qt牛顿插值算法
- 格式:docx
- 大小:3.38 KB
- 文档页数:2
牛顿插值法介绍本文将介绍牛顿插值法的基本原理、计算过程、优缺点以及在实际问题中的应用。
首先,我们将简要介绍插值法的基本概念和牛顿插值法的由来,然后详细讨论牛顿插值法的计算步骤和算法,接着分析其优缺点以及适用范围,最后通过几个实际问题的例子展示牛顿插值法的应用场景。
一、插值法基本概念在数学和计算机领域,插值是指根据已知的离散数据点构造满足这些数据点的曲线或函数的过程。
假设我们有一组数据点{(x1, y1), (x2, y2), ..., (xn, yn)},我们想要通过这些数据点构建一个函数f(x),使得f(xi) = yi,其中i = 1, 2, ..., n。
这样的函数就是经过插值的函数,它代表了这些数据点的趋势和变化规律。
插值法通常用于寻找这样的函数,它能够通过已知的数据点来估计函数在其他位置的值。
常见的插值方法包括拉格朗日插值法、牛顿插值法和埃尔米特插值法等。
在这些方法中,牛顿插值法是最为广泛使用的一种,因为它的计算效率高、精度较高,并且易于编程实现。
二、牛顿插值法的由来牛顿插值法由艾萨克·牛顿在17世纪提出,他是一位英国著名的数学家、物理学家和天文学家,在微积分、物理学和光学等领域都做出了重大贡献。
牛顿发展了牛顿插值法的理论基础和计算方法,并将其应用于数据分析和天体运动等问题中。
牛顿插值法基于牛顿插值多项式的概念,该多项式利用差商(divided differences)来表示,并具有易于计算和分析的优势。
牛顿插值多项式能够在已知的数据点上进行插值,并且还可以通过添加新的数据点来动态地更新插值结果。
因此,牛顿插值法成为了一种非常有用的数值计算工具,被广泛应用于工程、科学和金融等领域。
三、牛顿插值法的计算步骤1. 确定数据点首先,我们需要确定一组离散的数据点{(x1, y1), (x2, y2), ..., (xn, yn)},这些数据点是我们已知的数据,我们要通过它们来构建插值函数。
Newton 插值的算法实现Lagrange 插值公式结构紧凑,便于理论分析。
利用插值基函数也容易到插值多项式的值。
Lagrange 插值公式的缺点是,当插值节点增加,或其位置变化时,全部插值基函数均要随之变化,从而整个插值公式的结构也发生变化,这在实际计算中是非常不利的。
下面引入的Newton 插值公式可以克服这个缺点。
1、问题描述当n=1时,由点斜式直线方程知,过两点00(,())x f x 和11(,())x f x 的直线方程为1010010()()()()().f x f x N x f x x x x x −=+−−若记 100110()()[,],f x f x f x x x x −=−则可把1()N x 写成10010()()[,]().N x f x f x x x x =+−显然,1()N x 就是一次Lagrange 插值多项式1()L x 。
由于1()y N x =表示通过两点00(,())x f x 和11(,())x f x 的直线,因此一次插值亦称为线性插值。
当n=2时,进而记120121*********[,][,]()()[,],[,,]f x x f x x f x f x f x x f x x x x x x x −−==−−类似地,构造不超过二次的多项式2001001201()()[,]()[,,]()().N x f x f x x x x f x x x x x x x =+−+−−容易检验,这样的2()N x 满足插值条件200211222()(),()(),()().N x f x N x f x N x f x ===因此,2()N x 就是二次Lagrange 插值多项式2()L x 。
二次插值的几何解释是,用通过三点00(,())x f x ,11(,())x f x ,22(,())x f x 的抛物线2()y N x =来近似所考察的曲线()y f x =,因此这类插值亦称为抛物线插值。
牛顿插值法插值法是利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。
如果这特定函数是多项式,就称它为插值多项式。
当插值节点增减时全部插值基函数均要随之变化,这在实际计算中很不方便。
为了克服这一缺点,提出了牛顿插值。
牛顿插值通过求各阶差商,递推得到的一个公式:f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0 )...(x-xn-1)+Rn(x)。
插值函数插值函数的概念及相关性质[1]定义:设连续函数y-f(x) 在区间[a,b]上有定义,已知在n+1个互异的点x0,x1,…xn上取值分别为y0,y1,…yn (设a≤ x1≤x2……≤xn≤b)。
若在函数类中存在以简单函数P(x) ,使得P(xi)=yi,则称P(x) 为f(x)的插值函数.称x1,x2,…xn 为插值节点,称[a,b]为插值区间。
定理:n次代数插值问题的解存在且唯一。
牛顿插值法C程序程序框图#include<stdio.h>void main(){float x[11],y[11][11],xx,temp,newton;int i,j,n;printf("Newton插值:\n请输入要运算的值:x=");scanf("%f",&xx);printf("请输入插值的次数(n<11):n=");scanf("%d",&n);printf("请输入%d组值:\n",n+1);for(i=0;i<n+1;i++){ printf("x%d=",i);scanf("%f",&x[i]);printf("y%d=",i);scanf("%f",&y[0][i]);}for(i=1;i<n+1;i++)for(j=i;j<n+1;j++){ if(i>1)y[i][j]=(y[i-1][j]-y[i-1][j-1])/(x[j]-x[j-i]);elsey[i][j]=(y[i-1][j]-y[i-1][j-1])/(x[j]-x[j-1]);printf("%f\n",y[i][i]);}temp=1;newton=y[0][0];for(i=1;i<n+1;i++){ temp=temp*(xx-x[i-1]);newton=newton+y[i][i]*temp;}printf("求得的结果为:N(%.4f)=%9f\n",xx,newton);牛顿插值法Matlab程序function f = Newton(x,y,x0)syms t;if(length(x) == length(y))n = length(x);c(1:n) = 0.0;elsedisp('x和y的维数不相等!');return;endf = y(1);y1 = 0;l = 1;for(i=1:n-1)for(j=i+1:n)y1(j) = (y(j)-y(i))/(x(j)-x(i));endc(i) = y1(i+1);l = l*(t-x(i));f = f + c(i)*l;simplify(f);y = y1;if(i==n-1)if(nargin == 3)f = subs(f,'t',x0);elsef = collect(f); %将插值多项式展开f = vpa(f, 6);endend牛顿插值法摘要:值法利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。
实验二 牛顿插值法
一、实验目的:
1、掌握牛顿插值法的基本思路和步骤。
2、 培养编程与上机调试能力。
二、牛顿插值法基本思路与计算步骤:
给定插值点序列())(,i i x f x ,,,1,0,n i =。
构造牛顿插值多项式)(u N n 。
输入要计算的函数点,x 并计算)(x N n 的值,利用牛顿插值公式,当增加一个节点时,只需在后面多计算一项,而前面的计算仍有用;另一方面)(x N n 的各项系数恰好又是各阶均差,而各阶均差可用均差公式来计算。
为
的 一阶均差。
为
的 k 阶均差。
均差表:
1. 输入n 值及())(,i i x f x ,,,1,0,n i =;要计算的函数点x 。
2. 对给定的,x 由
[][][]
00010101201101
()()(),()(),,()
()
(),,n n n N x f x x x f x x x x x x f x x x x x x x x x f x x x -=+-+--++---
计算()n N x 的值。
3.输出()n N x 。
三:程序流程图:
四、实验内容
龙格(Runge )给出一个例子是极著名并富有启发性的。
设区间[-1,1]上函数
2
2511
)(x
x f += 考虑区间[-1,1]的一个等距划分,分点为
n i n i
x i ,,2,1,0,21 =+-=
选择不断增大的分点数目n=2,3….,画出原函数f(x)及插值多项式函数)(x L n 在[-1,1]上的图像,比较并分析实验结果。
qt牛顿插值算法
Qt牛顿插值算法
牛顿插值算法是一种常用的数值插值方法,用于构造一条通过给定数据点的多项式曲线。
它由英国数学家艾萨克·牛顿于17世纪提出,并被广泛应用于科学计算和工程领域。
牛顿插值算法的基本思想是根据给定的数据点,构造一个逐步逼近的多项式函数。
这个多项式函数通过给定数据点的横坐标和纵坐标来确定,可以用于在给定数据点之外的位置进行插值计算。
具体来说,牛顿插值算法通过构造一个拉格朗日插值多项式的等价形式,使用差商的概念来递归地计算多项式的系数。
差商表示了给定数据点之间的差异和变化率,它是通过逐步逼近的方式来构造多项式的关键。
在Qt中,实现牛顿插值算法的步骤如下:
1. 准备数据点:首先,需要准备一组给定的数据点,包括横坐标和纵坐标。
这些数据点可以来自于实际测量或者是由其他方法计算得到的。
2. 计算差商:根据给定的数据点,使用差商的概念来递归地计算多项式的系数。
差商的计算可以使用递归的方式,从而减少计算量。
3. 构造多项式:通过差商的计算结果,构造牛顿插值多项式。
多项式的形式可以表示为f(x) = a0 + a1(x-x0) + a2(x-x0)(x-x1) + ...,其中a0、a1、a2等系数是通过差商计算得到的。
4. 插值计算:通过构造的多项式,可以进行插值计算。
给定任意一个横坐标x,通过多项式计算可以得到对应的纵坐标y,实现了对给定数据点之外位置的插值计算。
牛顿插值算法的优点是计算简单、效率高,且在插值计算过程中不需要重新计算整个多项式。
它的缺点是在插值区间的两端,多项式的误差较大,需要增加插值点的密度来提高插值精度。
总结一下,牛顿插值算法是一种常用的数值插值方法,通过逐步逼近的方式构造多项式函数,实现对给定数据点之外位置的插值计算。
在Qt中,可以使用差商的概念来递归地计算多项式的系数,并通过构造的多项式进行插值计算。
牛顿插值算法简单高效,但在插值区间的两端误差较大,需要增加插值点的密度来提高插值精度。