刻度尺三等分角
- 格式:doc
- 大小:26.50 KB
- 文档页数:1
尺规作图三等分任意角(0°<α≤180°)黑龙江省巴彦县兴隆镇第二中学谭忠仁邮编:151801电话:150****5590目录关于三等分角的由来 (1)三等分任意角(0°<α≤180°) (2)已知:∠AOB (2)求作:∠AOB的两条三等分射线OC、OD (2)作法: (2)证明: (2)关于三等分角的由来众所周知,三等分角是著名的几何作图三大问题之一(另外两个问题是化圆为方、倍立方体),近两千年来,几十代人为这三大问题绞尽脑汁,希腊人的巧思、阿拉伯人的学识、文艺复兴时期大师们的睿智都曾倾注于此,却均以失败告终。
1837年范兹尔首先证明三等分角与倍立方体不能有限次使用尺规作出。
1895年,克莱因给出三大问题有限次使用尺规作图不可能的简单而清晰的证明,阿基米德在几何学上的造诣是很深的,从他的著作里可以看到他对三等分角问题的研究,他先采用在直尺上标注一个点的方法,然后把一个角三等分,显然,这一方法取消了直尺上无刻度的限制,此外,喜庇亚斯借助割圆曲线、尼克曼得斯借助于蚌线、巴普士借助于双曲线、帕斯卡借助于蚶线,解决了三等分角的问题,但所有这些曲线都不能仅用尺规来完成。
综上所述,尺规作图三等分任意角尚无先例,本人自1971年参加工作后,任初中数学教师,由于专业的需要、兴趣及其爱好,使我涉猎了大量数学方面的资料和相关知识,下决心研究三等分角问题,历尽40年时间,苦心钻研,现终得一法,并且给出了科学、严谨的证明,借此恳请数学专家和导师予以审核、验证,并提出宝贵意见。
注:本文所举资料,请详见《陕西中学数学》1991年第二期谭忠仁2011年5月10日三等分任意角(0°<α≤180°)已知:∠AOB求作:∠AOB的两条三等分射线OC、OD作法:1、以O为圆心,以任意长为半径作⊙O,交射线OA于A,交射线OB于B;2、连结AB,引直径EE1,并且使EE1⊥AB,垂足为H;3、连结BE,以B为圆心,以BE的长为半径画弧,交AB于F;4、连结EF并延长,交⊙O于G1,交BE1的延长线于T;5、以T为圆心,以TB的长为半径画弧,交⊙O于C1,连结TC1,交⊙O 于G;6、在⌒AB上截取⌒BC2,使⌒BC2=2⌒E1G;7、连结BC2,作BC2的垂直平分线T1D2,垂足为H2,交TB于T1,,连结T1 C2;8、作射线TP,在射线TP上依次截取TP1= P1P2= P2P3,连结T1P3,作T2P1∥T1P3,交TT1于T2;9、以T2为圆心,以T2B的长为半径画弧,交⊙O于C,连结T2C,交⊙O 于G2;10、连结BC,作BC的垂直平分线T2D,交⊙O于G3、D,垂足为H3,(T2D 必经过圆心O、必经过等腰三角形T2BC的顶角的顶点T2);11、作射线OC,则射线OC、OD即为所求作的∠AOB的两条三等分射线。
尺规角三等分与垂足弧弦切分角发布时间:2021-06-16T11:43:31.590Z 来源:《现代中小学教育》2021年6月作者:冯国义[导读] 我发明的用无刻度直尺和圆规,可以对任意角进行任意等份的平分方法。
破解了2500年前由古希腊人提出来的,用尺规作图三等分角无解的世界难题。
创作者:冯国义我发明的用无刻度直尺和圆规,可以对任意角进行任意等份的平分方法。
破解了2500年前由古希腊人提出来的,用尺规作图三等分角无解的世界难题。
两千五百年来,无数先人对尺规作图三等分角不断的研究,或画图或演算都没能给予答案,被公认为无解题。
十九世纪法国数学家皮埃尔·旺策尔就曾宣布尺规作图三等分角无解。
我国著名数学家华罗庚曾说过:“用圆规直尺三等分任意角就如同步行上月球一样,是不可能的”。
然而,我经数年攻关研究,终于在1995年11月13日为这个世界难题划上了句号。
非但对任意角三等份,可以五等份,七等份及任意等份的平分。
用我发明的垂足弧弦切分任意角方法,就可以做出任何一个度数的角。
而不用解析几何,函数计算,免除用弧长公式计算查表画图的麻烦。
这一方法定会给工业生产、科研、教学的角平分方面带来方便利好。
第一部分垂足弧弦切分分角方法的做法1、用一个无刻度直尺和圆规和画图用纸,首先在纸面上画两条交叉的直线,相交于一点0。
2、用圆规设一任意长,以0点为圆心在任意角上划弧相交于任意角的两条边线上A点和B点,形成任意角上的弧叫单位弧,所设半径叫单位半径。
3、用直线连接AB两点,形成AB弧上的弦叫单位弦。
4、用圆规以单位半径为单位,在任意角B侧边线上,向0到B从B点向远方再截切二段单位半径长。
交于0B一侧任意角边线上一点B1。
5、用圆规以0点为圆心,以0B1为半径,从B1向0A一侧边线划弧交于0A一侧边线上一点A1,形成A1B1弧叫任意角分角原始弧。
6、从B1点起,以AB弦长为单位用圆规在A1B1弧上截切三段,形成1.2.3点,有余弧没有分完,把余弧分为平分的两份。
角三等分和平前言一百多年来,国内外数学界一致认为用尺规(尺指的是不带刻度的直尺,规指的是圆规,简称为尺规)作图将一任意角三等分已被证明了这是一个“作图不能问题”的结论是完全正确的。
其实这个结论肯定是错误的,我就能,肯定能推翻这个错误的结论。
下面我用角三等分和剖析角三等分及解两种不同的解题方法中的一种方法即角三等分来证明用尺规作图可将一任意角三等分,並对大小各不相等的角进行角三等分尺规作图达2470多次,装订成册24本,验证了这个理论是完全正确的。
让角三等分无解的结论彻底破灭,也为角的其他等分的解决打下基础,角三等分也是角尺规等分法中的一部分。
由于本人水平有限,如有错误和缺欠,恳请给以指正。
2011-4-3 和平一角三等分∠α为任意一个角,用尺规作图将∠α三等分。
以∠α角顶点o为圆心,以任意长为半径画圆为A圆(图中只画圆的一部分),见图3-1,A 圆交∠α两边分别是A点和B点,在A圆上作∠AOB=∠BOC=∠AOD=∠α=1/3∠DOC,设∠OCD=∠β,2∠β+3∠α=180°.如果3∠α大于或等于180°时,先将∠α缩小偶数倍的角再扩大3倍的角小于180°为止。
连接CD交OA线上G点,作∠AOB角平分线OH,∠AOH=∠HOB=1/2∠AOB=1/2∠α,连接BD交OH 线上H1点,连接BG並延长交OD线上P点,连接AP交CD线上F点,连接BF交OH线上b2点,连接GH1、Gb2、H1A、AD、AB、BC,求证:∠H1Gb2=1/3×1/2∠α=1/3∠GOH1=1/3×1/2∠AOB。
在△OGH1中,分别作OG和GH1边的垂直平分线交于O2点,连接O2O, 以O2点为圆心,以O2O为半径经过O、G、H1三点的圆为B圆(图中只画圆的一部分),GD=GB,ABGD为菱形,H1A=H1G=H1B,证明省略,B圆也经过B点,∠H1GB=∠H1BG=∠GBD=1/2∠α,∠DH1G=∠H1GB+∠H1BG=∠α=∠GOB,∠DH1G=∠GOB, ∠GOB+∠GH1B=180°,O、G、H1、B四点共圆,又∵O、G、H1三点可确定一个圆均在B圆上,∴B点也在B圆上。
〈〈用直尺和圆规把一个任意角分成三个相等的小角的画法和证明〉〉(1)在图[1]中,圆心角AOB,圆心是O,边OA=OB是半径,弧AB。
(2)在AB弧上任意截取一段AC弧,再任意截取一段BD弧,令BD弧=2AC 弧,剩余一段CD弧;剩余CD弧=AB弧-AC弧-BD弧=AB弧-3AC弧,(BD弧=2AC弧),请看图[1]。
(3)连C点和D点,CD线段为剩余弧CD的弦;因为剩余弧CD很短与CD 弦重合成一段线段,所以,我们只要把CD弦三等分,剩余弧CD也就被三等分了,请看图[1]。
(4)大家知道CD弦是一段线段,我们用“平行线等分线段定理”把CD弦等分成三段:CH=HK=KD,因为,剩余弧CD很短与CD弦重合成一段线段,所以,CD弧也被同时三等分为:CH弧=HK弧=KD弧,请看图[1],H点和K点便是CD 弦上的两个三等分点同时也是剩余弧CD上的两个三等分点,所以,剩余弧CD=3CH 弧(CH弧=HK弧=KD弧),请看图[1]。
(5)因为,AB弧=AC弧+BD弧+CD弧=3AC弧+3CH弧(BD弧=2AC弧,剩余弧CD=3CH弧),所以,AB弧=3(AC弧+CH弧)=3AH弧,请看图[1]。
所以,1/3AB弧=AH弧,请看图[1],所以,H点是AB弧上的一个三等分点,请看图[1]。
(6)以H点为原点、以HA弧长为标准长在BH弧上截取一段弧HM,截点为M,则M点和H点便是AB弧上的两个三等分点,所以,AH弧=HM弧=MB弧=1/3AB弧,请看图[1]。
(7)连OH和OM,OH和OM把圆心角AOB分成三个小圆心角:小圆心角AOH、小圆心角HOM和小圆心角MOB,请看图[1]。
(8)在圆心角AOB中,依据圆心角、弧、弦的关系定理:因为:小圆心角AOH对应AH弧,小圆心角HOM对应HM弧,小圆心角MOB对应MB弧,AH弧=HM弧=MB弧=1/3AB弧,所以:小圆心角AOH=小圆心角HOM=小圆心角MOB=1/3圆心角AOB(依据圆心角、弧、弦的关系定理,等弧对等角),请看图[1],所以,任意角AOB被尺规三等分了。
尺规三等分角不能的向量证明第一篇:尺规三等分角不能的向量证明定义:设S={Z0=1,Z1,...Zn}是n+1个复数,将(1)Z0=1,Z1,...Zn叫做S-点;(2)过两个不同的S-点的直线叫S-直线,以一个S-点为圆心、任意两个S-点之间的距离为半径的圆叫S-圆;(3)由S-直线与S-直线、S-直线与S-圆、S-圆与S-圆相交的点也叫S-点。
上面这个定义完全刻画了尺规作图过程,如果以P表示全体S-点的集合,那么P也就是从S={Z0=1,Z1,...Zn}出发通过尺规作图所得到的全部复数。
定理:设Z1,...Zn(n≥0)为n个复数。
设F= Q(Z1,...Zn,Z1',...Zn'),(Z'代表共轭复数),那么,一个复数Z可由S={Z0=1,Z1,...Zn}作出的充要条件是 Z属于F(u1,...un)。
其中u12属于F, ui2 属于F(u1,...ui-1)。
换言之,Z含于F的一个2次根号扩张。
系:设S={Z0=1,Z1,...Zn},F= Q(Z1,...Zn,Z1',...Zn'),Z 为S-点,则 [ F(z):F] 是2的方幂。
以下证明三等分任意角不可能性,证明尺规作图不能三等分60度角:证明:所谓给了60度角,相当于给了复数Z1=1/2+√3/2 i。
从而S={Z0=1, Z1},F=Q(z1, z1')=Q(√-3)。
如果能作出20度角,当然也能得到cos20,但是cos20满足方程4x3-3x-1/2=0,即8x3-6x-1=0。
由于8x3-6x-1在Q[x]中不可约,从而[Q(cos20):Q]=3,于是6=[ Q(cos20, √-3):Q] = [F(cos20):Q]=[F(cos20):F] [F:Q] 由于[F:Q]=[Q(√-3):Q]=2,所以[F(cos20):F]=3,根据上面的系可知cos20不是S-点,从而20度不可能三等分。
三等分角、三平分角1、废话部分先说明我没有破解,但是有很多很接近的作图方法,在这里都写出来,希望接下来有共同兴趣的人可以少一点的弯路。
因为这方面的书籍和讯息都很少,我的想法不知道会不会和以前的人的想法重合 另一个就是,利用双曲线的这种方法可以解决任意角度(︒︒360~0),相比我知道的几种工具解决三等分的办法是便捷了许多另外就是由这个三等分衍生出来的好多概念在以后应该会有价值,就不知道是多少年后, 最后对于想深入研究的人我奉劝一句|“放弃吧,很费脑细胞还有时间的”2、双曲线的由来取任意一个角度每一个角度,以顶点为圆心,以任意长度画圆,被这个角度的两条边截出一段弧这段弧会根据圆半径的长短,弧长会相应变化,但是圆心角是不会变化的我们只要三等分弧AB ,就能等到AOB ∠的三平分角,这点不证明把A 、B 为两点连接直线,从圆心O 点作直线AB 的垂线,我们会得到一个类似直角坐标系的图形(可能有人在这里要彪了,你这是要利用直角坐标系,不是的哈,乖乖看下去,我只如果A、B间距是固定的,随着圆心在垂线DE上下运动,我们就能得到任意一个角度我用几何画板作图,大家可以学一下这个软件,毕竟手工作图误差是很大的对于这个任意角度,我们反推,在已知弧AB的两个三等分点的情况下,得到三平分点随着圆心上下移动的轨迹这个是一条栓曲线的一部分图像,接下来我给出证明把两个三平分点与点A 、B 连接,我们会得到一个等腰梯形,并且线段AF=FG=GB因为F 、G 点事三平分点,GOB FOG AOF ∠=∠=∠,点A 、F 、G 、B 在同一圆上,所以AF=FG=GB接下来是证明线段FG 平行AB ,弧AF=弧GB (因为FG 是三平分点),所以线段FG 平行于AB ,线段FG 也是垂直于DE 的直线DE 垂直于AB ,FG 平行于AB ,又DE 平分线段AB ,所以直线DF 也是FOG ∠的平分线,最主要的,我们要得到线段HG=21GB , FG=GB (相等角在同一个圆上所对应的弦是相等的),DE 平分线段FG , ∴ HG=21 FG=21GB ∴HG=21GBHG=21GB 圆心O 是直线DE 上任一点,恒有HG=21GB ,这个符合双曲线的第二个定义:平面内到一个定点B 和一条直线DF 的距离的比是常数e=2,e 〉1时的动点曲线轨迹叫做双曲线,∴∠AOB 的之中右边的三等分点的轨迹是一条双曲线,同理得证左边的三等分点也是一条双曲线3、接下来是推理出双曲线的解析式,求出解析式112422=-y x当∠AOB 是零度的时候, AB 的长度不随着圆点O 的变动而变动∴零度的弧就是与线段AB 重合,三等分点如图所示为i ,i 同时是线段AB 的三等分点,同时也是三等分点轨迹与线段AB 的轨迹的交点和双曲线的顶点之一设直线AB 与直线DE 的交点是j,假设线段ji 是一个距离单位,那么根据数量关系就有线段AB=6ji, iB=2ji B 点事双曲线的一个焦点我们假设双曲线的解析式是12222=-by a x , 222c b a =+,原点到双曲线顶点的距离是a,原点到焦点的距离是c, iB=c-a=2ij 我们已经把ij 设为基本距离单位,∴c-a=2离心率e=ac =2 联立方程⎪⎩⎪⎨⎧==-22ac a c 解得a=2,c=4, 222c b a =+ ∴b=32所以双曲线的方程式112422=-y x上边的是繁琐的一些证明,无非我们要得到的就是三等分点的轨迹是双曲线,要得到这条双曲线的相关的一些规律,希望这些规律能够在你尺规作图三等分角的时候有所帮助,现在我把我掌握的一些好玩的规律给大家介绍介绍。
如何证明尺规作图三等分一个角是不可能问题?
1).先说明尺规作图可能问题:
一个作图题中的所作的未知量,若能由若干已知量经过有限次的有理运算及开平方算出时,这个作图题便能由尺规作出。
2).定理:
一个一元三次方程若它没有有理根,则长度等于它的任何实数根的线段是不能用尺规作出的。
3).证明尺规作图三等分任意角是不可能的:
如图:设已知角为3a ,平分后的每一个角为a ,作单位圆交角于A、B、C
过B作BD⊥OA于D,过C作CE⊥OA于E ,
令OD=m ,OE=x ,则m=cos(3a) ,x=cosa ,代入三角恒等式中:
cos(3a)= 4*(cosa)^3 - 3*cosa 得:4x^3 -3x -m = 0
由于在一般的情况下4x^3 -3x -m = 0 不是都有有理根(艾森斯坦因判别法)
所以根据上面的定理,任意三等分角用尺规作出是不可能的。
林浩南。
任意角三等分任意角三等分,尺规画法分两部分举例说明:一、以大于0°小于等于90°任意角三等分尺规画法举例说明:Z YA BU VS TXQ RE FC DGHPI NL MO JK1、作大于0°小于等于90°的任意角∠AOB2、以O点为圆心,取任意长为半径画圆,交AO于C点,交BO于D点3、作∠COD的角平分线ZK,交圆于E点和K点4、作∠EOD的角平分线FO,交圆于F点5、作∠EOF的角平分线XO6、以D点为圆心,等于DE长为半径画弧,交圆于H点7、过O点,作IJ⊥EK8、连接KF并延长至Y点,交IJ于M点9、以O点为圆心,OM长为半径画弧,交OI于L点10、连接OH交KY于N点11、以O为圆心,ON长为半径画弧,交EO于P点12、以E点为圆心,EO长为半径画弧,交EZ于Q点13、以P点为圆心,PQ长为半径画弧,交OX于R点14、连接RK交圆于G点15、以G点为圆心,GK长为半径画弧,交KY于V点16、以O点为圆心,OV长为半径画弧,交AO于S点,交BO于T点17、以V点为圆心,VT长为半径画弧,交弧于U点18、U点、V点三等分弧⌒ST19、连接OU、连接OV20、得∠AOU=∠UOV=∠VOB=∠AOB/3(三等分∠AOB)21、完成尺规三等分大于0°小于等于90°以内的任意角二、以大于90°小于等于360°任意角三等分尺规画法举例说明:AB c d e fG hI jKL m nP q r SO T HU JVX Y WZ DE F1、作大于90°小于等于360°任意角∠EOF2、以O点为圆心,任意长为半径画圆,交EO于X点,交FO于Y点3、二等分角∠EOF,得∠EOA=∠FOA4、二等分角∠FOA,得∠SOA=∠SOF(就是首先将任意角∠EOF进行四等分)5、取1/4角∠AOS进行三等分(就是对大于0°小于等于90°任意角进行三等分)(重要说明:只要精确地完成大于0°小于等于90°以内的任意角三等分,就等于完成了大于0°小于等于360°以内的任意角三等分,因为360°角由4个90°角组成,所以首先考虑的是将大于90°小于等于360°以内的任意角进行4等分,然后将其中的任何一个角进行三等分,最后将小的三等份加上大的三等份,就完成了大于90°小于等于360°以内的任意角三等分)6、作∠AOS的角平分线cV交圆于V点、m点7、作∠cOS的角平分线Oh交圆于r点8、作∠cOh的角平分线Od9、过O点作WL⊥cV10、连接Vr并延长至f交OW于U点11、以O点为圆心,OU长为半径画弧,交OL于P点12、以H点为圆心,Hm长为半径画弧,交圆于J点13、连接PJ交Vf于T点14、以O点为圆心,OT长为半径画弧,交Oc于q点15、以m点为圆心,mO长为半径画弧,交Oc于G点16、以q点为圆心,qG长为半径画弧,交Od于I点17、连接IV交圆于n点18、以n点为圆心,nV长为半径画弧,交Vf于e点19、以O点为圆心,Oe长为半径画弧,交EO于Z点,交FO于D点20、小弧⌒eS+大弧⌒SD=弧⌒eD21、以e点为圆心,eD长为半径画弧,交大圆于B点22、e点、B点三等分弧⌒ZBeD23、得弧⌒ZB=弧⌒Be=弧⌒eD24、连接OB和连接Oe25、得∠EOB=∠BOe=∠eOF=∠EOF/3(完成尺规三等分任意角)中国化学工程第七建设有限公司四川泸州分公司木工:王建华QQ25054059272015-08-10。
刻度尺——简单而强大的作图工具(三)——三等分角
2010-08-09 14:43
三、三等分角
我们都知道,尺规作图是不可能三等分任意角的。
但是,刻度尺作图可以。
之前证明刻度尺作图可以完全代替尺规作图只用了作图公法一至九。
而作图公法一至九亦可以用尺规作图作出。
刻度尺作图要超越尺规作图,只能凭借作图公法十。
下面给出的三等分角的作图法是根据《数学题解辞典(平面解析几何)》(唐秀颖主编,上海辞书出版社出版,1983年)713页的第1165题的说明(1)里的方法改编而成。
作图法十五:已知角APB,可作其三等分线。
作法:在射线PB上取C点使PC=1。
作PC中点D。
过D点做射线PA的垂线m和平行线n。
过P作直线l使l与m、n分别交于E、F两点且EF=1。
l即为所求作的三等分线。
至此,我们已得到了结论——一把简单的刻度尺可以完全代替尺规作图并且可以三等分角。