能力。
可以吸收上百倍于自身重量的水。
细菌纤维素有较高的生物相容性、适应性和良好的生物可降解性。
细菌纤维素生物合成时的可调控性。
通过采用不同的培养方法、调节培养条件,也可得到化学性质有所差异的细菌纤维素,以满足不同应用范围的要求。
因此,细菌纤维素被公认为是性能最好、实用价值也较好的纤维素,近年来关于细菌纤维素的研究和开发应用成为当今新的微生物合成材料的研究热点之一,在食品、医学、造纸、纺织、环保、能有等各方面具有广泛的应用价值,并已在国内外得到了一定的实际应用。
2. 细菌纤维素的一些应用目前,国内细菌纤维素的规模化生产主要在食品行业中得到应用。
在食品生产中应用的细菌纤维素俗称“椰纤果”、“椰果”、“纳塔(NATA)”。
是以椰子水或椰子汁等为主要原料,发酵培养形成的凝胶状物质,外观似嫩椰子肉,具有独特的凝胶状半透明质地,以其爽滑脆嫩细腻有弹性的独特口感倍受消费者的青睐,主要应用于果冻、饮料、珍珠奶茶、罐头等食品工业。
此外,细菌纤维素富含膳食纤维,不易为人体所消化吸收,食后可增加饱腹感,可作为减肥食品,同时它可促进肠道蠕动,降低食物的滞肠时间,促进排便,并可减少肠道对致癌物质的吸收,另外可促进粪便中胆酸的排放,因而它具有一定的美容防癌等保健功能,在国际市场上一直旺销不衰。
产细菌纤维素
细菌纤维素是一种由一些细菌产生的纤维素物质。
它是细菌细胞外分泌的一种多聚糖,由许多纤维素链组成。
细菌纤维素具有较强的强度和生物降解性能,因此被广泛应用于生物材料和生物医学领域。
产生细菌纤维素的细菌主要有以下几种:
1. 醋酸菌:醋酸菌能够通过发酵产生纤维素,被称为醋酸菌纤维素。
醋酸菌纤维素被广泛用于食品、纺织品、纸张等领域。
2. 莱氏菌:莱氏菌是一种革兰氏阴性细菌,能够产生纤维素。
莱氏菌纤维素具有抗菌和抗氧化等特性,可以应用于药物控释、修复组织等领域。
3. 酵母菌:某些酵母菌也能够产生纤维素,这种纤维素被称为酵母菌纤维素。
酵母菌纤维素被用于食品添加剂、织物制造等领域。
细菌纤维素的应用主要包括以下几个方面:
1. 生物医学领域:细菌纤维素可以作为药物控释系统的载体,帮助控制药物的释放速度。
它也可以用于修复组织、填充空洞等医学应用。
2. 食品工业:细菌纤维素可以用作食品添加剂,增加食品的质地和口感。
3. 纺织品工业:细菌纤维素可以用于制作纺织品,提高纺织品的柔软度和稳定性。
4. 纸张工业:细菌纤维素可以用作纸张的添加剂,增加纸张的强度和柔韧性。
总之,细菌纤维素是一种具有广泛应用前景的生物材料,可以在医学、食品、纺织品和纸张等领域发挥重要作用。
细菌纤维素的研究进展发布时间:2022-10-20T07:13:53.903Z 来源:《科技新时代》2022年5月第9期作者:孙歆原沈凡熙王小龙[导读] 细菌纤维素是一种天然的生物高聚物,具有生物活性、生物适应性孙歆原沈凡熙王小龙山东协和学院山东济南 250109摘要:细菌纤维素是一种天然的生物高聚物,具有生物活性、生物适应性,具有独特的物理、化学和机械性能,例如高的结晶度、高的持水性、超精细纳米纤维网络、高抗强度和弹性模量等,因而成为近年来国际上新型生物医学材料的研究热点。
概括细菌纤维素的性质,发酵过程,改性方法以及在生物医学材料上的应用。
关键词:细菌纤维素;改性;生物医学材料前言细菌合成纤维素是在1886年由Brown首次报道的,是胶膜醋酸菌A.xyliumpppp在静置培养时于培养基表面形成的一层白色纤维状物质。
后来在许多革兰氏阴性细菌,如土壤木干菌、致瘤农杆菌和革兰氏阳性菌和八叠球菌中也发现了细菌纤维素的产生。
细菌纤维素与天然纤维素结物非常相似,都是由葡萄糖以B一1,4一糖苷键连接而成的高分子化合物,此外,细菌纤维素相对于传统的纤维素资源又有其优势,如加工时不用去木质素,可合成高质量的纸或者加工成任何形状的无织物,还可通过发酵件的改变控制合成不同结晶度的纤维素,从而可根据需要成不同结晶度的纤维素。
从纤维素的发现至今已有一百多年的历史,但由于无合适的实验手段以及纤维素的产量较低,因此多年来一直未受到足多重视。
近十几年来随着分子生物学的发展和体无细胞体系的应用,细菌纤维素的生物合成机制已有了很深入的研究,同时在细菌纤维素的应用方面也有了很大进展。
一、细菌纤维素的结构特点和理化特性经过长期的研究发现,BC和植物纤维素在化学组成和结物上没有明显的区剥,均可以视为是由很多D-此喃葡萄糖苷彼此C以(1-4)糖苷键连接而成的线型高分子,相邻的比南葡萄糖的6个碳原子不在一个平面上,而是呈稳定的椅式立体结物。
细菌纤维素的研究和应用新进展纤维素是地球上最丰富的生物聚合物,主要分布于植物如树木、棉花等中,它是形成植物细胞壁的主要成分,也是形成许多真菌、藻类细胞壁的主要成分。
随着人们对纤维素类产品需求的增加,人们获取纤维素的方法正不断地改进和更新。
近年,发现一些细菌也能产生纤维素,其结构、理化特性和生化特性等皆与植物纤维素有较大的差异,与植物纤维相比,细菌纤维素(Bacterial Cellulose,BC)是由超微纤维组成的超微纤维网。
不仅是地球上除植物纤维素之外的另一类由细菌合成的天然惰性材料,而且是自1989 年Yamanaka 等[1]发现BC具有独特的功能后,以微生物作为载体,在分子水平上有高纯度、高结晶度、绿色环保的BC成为世界上公认的性能优异的新型生物学材料。
本文就BC的结构、性质、研究历史以及在生物医学材料上的应用综述如下。
1细菌纤维素的结构与特性1.1细菌纤维素的结构特点:BC是由葡萄糖分子以β-1,4糖苷键聚合而成的一种具有多孔性结构及一定纳米级孔径分布的高分子材料[2]。
早在1940 年,人们就用电镜观察到BC由独特的束状纤维组成,这种束状纤维的宽度大约为100 nm,厚度为3~8 nm,每一束由许多微纤维组成,而微纤维又与其晶状结构相关。
术醋杆菌(A.xylinum)是合成BC最强的细菌之一[3],BC的生物合成可分为聚合、分泌、组装、结晶四大过程,这四大过程是高度耦合的,并和细胞膜上的特定位点密切相关。
1.2 細菌纤维素有许多独特的性质:①强的持水性和透气性:BC是一种水不溶性的惰性支持物,有很多“孔道”,有良好的透气、透水性能。
依据合成条件的不同,它能吸收60~700倍于其干重的水份[2],未经干燥的BC的强持水性能(waterretentionvalues,wRv)值高达1000%以上,冷冻干燥后的持水能力仍超过600%。
经100℃干燥后的BC在水中的再溶胀能力与棉短绒相当,即有非凡的持水性,并具有高湿强度[4];②高化学纯度和高结晶度:BC是一种“纯纤维素”,以100%纤维素的形式存在,不含半纤维素、木质素、果胶和其他细胞壁成分,结构单一,提纯过程简单;③较高的生物适应性和生物可降解性:Helenius等[5]开展了BC植入小鼠皮下组织的生物适应性研究及Klenm等[6]用BC微管材料取代老鼠颈动脉的研究都表明BC与老鼠身体没有任何排斥反应。
细菌纤维素细菌纤维素是一种重要的生物聚合物,它是由细菌合成的一种多糖类物质,具有多种生物学功能。
细菌纤维素在自然界中广泛存在,是一种与植物纤维素相似的多糖,但结构和性质上略有不同。
细菌纤维素通常以线状或片状的形式存在,具有较高的生物降解性和生物相容性。
细菌纤维素的生物合成细菌纤维素的合成主要通过细菌体内的细胞壁合成机制完成。
这种多糖聚合物由细菌通过代谢途径合成并分泌到细胞外,形成类似纤维状的纤维素结构。
这种合成过程在细菌中起着重要的结构和功能支持作用,与细菌的生长与繁殖密切相关。
细菌纤维素的生物学功能细菌纤维素在自然界中具有多种生物学功能。
首先,它可以提供细菌细胞壁的结构支持,增强细胞的稳定性和形态。
其次,细菌纤维素在细菌之间的附着和固定过程中发挥着重要作用,帮助细菌形成群落和生物膜结构。
此外,细菌纤维素还可以作为一种重要的能量储备物质,为细菌的生长与繁殖提供能量支持。
细菌纤维素的应用由于细菌纤维素具有良好的生物相容性和生物降解性,在医学领域、食品工业和环境保护领域有着广泛的应用前景。
在医学方面,细菌纤维素可以用作生物材料,用于修复组织缺损和促进伤口愈合。
在食品工业中,细菌纤维素可以用作稳定剂和增稠剂,提高食品的口感和质感。
在环境保护领域,细菌纤维素可以用于生物降解材料的制备,减少环境污染和资源浪费。
综上所述,细菌纤维素作为一种重要的生物聚合物,在生物学功能和应用领域具有广泛的潜力和价值。
随着科学技术的发展和应用领域的不断拓展,细菌纤维素将发挥出更多的潜力,为人类社会的可持续发展和健康福祉做出更大的贡献。