数值计算方法第5讲牛顿插值总结
- 格式:ppt
- 大小:3.54 MB
- 文档页数:43
牛顿(newton)插值法牛顿插值法是一种数值分析中的插值方法,它用于找到一个多项式函数,该函数会经过给定的一系列数据点。
该方法最初由英国数学家艾萨克·牛顿(Isaac Newton)发明并称为插值多项式,它也被称作差分插值法。
插值是数学和工程学中的一项重要任务,它是用于在给定数据点之间构建连续函数的一种数值方法。
插值方法通常涉及过渡从观察结果派生出抽象结果的过程,从而使得预测可能的结果取得更加准确。
下面介绍牛顿插值法的基本原理。
插值基础插值基础是插值方法中的一个重要概念。
在这里,我们将对牛顿插值法中用到的插值基础进行简要介绍。
一个插值基础是指一个已知数据点的集合,通常是一个 x 坐标和对应的 y 坐标。
每个插值基础一般定义为一个数据点的函数,该函数包含了给定点的所有信息并将这些信息用于构建连续函数。
在牛顿插值法中,我们使用差分来定义插值基础。
差分是指两个相邻数据点之间 y 坐标的差值。
具体来说,若给定以下节点:x0, y0x1, y1x2, y2...xn, yn我们则通过以下的 "+" 符号所示的不断进行差分的方式来构建一个插值基础:y0y1-y0…yn-yn-1 yn-yn-1 yn-yn-2 ... yn-y0上述图表所展示的差分的值即为定义插值基础的差商(divided difference)。
牛顿插值公式基于上述插值基础和差商,我们现在可以使用牛顿插值公式来实现插值。
具体来说,牛顿插值公式可以表示为:f(x) = y0 + d1*f[x0,x1] + d2*f[x0,x1,x2] + ... + dn*f[x0,x1,...,xn]其中 f(x) 是插值函数,x0, x1, ..., xn 是给定的节点,y0, y1, ..., yn 是对应的 y 值,f[x0,x1] 是差商 f(x0,...,x1) 的值,d1, d2, ..., dn 也是差商。
请注意,插值函数的次数最高为 n - 1,这意味着插值函数与插值基础的次数相同。
第五章 函数近似计算(插值问题)的插值方法5.3 Newton 插值/均值与差分lagrange 插值多项式作为一种计算方案,公式简洁,做理论分析也方便。
其缺点是,当节点改变时,公式需要重建,计算量大;如果还要根据精度要求,选取合适的节点和插值多项式的次数,则只好逐次计算出)(1x L , )(2x L等,并做误差试算,才可以做到,这当然是不理想的。
为次,人们从改进插值多项式的形式入手,给出另一种风格的插值公式,这就是Newton(牛顿)插值公式。
Newton 插值公式通过均差和差分的记号来表达。
1. 均差的概念及其性质 定义 5.3.1 设函数f在互异节点 ,,10x x 上的值为 )(0x f , )(1x f ,等,定义(1)f 在j i x x ,上的1阶均差为 ji j i j i x x x f x f x x f --=)()(],[(2) f在k j i x x x ,,上的2阶均差为 ki k j j i k j i x x x x f x x f x x x f --=],[],[],,[(3)递推地,f在k x x x ,,,10 上的k阶均差为kk k k x x x x x f x x x f x x x f --=-02111010],,,[],,,[],,,[同时规定f在i x 上的零阶均差为)(][]i x f x f =性质1k 阶均差可以表示成1+k个函数值的线性组合,即∑=+-----=kj k j j j j j j j k x x x x x x x x x f x x x f 011010)())(()()(],,,[ (5.3.5)或记为∑=+=kj j k j k x x f x x x f 0110)(')(],,,[ω (5.3.5b )证明:用数学归纳法。
当1=k 时由均差定义有11100101010)()()()(],[x x x f x x x f x x x f x f x x f -+-=--=故(5.3.5)式成立。
牛顿插值法介绍本文将介绍牛顿插值法的基本原理、计算过程、优缺点以及在实际问题中的应用。
首先,我们将简要介绍插值法的基本概念和牛顿插值法的由来,然后详细讨论牛顿插值法的计算步骤和算法,接着分析其优缺点以及适用范围,最后通过几个实际问题的例子展示牛顿插值法的应用场景。
一、插值法基本概念在数学和计算机领域,插值是指根据已知的离散数据点构造满足这些数据点的曲线或函数的过程。
假设我们有一组数据点{(x1, y1), (x2, y2), ..., (xn, yn)},我们想要通过这些数据点构建一个函数f(x),使得f(xi) = yi,其中i = 1, 2, ..., n。
这样的函数就是经过插值的函数,它代表了这些数据点的趋势和变化规律。
插值法通常用于寻找这样的函数,它能够通过已知的数据点来估计函数在其他位置的值。
常见的插值方法包括拉格朗日插值法、牛顿插值法和埃尔米特插值法等。
在这些方法中,牛顿插值法是最为广泛使用的一种,因为它的计算效率高、精度较高,并且易于编程实现。
二、牛顿插值法的由来牛顿插值法由艾萨克·牛顿在17世纪提出,他是一位英国著名的数学家、物理学家和天文学家,在微积分、物理学和光学等领域都做出了重大贡献。
牛顿发展了牛顿插值法的理论基础和计算方法,并将其应用于数据分析和天体运动等问题中。
牛顿插值法基于牛顿插值多项式的概念,该多项式利用差商(divided differences)来表示,并具有易于计算和分析的优势。
牛顿插值多项式能够在已知的数据点上进行插值,并且还可以通过添加新的数据点来动态地更新插值结果。
因此,牛顿插值法成为了一种非常有用的数值计算工具,被广泛应用于工程、科学和金融等领域。
三、牛顿插值法的计算步骤1. 确定数据点首先,我们需要确定一组离散的数据点{(x1, y1), (x2, y2), ..., (xn, yn)},这些数据点是我们已知的数据,我们要通过它们来构建插值函数。
牛顿插值法公式牛顿插值法公式,这可真是个有趣又实用的数学工具!还记得我当年读书的时候,有一次参加数学竞赛的集训。
那时候,我们一群对数学充满热情的小伙伴天天聚在一起钻研各种难题。
有一天,老师就给我们讲到了牛顿插值法公式。
当时,我们都被这个看起来有点复杂的公式给难住了。
老师在黑板上写下:$N(x) = f[x_0] + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x -x_0)(x - x_1) + \cdots + f[x_0, x_1, \cdots, x_n](x - x_0)(x - x_1) \cdots (x - x_{n-1})$ ,然后开始给我们讲解每个部分的含义。
老师说,这个公式就像是一个神奇的魔法,能够通过已知的几个点,帮我们推测出其他未知点的大致情况。
比如说,我们知道了一些温度随时间变化的几个特定时间点的数值,用牛顿插值法公式就能大概猜到其他时间点的温度。
咱来仔细瞅瞅这个公式。
首先,$f[x_0]$ 就是我们已知的第一个点的函数值。
而 $f[x_0, x_1]$ 呢,它叫一阶差商,计算方法是$\frac{f(x_1) - f(x_0)}{x_1 - x_0}$ 。
再往后的二阶差商 $f[x_0, x_1,x_2]$ 、三阶差商 $f[x_0, x_1, x_2, x_3]$ 等等,计算起来就更复杂一点啦,但原理都是相通的,就是通过不断地找差值的差值来找到规律。
举个简单的例子吧。
假设我们知道三个点,$(1, 2)$ 、$(2, 5)$ 和$(3, 10)$ 。
先算一阶差商,$f[1, 2] = \frac{5 - 2}{2 - 1} = 3$ ,$f[2, 3] =\frac{10 - 5}{3 - 2} = 5$ 。
然后算二阶差商,$f[1, 2, 3] = \frac{5 - 3}{3 - 1} = 1$ 。
这样,我们就能用牛顿插值法公式写出通过这三个点的插值多项式啦。
第5章插值方法5.1 插值问题概述假设f(x)是某个表达式很复杂,甚至根本写不出来的实函数,且已知f(x)在某个区间[a,b]上的n+1个互异的点x0,x1,…,x n处的函数值f(x0),f(x1),…,f(x n),我们希望找到一个简单的函数y=P(x),使得P(x k)=f(x k),k=0,1,…,n.这就是插值问题。
如果我们找到了这样的函数y=P(x),我们就可以在一定范围内利用P(x)近似表示f(x),从而解决了相应的计算问题。
1.利用函数值列表来表示插值问题对于一个插值问题来说,我们的已知条件就是n+1个互异的点处的函数值.回顾高等数学中学习过的函数的表示方法,我们可用下面表1的形式列出已知的函数值,并简称为由表1给出的插值问题。
表1:插值问题的函数值列表2.重要术语对于n+1个基点的插值问题,我们称:f(x) 为被插值函数;P(x)为插值函数;x0,x1,…,x n为插值基点或插值节点;P(x k)=f(x k),k=0,1,…,n为插值条件;[a,b]为插值区间。
注释:对于早期的插值问题来说,f(x)通常是已知的,比如对数函数,指数函数,三角函数等这些问题现在已经不用插值法来计算了;对于现在的许多实际问题来说,我们并不知道f(x)的具体形式,所对应的函数值可能是由测量仪器或其他物理设备中直接读出来的,f(x)只是一个概念中的函数。
3.多项式插值对于n+1个基点的插值问题,如果要求插值函数是次数不超过n 的多项式,记为P n(x),则相应的问题就是多项式插值,并且把P n(x)称为插值多项式。
实际上,我们所考虑的插值函数通常都是多项式函数或分段多项式函数。
由于次数不超过n的多项式的一般形式为P n((x)=a 0+a 1x+a 2x 2+…+a n x n (1)所以只要确定了n+1个系数a 0,a 1,a 2,a n ,我们便确定了一个插值多项式。
4.多项式插值的一般方法对于n+1个基点的多项式插值问题,我们完全可以用上一章中的办法来求插值多项式P n (x)的系数,a 0,a 1,a 2,a n ,它们可表为下面的线性方程组的解,所以多项式插值相对说来是很简单的。
拉格朗日插值法牛顿插值法
摘要:
1.插值法的概念和作用
2.拉格朗日插值法原理和应用
3.牛顿插值法原理和应用
4.两种插值法的优缺点比较
正文:
一、插值法的概念和作用
插值法是一种数学方法,通过已知的数据点来预测未知数据点的一种技术。
在科学计算和工程应用中,常常需要根据有限个已知数据点,来估计某个函数在其他点上的值。
插值法正是为了解决这个问题而诞生的。
二、拉格朗日插值法原理和应用
拉格朗日插值法是一种基于拉格朗日基函数的插值方法。
它的基本原理是:在给定的区间[a, b] 上,选取一个基函数,然后通过求解一组线性方程,得到基函数在各数据点上的值,最后用这些值来近似函数在待求点上的值。
拉格朗日插值法广泛应用于数值分析、工程计算等领域。
三、牛顿插值法原理和应用
牛顿插值法,又称为牛顿前向差分法,是一种基于差分的插值方法。
它的基本原理是:通过对已知数据点的函数值进行差分,然后使用牛顿迭代公式来求解差分后的函数在待求点上的值。
牛顿插值法具有较高的精度,适用于各种函数,特别是对于单调函数和多项式函数,效果尤为显著。
四、两种插值法的优缺点比较
拉格朗日插值法和牛顿插值法各有优缺点。
拉格朗日插值法的优点是适用范围广,可以插值任意类型的函数,但计算过程较为复杂;牛顿插值法的优点是计算简便,精度高,但对于非线性函数或多峰函数,效果可能不佳。
因此,在实际应用中,需要根据具体情况选择合适的插值方法。