变压器套管试验
- 格式:doc
- 大小:80.50 KB
- 文档页数:3
电力变压器预防性试验作业指导书.1.电力变压器的预防性试验项目1.1绕组的直流电阻1.2有载分接开关1.2绕组绝缘电阻、吸收比或极化指数1.3绕组的tanδ(油浸式)1.4220kV套管的绝缘电阻1.5220kV套管的tanδ和电容值1.6绝缘油电气强度1.7绝缘油介质损耗因数900C(220kV)2.试验准备2.1 人员组织2.2 仪器、仪表及材料配置3.试验方法1.绕组直流电阻的测量1.1设备准备GZD-2010变压器直流电阻测试仪(1.6MVA以下变压器)GZD-2050变压器直流电阻测试仪(1.6MVA以上变压器)1.2试验接线GZD-2010直阻测试仪测试三相变压器线圈直流电阻接线图1.3对试验结果的要求1)1.6MVA以上变压器,各相绕组电阻相互间的差别不应大于三相平均值的2%,无中性点电引出的绕组,线间差别不应大于三相平均值的1%2)1.6MVA以下变压器,各相绕组电阻相互间的差别不应大于三相平均值的4%,无中性点电引出的绕组,线间差别不应大于三相平均值的2%3)与以前相同部位测得值比较,其变化不应大于2%2.有载分接开关的检查2.1在变压器由高往低或由低往高调档时,检查电机是否有卡壳,档位是否与后台一致。
3.绕组绝缘电阻、吸收比或极化指数3.1设备准备兆欧表3.2试验接线ACVCOM/GLINEEARTHACVCOM/GLINE图2 变压器绕组连同套管绝缘电阻低对高地测试接线图EARTH ACV COM/G LINE图3 变压器铁芯套管对外壳绝缘电阻测试接线图3.3对试验结果的要求1)绝缘电阻换算至同一温度下,与前一次测试结果相比应无明显变化 2)吸收比不低于1.3或极化指数不低于1.5 4.绕组的tan δ 4.1设备的选用SB2204全自动介损测试仪⑴ 打印机——测量结束,显示测量结果时,按“打印”键,可以将测量结果打印出来。
⑵ 显示窗——以LCD 用中文显示tan δ和电容测量值。
变压器套管CT 试验方法研究朱晓红(云南电网公司曲靖供电局,云南曲靖 655000)摘要:变压器套管CT 试验,利用常规试验方法——电压法由于变压器绕组电感的影响无法顺利完成。
从电流互感器和变压器工作原理入手,通过对套管CT 和变压器电磁感应理论分析,找出了一种简单、有效的方法,即对某一侧一相试验时,短路其他侧对应相,从而抵消变压器绕组电感的影响。
该方法经现场多次实践证明,是可行、准确、可靠的。
关键词:变压器套管CT;伏安特性试验;电磁感应;抵消;测试方法The Re search on T e st Methods of the sle eve-type curre nt transformerZHU Xiao-hong( Qujing Power Supply Bureau,Qujing 655000, China)Abstract: The CT test methods of the transformer bushing could not complete successfully using the conventional test methods- voltage method, because of the influence by the induction of the transformer winding. Through the theoretical analysis on the bushing CT and the electromagnetic induction of transformer, a simple and effective mean were found from the operating principle of the current transformer and transformer, which w as making other sides’ corresponding phase short-circuited, thus canceling out the influence of the transformer winding inductance when one side’s one-phase test was operated. This method has been proved by the field practice for many times to be practicable, accurate and reliable.Key w ords: sleeve-type current transformer;V-A character measurement;e lectromagnetic i nduction;counteraxt;method of measurement一引言继电保护是保证电力系统安全稳定运行的重要手段。
关于 110kV主变高压套管试验数据异常分析摘要: 文章针对一起 110 kV 变压器套管介质损耗超标的情况,进行了电气诊断性试验分析,探讨了用电气试验进行变压器故障诊断的方法和引起故障的原因,对变压器的故障诊断分析有一定的借鉴意义。
关键词:变压器;套管试验;数据异常;处理措施引言变压器是变电站最重要的电气设备之一,它提供了可靠且有效的电压变换方法。
变压器的故障多为绝缘引起的。
变压器的电气试验是诊断变压器绝缘状况的重要依据。
压套管是变压器的重要组成部分,它的作用是对高压引线起固定作用,通常为油纸电容型绝缘。
由于高压套管在运行中的工作条件多变,所以常常因绝缘劣化损坏导致电网事故。
测量主变套管介质损耗因数tan可以发现绝缘体受潮、老化、绝缘气隙放电等问题,是判断套管绝缘优劣的重要依据,设备预防性试验的重要组成部分。
设备简介和异常情况1试验概况2019年对110kV某变电站1号主变进行例行试验,该主变型号SSZ9-40000/110, 2005年11月投人运行。
高压侧套管型号COT550-800,中性线套管型号COT325-800。
经现场检测发现各相套管主绝缘及末屏对地绝缘均正常,但中性线和C相套管介质损耗异常。
介损测试采用某公司HD91型全自动抗干扰介质损耗测试仪,试验结果如表1所示。
由试验数据可知,中性线和C相套管介质损耗明显偏大,根据《南方电网公司变电检测管理规定》对变压器套管例行试验要求,电容量初值差应不超过5%,主绝缘的介质损耗因数不大于1%。
C 相和中性线介质损耗明显超标,修试人员对此进一步检查。
铭牌电容量/pFtan/%末屏绝缘电阻/MΩ 表:1高压侧套管介质损耗数据2故障判断由于C 相、中性线电容量有所减少,考虑可能是套管少油引起,经查看四相油位指示均正常,排除套管内部缺油的可能性。
介质损增大一般来说为试验回路中阻性电流增大引起。
依据相关理论,当电气设备的绝缘普遍受潮、脏污或老化、安装不到位以及绝缘中有气隙发生局部放电时,流过绝缘的有功电流分量I将增R大,介质损耗将增加。
变压器套管CT由于安装在变压器上且另一端是浸入变压器油中的,CT一侧绕组是与变压器绕组连接在一起,所以很难进行试验,如果用传统的互感器测试仪,必须将套管CT拆除并从变压器上吊装下来后才能进行,一般试验过程需要检修班、高试班配合,需要吊机等大型设备配合,而且变压器套管CT吊装过程中又容易发生安全事故。
随着系统容量的增加,CT电流越来越大,最大可达数万安培,现场加电流也很困难,本司CTP系列互感器综合测试仪可完美解决上述问题,采用电压法测变比,体积小重量轻、简单方便,深受广大用户好评。
1、试验原理在CT二次绕组上施加交流电压,在一次侧将会产生感应电压,二次绕组铁心上的交流电压与一次侧感应电压幅值之比理论上等于匝比,与在一次侧通大电流的直接法相比,这种变比测试方法不需要大电流,具有测试设备容量小、安全可靠等特点。
电压法测套管CT的变比等效电路图如下图1所示。
▲图1电压法测套管CT的变比等效电路图其中:U1为套管CT一次侧感应电压;U2'为折算到一次侧的套管CT二次电压;r1、x1为套管CT一次线圈的电阻、电抗;r2'、x2'为套管CT二次线圈的电阻、电抗;rm、xm为套管CT的励磁电阻、电抗;ie为套管CT的励磁电流。
当用电压法测套管CT的变比时,一次线圈开路,贴心磁通密度很高,极易饱和,由等效图可得以下等式:。
一般由经验值可得套管CT二次线圈电阻和电抗小于1Ω,而套管CT的励磁电流都较小约为10mA,所以部分就很小基本可忽略不计,所以得,套管CT的变比。
2、试验接线我们做变压器套管A相的试验,将仪器的输出电流端子S1、S2与回采电压端子M1、M2在测试线另一头短接后接到套管CT的A相某一个绕组的两端,然后将一次线P1端接到套管CT一次输出端子(即为变压器输出引线的端子),另一侧接到中性点CT上,并做好非实验相B相和C相以及中性点位置短接后的可靠接地,试验接线图如图2所示:▲图2套管CT变比试验接线图3、试验及结果分析接好线之后按照CT铭牌上参数设置,测试套管CT一个0.5级计量绕组,开始运行试验大概50秒,装置自动完成励磁特性、误差曲线、变比极性等试验项目后自动停止试验,提示保存试验报告。
变压器套管介质损耗因数tanδ试验误差分析与控制摘要:本文介绍了某核电机组220kV高压备用变压器在进行套管介质损耗因数tanδ试验过程中,出现误差的事例,并分析产生的原因及相应的控制措施,为预防类似工程问题的出现提供借鉴经验。
关键词:电气试验介质损耗因数tanδ误差分析1.对变压器套管进行介质损耗因数tanδ测量的意义在电压的作用下,电介质会产生一定的能量损耗,我们把这部分损耗称为介质损耗或者介质损失,通过测量介质损耗因数可以发现设备一系列绝缘缺陷,如绝缘整体受潮、老化、绝缘气隙放电等。
通常用tanδ来表示介质损耗的大小,当介质损耗tanδ值越大,则对应的有效功率因数降低,能够直观的反映出设备绝缘效果的优劣性,对于同一台设备,绝缘良好,则介质损耗就小,绝缘受潮或者老化,介质损耗就大,通过对介质损耗的测量,从而对设备的绝缘性能进行判断,对设备的安全运行具有重要的意义。
2.套管调试误差事例完成了220kV 高压备用变压器安装工作后,对变压器套管进行相应的电气试验,在进行HV-LV1、HV-LV2、LV1-LV2的介质损耗因数tanδ试验过程中,实测的tanδ值分别为0.00339、0.00348、0.00339(现场试验时油温1℃),出厂试验值分别为0.00312、0.00318、0.00252(出厂试验时油温13.7℃),统一换算到油温20℃时的tanδ值为:0.00576、0.00592、0.00576(现场值换算);0.00368、0.00375、0.00297(出厂值换算),发现三组数值均超出出厂试验值的130%,不满足《电气设备交接试验标准》GB50150-2016中套管连同绕组的tanδ值不应大于出厂试验值的130%的要求。
3.原因分析及控制措施通过事例可以看出,现场试验时的油温为1℃,与出厂试验时的13.7℃油温相差较大,为尽量保证试验的准确性,查找问题的所在,决定在环境温度较高的时候对套管进行重新清理及电加热后,由施工单位与设备厂家自带出厂试验时的仪器分别再进行一次试验发现,两家单位对HV-LV1、HV-LV2、LV1-LV2的测试数据偏差不大,但与出厂试验值存在较大变化,其中LV1-LV2的tanδ值呈偏大趋势;HV-LV1、HV-LV2的tanδ值呈偏小趋势,针对此种情况进行分析发现:现场对HV-LV1、HV-LV2、LV1-LV2的测试采用正接线法,而出厂试验采用是反接线法(出厂试验规程要求为正接线法),属于出厂试验方法错误的原因,设计通过采用正接法对其出厂值进行换算得到的数据换算及对比发现,此次试验数据满足《电气设备交接试验标准》GB50150-2006中套管连同绕组的tanδ值不应大于出厂试验值的130%的要求,经设计确认此套管性能满足投运要求,最终决定tanδ值以厂家现场实测的值为判断依据。
电力变压器高压套管现场试验方法高压套管是电力变压器的重要组成部分,为了保证电力变压器能够安全、稳定的运行,必须要针对高压套管开展一系列的现场试验,根据试验结果,判断是否存在质量隐患,进而采取相应的处理措施。
现阶段电力行业常用的高压套管试验方法主要分为三种类型,分别是预防性试验、红外检查试验和在线监测试验。
本文分别对具体的试验方法,以及试验过程中的注意事项展开简要分析。
标签:电力变压器;高压套管;紅外检查;在线监测引言高压套管是广泛应用于电抗器、变压器、断路器等电力设备中的材料,主要发挥了绝缘与支撑的作用。
高压套管在生产制造、安装使用过程中,可能因为各种因素的影响,而出现不同类型的质量缺陷,例如物理磨损、化学腐蚀等等。
一旦高压套管出现质量问题,将会直接影响到电力变压器的正常使用。
因此,做好高压套管的现场试验尤其必要。
随着信息技术的发展,一些新型技术也逐渐应用到这一试验中,例如红外检测试验、在线监测试验等,为进一步获取更加精确和直观的试验结果提供了必要支持。
1.变压器高压套管预防性试验1.1主绝缘试验主绝缘介损测量用正接法。
介损值的增加,很有可能是套管本身劣化、受潮都会引起。
而介损值异常变小或负值,可能是套管底座法兰接地不良、套管表面脏污受潮引起,也有可能是介损仪标准电容器受潮等引起。
电容量的变化也是预防性试验的重要内容。
如果试验结果显示电容量增加,考虑是因为高压套管底部的密封垫圈失效,由于密封效果变差,出现了进水受潮的问题。
潮湿的空气或是附着在高压套管内壁上的水珠,引起了放电击穿,主绝缘被烧坏。
可以通过检查并更换橡胶垫圈,并重新加固高压套管底座螺丝,恢复良好密封性。
如果试验结果显示电容量减小,考虑是因为出现了漏油。
通过检查确定渗漏位置,采取封堵措施后,这一问题可以得到解决。
1.2末屏接地检查现阶段电力行业内常用的高压套管,其末屏接地方式大体上分为三类,分别是外接式、内接式和推拔常接式。
不同形式的试验方法也存在差异,以应用较为广泛的外接式为例,试验人员首先观察末屏与套管底座的连接位置,是否存在接触不良,或是铜片生锈的问题。
试论110千伏变压器套管介损试验方法与应注意问题摘要:文章首先分析了110千伏变压器套管的结构,并重点介绍了110千伏变压器套管介损试验方法与注意问题,最后对结论与展望进行了论述,以供同仁参考。
关键词:110千伏变压器;套管介损;试验方法;注意问题作者介绍:蔡宇扬(1987—),男,广东汕头人,现在广东电网公司汕头供电局从事高压试验工作。
一、前言变电站的变压器是电力系统中最重要的设备之一,其良好的运行状态关系到整个电力系统安全、可靠的运行,所以,对变压器运行状态的监测有着至关重要的意义,可以有效防止电力事故的发生。
而变压器套管的介损值就是反映变压器状态是否正常的有效因素之一。
变压器套管上的绝缘结构对变压器套管的性能具有重要作用,但当绝缘受潮时就会导致导电性能增加,套管介质受损。
此外,绝缘材料受到污染或破损时,介损值也会增加。
因此,测量绝缘物的介损值可以及时有效地判断出套管是否存在老化、受潮、破裂、污染等不良状况出现。
由此可见,通过变压器套管介损试验,根据试验数据值的变化就能够判断变压器的状态是否正常。
在进行变压器套管介损试验时,主要判断介损因数tanδ值的变化,tanδ值的变化代表了变压器套管介质的变化即绝缘性能的变化,因此,在对同一个变压器套管介损试验时。
历次的tanδ值不能有太大的差别。
二、变压器套管结构变压器套管是将变压器绕组的高压线引至油箱外部的出线装置。
110千伏以上的变压器套管通常是油纸电容型,这种套管是依据电容分压原理卷制而成的,电容芯子是以电缆纸和油作为主绝缘,其外部是瓷绝缘,电容芯子必须全部浸在优质的变压器油中。
110千伏级以上的电容型套管,在其法兰上有一只接地小套管,接地小套管与电容芯子的最末屏(接地屏)相连,运行时接地,检修时供试验(如测量介损、绝缘电阻等)用。
当套管因密封不良等原因受潮时,水分往往通过外层绝缘逐渐进入电容芯子,因此测量主绝缘和测量外层绝缘即末屏对地的绝缘电阻及介质损耗因数,能有效地发现绝缘是否受潮。
1引言按照《电力设备预防性试验规程》的规定,在对电容量为3150kVA 及以上的变压器进行大修或有必要进行绕组连同套管时,应对损失角正切值tan δ进行测量[1]。
若介损值超标,就意味着变压器可能受潮、绝缘老化、油质劣化、绝缘上附着油泥或设备绝缘存在严重缺陷;若电介质严重发热,设备则有爆炸的危险,应立即检修。
然而实际中,对大中型变压器的tan δ测量,只能发现整体的分布性缺陷,因为局部集中性缺陷所引起的损失增加值占总损失的很小部分,也就是说套管缺陷引起的损耗增加值占总损耗的很小部分,因此若要检测大容量变压器套管的绝缘状况,应单独测量套管的介质损耗正切值和末屏对地的介损值[2]。
2变压器套管结构变压器套管是将变压器绕组的高压线引至油箱外部的出线装置。
110kV 以上的变压器套管通常是油纸电容型,这种套管是依据电容分压原理卷制而成的,电容芯子是以电缆纸和油作为主绝缘,其外部是瓷绝缘,电容芯子必须全部浸在优质的变压器油中[3]。
110kV 级以上的电容型套管,在其法兰上有一只接地小套管,接地小套管与电容芯子的最末屏(接地屏)相连,运行时接地,检修时供试验(如测量介损、绝缘电阻等)用。
当套管因密封不良等原因受潮时,水分往往通过外层绝缘逐渐进入电容芯子,因此测量主绝缘和测量外层绝缘即末屏对地的绝缘电阻及介质损耗因数,能有效地发现绝缘是否受潮。
为防止套管在运行中发生爆炸事故,应定期进行主绝缘和末屏对地介损试验[4]。
3变压器试验规程的规定为了及时有效地发现电容型套管绝缘受潮,《电力设备预防性试验规程》规定大修后或运行中油纸电容型110kV 套管主绝缘的tan δ值在20℃时不大于1.0%,当电容型套管末屏对地绝缘电阻小于1000M Ω时,应测量末屏对地的介质损耗因数,其值不大于2。
电容型套管的电容值与出厂值或上一次试验值的差别超出±5%时,应查明原因[5]。
4套管的介损试验方法为了准确测量套管的受潮情况和末屏对地的绝缘情况,在实验室内,对一台110kV 电容型套管进行如下试验:该试验采用HJY-2000B 型介损测试仪。
变压器套管电流互感器的试验方法分析摘要:变压器套管是用来把变压器各侧线圈的出线引到箱体外侧,既能起到导线与接地的作用,又能起到固定线路的作用。
由于变压器套管 TA在变压器主体上安装后没有进行相应的检测,所以不能全面地检测出变压器出口 TA的线路,从而导致了安全隐患。
尤其是在主变压器进行了调试之后,变压器中的中性端口TA仍然没有电流,所以不能在有严重危险的负荷下进行试验。
基于此,本文主要阐述了变压器出口 TA的几种检测方法。
关键词:变压器;套管电流;互感器一、电力变压器套管电流互感器试验概述变压器出口电压互感器的检测是变压器的一项重要技术,特别是对变压器出口电流变流器的比例和极性进行了测试。
短路测试是变压器安装与维修中必不可少的一环。
变压器短路试验是在线圈的一边(一般是低电压)上进行短路,在线圈的另外一边施加额定频率的 AC电压,以减小绕组内的短路电流,由此来测定短路电流的大小和角度。
变压器短路试验是试验中的一个重要环节,其具有方便、准确、可靠的特点[1]。
另外,短路损失中还包含了由电流造成的电阻损失和漏磁场造成的额外损失。
对二次侧的效率、热稳定性、动态稳定性、电压波动率进行了测试。
变压器短路实验结果显示,变压器的各个部分(屏蔽,压力环,电容器环,轭梁板),油箱漏磁,局部过热,油箱盖或套管法兰等部件过热,电抗器绕组的中心转动短路,负载电压控制,变压器的低压线圈中的平行线间短路。
二、变压器套管 TA极性检验的基本原则TA的正确性是确保变电站整体保护向量精度的关键,直接关系到差动保护及其它方向保护的正确性。
中国采用减小极性组合的方法,在实践中, TA的一次绕组引线一般用P1、P2表示,二次绕组引线用S1、S2表示。
P1、S1、P2、S2是同极性的末端,而P1、S2、P2、S1是不等极性的末端。
TA次级线圈的S1端子与保护设备的 A、 B、 C连接,S2端子与保护设备的 AN、 BN、 CN连接,即 TA次级绕组的正导线。
变压器套管试验报告单
变压器套管试验报告单
试验项目:变压器套管试验
试验日期:XXXX年XX月XX日
试验单位:XXXX有限公司
试验编号:XXXX-XXXX-XXXX
试验背景:
变压器套管是变压器的重要组成部分,其主要功能是保护变压器的绝缘体不受外界环境的污染和损害。
为了保证变压器套管的安全可靠运行,需要进行套管试验。
试验目的:
本次试验的目的是对变压器套管进行静电耐压试验和局放试验,以验证套管的绝缘性能和可靠性。
试验方法:
1. 静电耐压试验:在试验环境中,对套管进行无电极接地的静电耐压试验。
试验电流为1.5倍额定工作电流,试验时间为30分钟。
2. 局放试验:使用局放测试设备,对套管进行局放试验。
试验电压为额定电压的1.2倍,试验时间为10分钟。
试验结果:
静电耐压试验结果如下:
试验电流:1.5倍额定工作电流
试验时间:30分钟
试验环境:20℃,相对湿度50%
试验结果:经过30分钟的试验,套管未发生击穿现象。
局放试验结果如下:
试验电压:额定电压的1.2倍
试验时间:10分钟
试验环境:20℃,相对湿度50%
试验结果:经过10分钟的试验,套管的局放程度符合规定的标准。
结论:
本次试验的结果表明,变压器套管在静电耐压试验和局放试验中均能通过,具有良好的绝缘性能和可靠性,符合相关的标准要求。
变压器套管可以正常使用。
试验人员签名:日期:XXXX年XX月XX日。
变压器套管试验与故障分析摘要:变压器是电力系统运行的关键设备,要想保证电力供应稳定可靠,必须保障变压器性能的良好稳定,而套管又是变压器的重要部件,对其性能好坏,需要特别关注。
关键词:电容型套管绝缘电阻介损电容值变压器套管是变压器箱外的绝缘装置,可使变压器外部与绕组引出线之间绝缘,并能固定引出线。
套管类型有纯磁、充油型以及电容型等几种,第1种常见于10kV及以下等级,第2种一般用于35kV等级,而第3种主要用于110kV及以上等级。
套管性能对于变压器的稳定运行十分重要,为保证变压器稳定运行,对套管进行检查试验必不可少。
一、变压器套管构造变压器套管起到绝缘固定作用,将变压器外部与绕组引出线之间进行绝缘,并固定引出线。
现今在我国110kV及以上变压器基本都使用电容型套管,此类套管内部充满变压器油,由电容芯子、瓷件、油枕、底座、测量与接线端等构成。
其具有重量轻、体积小的特点,目前使用范围十分广泛。
二、变压器套管试验方式与判断标准变压器套管试验包括绝缘电阻试验与介损及电容量试验两类。
为更加准确地判断变压器电容型套管内部的受潮情况,应对主绝缘介损、末屏对地绝缘电阻以及介损等分别测量,同时从几个方面数值来判断套管性能好坏。
(1)绝缘电阻试验:分为套管主绝缘及电容型套管末屏对地绝缘电阻,测量套管主绝缘、套管末屏对地的绝缘电阻时,被试套管相连的所有绕组端子短接,其余绕组端子均接地,绝缘电阻表与套管接线方法如表1:表1 绝缘电阻测试接线方式绝缘电阻规程要求:1.主绝缘的绝缘电阻一般不低于下列数值:110kV及以上:10000MΩ;35kV:5000MΩ;2.末屏对地的绝缘电阻不应低于1000MΩ。
(2)介损与电容量试验:一般情况只测量套管主绝缘的tanδ及电容量,当末屏对地绝缘电阻数据存在问题(小于1000MΩ)怀疑末屏存在问题时测量末屏对地的tanδ,其值不大于2%。
测量套管主绝缘的tanδ及电容量时,采用正接线测量,与被试套管相连的所有绕组端子短接后接介损测试仪高压端,其余绕组端子均接地,套管末屏接介损测试仪电桥,采用10kV电压测量。
变压器高压套管介损现场试验的分析与探讨吴冬文;胡道明【摘要】测量变压器高压套管电容量和介质损耗因数是提取设备状态量的重要例行试验项目,而介质损耗因又是测量非常灵敏、测量精度要求非常高的试验项目,很容易受到外界电磁干扰、电场干扰和空间干扰.本文介绍了几起变压器高压套管电气绝缘介损现场试验过程中,由于空间结构干扰,使得测量tgδ数据与初值偏差非常大的例子,并从介损电桥原理人手,分析各种测量数据偏差的电气原理,以及如何正确地采用测量极屏蔽线排除外界空间干扰信号,得到反映绝缘状况的最准确的数据的方法.最后,介绍了常见的高压套管连片式末屏接地结构给测量介损带来误差的原因,并提出改进此类套管末屏接地的建议.【期刊名称】《江西电力》【年(卷),期】2011(035)004【总页数】4页(P5-7,10)【关键词】介质损耗因数测量;高压套管;空间干扰;电桥;套管末屏接地【作者】吴冬文;胡道明【作者单位】江西省电力公司超高压分公司,江西南昌330009;江西省电力公司超高压分公司,江西南昌330009【正文语种】中文【中图分类】TM8550 引言高压套管用于变压器、电抗器等电气设备高压引线对金属外壳的绝缘。
由于套管的工作条件恶劣(包括电场分布和外界环境),若维护不当,可能会发生击穿爆炸事故。
按套管的绝缘结构可分为纯瓷套管、充油套管和电容型套管,其中电容型套管是目前使用最广泛的变压器高压套管,其内部绝缘可分为油纸电容式和胶纸电容式。
对电容型套管电容量和介质损耗因数(以下称介损)的测量是取得套管设备运行状态量数据重要的例行试验项目之一。
介损测量是非常灵敏、测量精度要求非常高的试验项目,易受到外界电磁干扰、电场干扰和空间干扰。
其中空间结构的干扰又多是在现场测量不可避免的常见的干扰因素,如果不仔细分析辨别,易带来测量数据的误判,本文介绍了几起变压器高压套管在现场测量过程中,由于空间干扰因素引起的测量数据误差。
各类介损测量仪器采用的是改进的西林电桥测量法,通过分析施加高电压时标准电容通过电流信号和流过被试品的电流信号的幅差、角差来得到电容量及介损数据。