山东中考数学试题圆专题
- 格式:doc
- 大小:272.50 KB
- 文档页数:8
三年(2021-2023)中考数学真题分项汇编【山东专用】专题16圆解答题(精选34道)一.解答题(共34小题)1.(2023•威海)如图,在平面直角坐标系中,点P在第一象限内,⊙P与x轴相切于点C,与y轴相交于点A(0,8),B(0,2).连接AC,BC.(1)求点P的坐标;(2)求cos∠ACB的值.2.(2023•日照)在探究“四点共圆的条件”的数学活动课上,小霞小组通过探究得出:在平面内,一组对角互补的四边形的四个顶点共圆.请应用此结论,解决以下问题:如图1,△ABC中,AB=AC,∠BAC=α(60°<α<180°).点D是BC边上的一动点(点D不与B,C 重合),将线段AD绕点A顺时针旋转α到线段AE,连接BE.(1)求证:A,E,B,D四点共圆;(2)如图2,当AD=CD时,⊙O是四边形AEBD的外接圆,求证:AC是⊙O的切线;(3)已知α=120°,BC=6,点M是边BC的中点,此时⊙P是四边形AEBD的外接圆,直接写出圆心P与点M距离的最小值.3.(2023•威海)已知:射线OP平分∠MON,A为OP上一点,⊙A交射线OM于点B,C,交射线ON于点D,E,连接AB,AC,AD.(1)如图1,若AD∥OM,试判断四边形OBAD的形状,并说明理由;(2)如图2,过点C作CF⊥OM,交OP于点F;过点D作DG⊥ON,交OP于点G.求证:AG=AF.4.(2023•东营)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,DE⊥AC,垂足为E.(1)求证:DE是⊙O的切线;(2)若∠C=30°,CD=2,求的长.5.(2023•菏泽)如图,AB为⊙O的直径,C是圆上一点,D是的中点,弦DE⊥AB,垂足为点F.(1)求证:BC=DE;(2)P是上一点,AC=6,BF=2,求tan∠BPC;(3)在(2)的条件下,当CP是∠ACB的平分线时,求CP的长.6.(2023•济宁)如图,已知AB是⊙O的直径,CD=CB,BE切⊙O于点B,过点C作CF⊥OE交BE于点F,EF=2BF.(1)如图1,连接BD,求证:△ADB≌△OBE;(2)如图2,N是AD上一点,在AB上取一点M,使∠MCN=60°,连接MN.请问:三条线段MN,BM,DN有怎样的数量关系?并证明你的结论.7.(2023•聊城)如图,在Rt△ABC中,∠ACB=90°,∠BAC的平分线AD交BC于点D,∠ADC的平分线DE交AC于点E.以AD上的点O为圆心,OD为半径作⊙O,恰好过点E.(1)求证:AC是⊙O的切线;(2)若CD=12,tan∠ABC=,求⊙O的半径.8.(2023•滨州)如图,点E是△ABC的内心,AE的延长线与边BC相交于点F,与△ABC的外接圆交于点D.(1)求证:S△ABF:S△ACF=AB:AC;(2)求证:AB:AC=BF:CF;(3)求证:AF2=AB•AC﹣BF•CF;(4)猜想:线段DF,DE,DA三者之间存在的等量关系.(直接写出,不需证明.)9.(2023•枣庄)如图,AB为⊙O的直径,点C是的中点,过点C做射线BD的垂线,垂足为E.(1)求证:CE是⊙O的切线;(2)若BE=3,AB=4,求BC的长;(3)在(2)的条件下,求阴影部分的面积(用含有π的式子表示).10.(2023•临沂)如图,⊙O是△ABC的外接圆,BD是⊙O的直径,AB=AC,AE∥BC,E为BD的延长线与AE的交点.(1)求证:AE是⊙O的切线;(2)若∠ABC=75°,BC=2,求的长.11.(2023•烟台)如图,在菱形ABCD中,对角线AC,BD相交于点E,⊙O经过A,D两点,交对角线AC于点F,连接OF交AD于点G,且AG=GD.(1)求证:AB是⊙O的切线;(2)已知⊙O的半径与菱形的边长之比为5:8,求tan∠ADB的值.12.(2022•菏泽)如图,在△ABC中,以AB为直径作⊙O交AC、BC于点D、E,且D是AC的中点,过点D作DG⊥BC于点G,交BA的延长线于点H.(1)求证:直线HG是⊙O的切线;(2)若HA=3,cos B=,求CG的长.13.(2022•聊城)如图,点O是△ABC的边AC上一点,以点O为圆心,OA为半径作⊙O,与BC相切于点E,交AB于点D,连接OE,连接OD并延长交CB的延长线于点F,∠AOD=∠EOD.(1)连接AF,求证:AF是⊙O的切线;(2)若FC=10,AC=6,求FD的长.14.(2022•泰安)问题探究(1)在△ABC中,BD,CE分别是∠ABC与∠BCA的平分线.①若∠A=60°,AB=AC,如图1,试证明BC=CD+BE;②将①中的条件“AB=AC”去掉,其他条件不变,如图2,问①中的结论是否成立?并说明理由.迁移运用(2)若四边形ABCD是圆的内接四边形,且∠ACB=2∠ACD,∠CAD=2∠CAB,如图3,试探究线段AD,BC,AC之间的等量关系,并证明.15.(2022•日照)如图,在Rt△ABC中,∠C=90°,∠B=30°,点D为边AB的中点,点O在边BC上,以点O为圆心的圆过顶点C,与边AB交于点D.(1)求证:直线AB是⊙O的切线;(2)若AC=,求图中阴影部分的面积.16.(2022•临沂)如图,AB是⊙O的切线,B为切点,直线AO交⊙O于C,D两点,连接BC,BD.过圆心O作BC的平行线,分别交AB的延长线、⊙O及BD于点E,F,G.(1)求证:∠D=∠E;(2)若F是OE的中点,⊙O的半径为3,求阴影部分的面积.17.(2022•枣庄)如图,在半径为10cm的⊙O中,AB是⊙O的直径,CD是过⊙O上一点C的直线,且AD⊥DC于点D,AC平分∠BAD,点E是BC的中点,OE=6cm.(1)求证:CD是⊙O的切线;(2)求AD的长.18.(2022•东营)如图,AB为⊙O的直径,点C为⊙O上一点,BD⊥CE于点D,BC平分∠ABD.(1)求证:直线CE是⊙O的切线;(2)若∠ABC=30°,⊙O的半径为2,求图中阴影部分的面积.19.(2022•德州)如图1,在等腰三角形ABC中,AB=AC,O为底边BC的中点,过点O作OD⊥AB,垂足为D,以点O为圆心,OD为半径作圆,交BC于点M,N.(1)AB与⊙O的位置关系为;(2)求证:AC是⊙O的切线;(结果保留小数点后一位.参考数据:sin24°≈0.41,(3)如图2,连接DM,DM=4,∠A=96°,求⊙O的直径.cos24°≈0.91,tan24°≈0.45)20.(2022•济南)已知:如图,AB为⊙O的直径,CD与⊙O相切于点C,交AB延长线于点D,连接AC,BC,∠D=30°,CE平分∠ACB交⊙O于点E,过点B作BF⊥CE,垂足为F.(1)求证:CA=CD;(2)若AB=12,求线段BF的长.21.(2022•潍坊)在数学实验课上,小莹将含30°角的直角三角尺分别以两个直角边为轴旋转一周,得到甲、乙两个圆锥,并用作图软件Geogebra画出如下示意图.小亮观察后说:“甲、乙圆锥的侧面都是由三角尺的斜边AB旋转得到,所以它们的侧面积相等.”你认同小亮的说法吗?请说明理由.22.(2022•威海)如图,四边形ABCD是⊙O的内接四边形,连接AC,BD,延长CD至点E.(1)若AB=AC,求证:∠ADB=∠ADE;(2)若BC=3,⊙O的半径为2,求sin∠BAC.23.(2022•淄博)已知△ABC是⊙O的内接三角形,∠BAC的平分线与⊙O相交于点D,连接DB.(1)如图①,设∠ABC的平分线与AD相交于点I,求证:BD=DI;(2)如图②,过点D作直线DE∥BC,求证:DE是⊙O的切线;(3)如图③,设弦BD,AC延长后交⊙O外一点F,过F作AD的平行线交BC的延长线于点G,过G 作⊙O的切线GH(切点为H),求证:FG=HG.24.(2021•菏泽)如图,在⊙O中,AB是直径,弦CD⊥AB,垂足为H,E为上一点,F为弦DC延长线上一点,连接FE并延长交直径AB的延长线于点G,连接AE交CD于点P,若FE=FP.(1)求证:FE是⊙O的切线;(2)若⊙O的半径为8,sin F=,求BG的长.25.(2021•威海)如图,AB是⊙O直径,弦CD⊥AB,垂足为点E.弦BF交CD于点G,点P在CD延长线上,且PF=PG.(1)求证:PF为⊙O切线;(2)若OB=10,BF=16,BE=8,求PF的长.26.(2021•枣庄)如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD,CD,过点D作⊙O的切线与AC的延长线交于点P.(1)求证:DP∥BC;(2)求证:△ABD∽△DCP;(3)当AB=5cm,AC=12cm时,求线段PC的长.27.(2021•泰安)如图1,O为半圆的圆心,C、D为半圆上的两点,且=.连接AC并延长,与BD 的延长线相交于点E.(1)求证:CD=ED;(2)AD与OC,BC分别交于点F,H.①若CF=CH,如图2,求证:CF•AF=FO•AH;②若圆的半径为2,BD=1,如图3,求AC的值.28.(2021•德州)已知⊙O为△ACD的外接圆,AD=CD.(1)如图1,延长AD至点B,使BD=AD,连接CB.①求证:△ABC为直角三角形;②若⊙O的半径为4,AD=5,求BC的值;(2)如图2,若∠ADC=90°,E为⊙O上的一点,且点D,E位于AC两侧,作△ADE关于AD对称的图形△ADQ,连接QC,试猜想QA,QC,QD三者之间的数量关系并给予证明.29.(2021•济宁)如图,点C在以AB为直径的⊙O上,点D是BC的中点,连接OD并延长交⊙O于点E,作∠EBP=∠EBC,BP交OE的延长线于点P.(1)求证:PB是⊙O的切线;(2)若AC=2,PD=6,求⊙O的半径.30.(2021•济南)已知:如图,AB是⊙O的直径,C,D是⊙O上两点,过点C的切线交DA的延长线于点E,DE⊥CE,连接CD,BC.(1)求证:∠DAB=2∠ABC;(2)若tan∠ADC=,BC=4,求⊙O的半径.31.(2021•东营)如图,以等边三角形ABC的BC边为直径画圆,交AC于点D,DF⊥AB于点F,连接OF,且AF=1.(1)求证:DF是⊙O的切线;(2)求线段OF的长度.32.(2021•烟台)如图,已知Rt△ABC中,∠C=90°.(1)请按如下要求完成尺规作图(不写作法,保留作图痕迹).①作∠BAC的角平分线AD,交BC于点D;②作线段AD的垂直平分线EF与AB相交于点O;③以点O为圆心,以OD长为半径画圆,交边AB于点M.(2)在(1)的条件下,求证:BC是⊙O的切线;(3)若AM=4BM,AC=10,求⊙O的半径.33.(2021•临沂)如图,已知在⊙O中,==,OC与AD相交于点E.求证:(1)AD∥BC;(2)四边形BCDE为菱形.34.(2021•潍坊)如图,半圆形薄铁皮的直径AB=8,点O为圆心,C是半圆上一动点(不与A,B重合),连接AC并延长到点D,使AC=CD,过点D作AB的垂线DH交,CB,AB于点E,F,H,连接OC,记∠ABC=θ,θ随点C的移动而变化.(1)移动点C,当点H,O重合时,求sinθ的值;(2)当θ<45°时,求证:BH•AH=DH•FH;(3)当θ=45°时,将扇形OAC剪下并卷成一个圆锥的侧面,求该圆锥的底面半径和高.。
圆的有关计算及证明2023年数学中考试题精选(一)1.(2023.营口23题)如图,在△ABC中,AB=BC,以BC为直径作圆O与AC将于点D,过点D作DE⊥AB,交CB延长线于点F,垂足为点E.(1)求证:DF为圆O的切线;,求BF的长。
(2)若BE=3,cosC=452.(2023.本溪铁岭辽阳24题)如图,AB是圆O的直径,点C,E在圆O上,∠CAB=2∠EAB,点F在线段AB的延长线上,且∠AFE=∠ABC.(1)求证:EF与圆O相切;,求BC的长。
(2)若BF=1,sin∠AFE=453.(2023.沈阳22题)如图,BE是圆O的直径,点A和点D是圆O上的两点,过点A作圆O的切线交BE延长线于点C.(1)若∠ADE=25°,求∠C的度数;(2)若AB=AC,CE=2,求圆O半径的长.4.(2023.大连市23题)如图1,在圆O中,AB为圆O的直径,点C为圆O上一点,AD为∠CAB的平分线交圆O于点D,连接OD交BC于点E.(1)求∠BED的度数;(2)如图2,过点A作圆O的切线BC延长线于点F,过点D作DG ∥AF交AB于点G.若AD=2√35,DE=4,求DG的长。
5.(2023.湖北省恩施州23题)如图,△ABC是等腰直角三角形,∠ACB=90°,点O为AB的中点,连接CO交圆O于点E,圆O与AC 相切于点D.(1)求证:BC是圆O的切线;(2)延长CO交圆O于点G,连接AC交圆O于点F,若AC=4√(2),求FG的长.6.(2023.贵州省23题)如图,已知圆O是等边三角形ABC的外接圆,连接CO并延长交AB于点D,交圆O于点E,连接EA,EB.(1)写出图中一个度数为30°的角;____,图中与△ACD全等的三角形是______;(2)求证:△AED∽△CEB;(3)连接OA,OB,判断四边形OAEB的形状,并说明理由。
7.(2023.江苏省24题)如图,在△ABC中,AB=AC,以AB为直径的圆O交边AC于点D,连接BD,过点C作CE∥AB.(1)请用无刻度的直尺和圆规作图:过点B作圆O的切线,交CE 于点F;(不写作法,保留作图痕迹,标明字母)(2)在(1)的条件下,求证:BD=BF.8.(2023.江西省20题)如图,在△ABC中,AB=4,∠C=64°,以AB为直径的圆O与AC相交于点D,E为优弧ABD上一点,且∠ADE=40°.(1)求BE的长;(2)若∠EAD=76°,求证:CB为圆O的切线.9.(2023.沈阳22题)如图,AB是圆O的直径,点C是圆O上的一点(点C不与点A,B重合),连接AC,BC,点D是AB上的一点,AC=AD,BE交CD的延长线于点E,且BE=BC.(1)求证:BE是圆O的切线;(2)若圆O的半径为5,tanE=1,则BE的长为_____.210.(2023.扬州市25题)如图,在△ABC中,∠ACB=90°,点D是AB∠A,点O在BC上,以点O为圆心的圆经过C、上一点,且∠BCD=12D两点.(1)试判断直线AB与圆O的位置关系,并说明理由;,圆O的半径为3,求AC的长.(2)若sinB=3511.(2023.广西壮族自治区23题)如图,PO平分∠APD,PA与圆O相切于点A,延长AO交PD于点C,过点O作OB⊥PD,垂足为B.(1)求证:PB是圆O的切线;(2)若圆O的半径为4,OC=5,求PA的长.12.(2023.广东省22题)如图1,在矩形ABCD中(AB>AD),对角线AC,BD相交于点O,点A关于BD的对称点为A`,连接AA`交BD于点E,连接CA`.(1)求证:AA`⊥CA`;(2)以点O为圆心,OE为半径作圆.①如图2,圆O与CD相切,求证:AA`=√3CA`;②如图3,圆O与CA`相切,AD=1,求圆O的面积.13.(2023.安徽省20题)已知四边形ABCD内接于圆O,对角线BD是圆O的直径.(1)如图1,连接OA,CA,若OA⊥BD,求证:CA平分⊥BCD; (2)如图2,E为圆O内一点,满足AE⊥BC,CE⊥AB,若BD=3√3,AE=3.求弦BC的长.14.(2023.湖北黄冈市20题)如图,⊥ABC 中,以AB 为直径的圆O 交BC 于点D ,DE 是圆O 的切线 ,且DE⊥AC ,垂足为E ,延长CA 交圆O 于点F.(1)求证:AB=AC ;(2)若AE=3,ED=6,求AF 的长。
专题24 圆的有关计算☞解读考点知识点名师点晴弧长和扇形面积弧长公式会求n°的圆心角所对的弧长扇形面积公式会求圆心角为n°的扇形面积圆锥侧面积计算公式能根据公式中的已知量求圆锥中的未知量☞2年中考【题组】1.(河池)如图,用一张半径为24cm的扇形纸板制作一顶圆锥形帽子(接缝忽略不计),如果圆锥形帽子的底面半径为10cm,那么这张扇形纸板的面积是()A.240πcm2 B.480πcm2 C.1200πcm2 D.2400πcm2【答案】A.【解析】试题分析:这张扇形纸板的面积=12×2π×10×24=240π(cm2).故选A.考点:圆锥的计算.2.(凉山州)将圆心角为90°,面积为4πcm2的扇形围成一个圆锥的侧面,则所围成的圆锥的底面半径为()A.1cm B.2cm C.3cm D.4cm【答案】A.考点:圆锥的计算.3.(德州)如图,要制作一个圆锥形的烟囱帽,使底面圆的半径与母线长的比是4:5,那么所需扇形铁皮的圆心角应为()A.288° B.144° C.216° D.120°【答案】A.【解析】试题分析:∵底面圆的半径与母线长的比是4:5,∴设底面圆的半径为4x,则母线长是5x,设圆心角为n°,则524180n xxππ⨯⨯=,解得:n=288,故选A .考点:圆锥的计算.4.(宁波)如图,用一个半径为30cm,面积为300πcm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r为()A.5cm B.10cm C.20cm D.5πcm【答案】B.考点:圆锥的计算.5.(苏州)如图,AB为⊙O的切线,切点为B,连接AO,AO与⊙O交于点C,BD为⊙O的直径,连接CD.若∠A=30°,⊙O的半径为2,则图中阴影部分的面积为()A .433π-B .4233π-C .3π-D .233π-【答案】A .【解析】试题分析:过O 点作OE ⊥CD 于E ,∵AB 为⊙O 的切线,∴∠ABO=90°,∵∠A=30°,∴∠AOB=60°,∴∠COD=120°,∠OCD=∠ODC=30°,∵⊙O 的半径为2,∴OE=1,CE=DE=3,∴CD=23,∴图中阴影部分的面积为:2120211233602⋅π⋅-⨯⨯=433π-.故选A .考点:1.扇形面积的计算;2.切线的性质.6.(成都)如图,正六边形ABCDEF 内接于⊙O ,半径为4,则这个正六边形的边心距OM 和BC 弧线的长分别为( )A .2,3πB .23,πC .3,23πD .23,43π【答案】D .考点:1.正多边形和圆;2.弧长的计算.7.(甘孜州)如图,已知扇形AOB的半径为2,圆心角为90°,连接AB,则图中阴影部分的面积是()A.π﹣2 B.π﹣4 C.4π﹣2 D.4π﹣4【答案】A.【解析】试题分析:S阴影部分=S扇形OAB﹣S△OAB=29021223602π⨯-⨯⨯=π﹣2.故选A.考点:扇形面积的计算.8.(攀枝花)如图,已知⊙O的一条直径AB与弦CD相交于点E,且AC=2,AE=3,CE=1,则图中阴影部分的面积为()A 239π439πC.29πD.49π【答案】D.考点:1.扇形面积的计算;2.勾股定理的逆定理;3.圆周角定理;4.解直角三角形. 9.(自贡)如图,AB 是⊙O 的直径,弦CD ⊥AB ,∠CDB =30°,CD =32,则阴影部分的面积为( )A .2πB .πC .3πD .32π【答案】D . 【解析】试题分析:连接OD .∵CD ⊥AB ,∴CE=DE=12CD=3(垂径定理),故S △OCE=S △ODE ,即可得阴影部分的面积等于扇形OBD 的面积,又∵∠CDB=30°,∴∠COB=60°(圆周角定理),∴OC=2,故S 扇形OBD=2602360π⨯=32π,即阴影部分的面积为32π.故选D .考点:1.扇形面积的计算;2.垂径定理;3.圆周角定理;4.解直角三角形. 10.(达州)如图,直径AB 为12的半圆,绕A 点逆时针旋转60°,此时点B 旋转到点B′,则图中阴影部分的面积是( )A .12πB .24πC .6πD .36π 【答案】B .考点:1.扇形面积的计算;2.旋转的性质.11.(德阳)如图,已知⊙O 的周长为4π,AB 的长为π,则图中阴影部分的面积为( )A .2π-B .3π-C .πD .2 【答案】A .考点:1.扇形面积的计算;2.弧长的计算.12.(梧州)如图,在边长为6的正方形ABCD中,E是AB的中点,以E为圆心,ED为半径作半圆,交A、B所在的直线于M、N两点,分别以直径MD、ND为直径作半圆,则阴影部分面积为()A.95 B.185 C.365 D.725【答案】B.【解析】试题分析:根据图形可知阴影部分的面积=两个小的半圆的面积+△DMN的面积﹣大半圆的面积.∵MN的半圆的直径,∴∠MDN=90°.在Rt△MDN中,MN2=MD2+DN2,∴两个小半圆的面积=大半圆的面积.∴阴影部分的面积=△DMN的面积.在Rt△AOD中,OD=22AD AO+=2263+=35,∴阴影部分的面积=△DMN的面积=12MN•AD=16562⨯⨯=185.故选B.考点:1.扇形面积的计算;2.勾股定理;3.综合题.13.(咸宁)如图,在△ABC中,CA=CB,∠ACB=90°,以AB的中点D为圆心,作圆心角为90°的扇形DEF,点C恰在EF上,设∠BDF=α(0°<α<90°),当α由小到大变化时,图中阴影部分的面积()A.由小到大 B.由大到小 C.不变 D.先由小到大,后由大到小【答案】C.考点:1.扇形面积的计算;2.定值问题;3.综合题.14.(常德)若两个扇形满足弧长的比等于它们半径的比,则这称这两个扇形相似.如图,如果扇形AOB 与扇形A1O1B1是相似扇形,且半径OA :O1A1=k (k 为不等于0的常数).那么下面四个结论:①∠AOB=∠A1O1B1;②△AOB ∽△A1O1B1;③11ABk A B ;④扇形AOB 与扇形A1O1B1的面积之比为2k . 成立的个数为( )A .1个B .2个C .3个D .4个【答案】D .考点:1.相似三角形的判定与性质;2.弧长的计算;3.扇形面积的计算;4.新定义;5.压轴题.15.(邵阳)如图,在矩形ABCD 中,已知AB=4,BC=3,矩形在直线l 上绕其右下角的顶点B 向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转次后,顶点A 在整个旋转过程中所经过的路程之和是( )A .πB .3019.5πC .3018πD .3024π 【答案】D . 【解析】试题分析:转动一次A 的路线长是:90331802ππ⨯=,转动第二次的路线长是:90551802ππ⨯=,转动第三次的路线长是:9042180ππ⨯=,转动第四次的路线长是: 0,转动五次A 的路线长是:90331802ππ⨯=,以此类推,每四次循环,故顶点A 转动四次经过的路线长为:32π+52π+2π=6π,÷4=503余3,顶点A 转动四次经过的路线长为:6π×504=3024π.故选D .考点:1.旋转的性质;2.弧长的计算;3.规律型. 16.(北海)用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径是 . 【答案】2.考点:圆锥的计算.17.(贵港)如图,已知圆锥的底面⊙O的直径BC=6,高OA=4,则该圆锥的侧面展开图的面积为.【答案】15π.【解析】试题分析:∵OB=12BC=3,OA=4,由勾股定理,AB=5,侧面展开图的面积为:12×6π×5=15π.故答案为:15π.考点:圆锥的计算.18.(庆阳)如图,Rt△ABC中,∠ACB=90°,AC=BC=22,若把Rt△ABC绕边AB 所在直线旋转一周,则所得几何体的表面积为(结果保留π).【答案】2π.【解析】试题分析:过点C作CD⊥AB于点D,Rt△ABC中,∠ACB=90°,AC=BC,∴2,∴CD=2,以CD为半径的圆的周长是:4π.故直线旋转一周则所得的几何体得表面积是:2×12×4π×2282π.故答案为:82π.考点:1.圆锥的计算;2.点、线、面、体.19.(贺州)如图,在矩形ABCD中,AB=3,AD=4,将矩形ABCD绕点D顺时针旋转90°得到矩形A′B′C′D′,则点B经过的路径与BA,AC′,C′B′所围成封闭图形的面积是(结果保留π).【答案】2512 4π+.考点:1.扇形面积的计算;2.旋转的性质.20.(天水)如图,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A、B、C,如果AB=1,那么曲线CDEF的长是.【答案】4π.考点:1.弧长的计算;2.等边三角形的性质;3.综合题.21.(河南省)如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交AB于点E,以点O为圆心,OC的长为半径作CD交OB于点D.若OA=2,则阴影部分的面积为.【答案】3 122π+.【解析】试题分析:连接OE、AE ,∵点C为OA的中点,∴∠CEO=30°,∠EOC=60°,∴△AEO为等边三角形,∴S扇形AOE=2602360π⨯=23π,S扇形ABO=2902360π⨯=π,S扇形CDO=2901360π⨯=14π,∴S阴影=S扇形ABO﹣S扇形CDO﹣(S扇形AOE﹣S△COE)=121(13)432πππ---⨯⨯=3122π+.故答案为:3122π+.考点:扇形面积的计算.22.(烟台)如图,将弧长为6π,圆心角为120°的圆形纸片AOB围成圆锥形纸帽,使扇形的两条半径OA与OB重合(粘连部分忽略不计)则圆锥形纸帽的高是.【答案】62.考点:圆锥的计算.23.(乐山)如图,已知A (23,2)、B (23,1),将△AOB 绕着点O 逆时针旋转,使点A 旋转到点A′(﹣2,23)的位置,则图中阴影部分的面积为 .【答案】34π.【解析】试题分析:∵A (232)、B (23,1),∴OA=4,13,∵由A (232)使点A 旋转到点A′(﹣2,23),∴∠A′OA=∠B′OB=90°,根据旋转的性质可得,''OB C OBC S S ∆∆=,∴阴影部分的面积等于S 扇形A'OA ﹣S 扇形C'OC=22114(13)44ππ⨯-⨯=34π,故答案为:34π.考点:1.扇形面积的计算;2.坐标与图形变化-旋转.24.(镇江)图①是我们常见的地砖上的图案,其中包含了一种特殊的平面图形﹣正八边形.(1)如图②,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹);(2)在(1)的前提下,连接OD,已知OA=5,若扇形OAD(∠AOD<180°)是一个圆锥的侧面,则这个圆锥底面圆的半径等于.【答案】(1)作图见试题解析;(2)15 8.试题解析:(1)如图所示,八边形ABCDEFGH即为所求;(2)∵八边形ABCDEFGH是正八边形,∴∠AOD=3608×3=135°,∵OA=5,∴AD的长=1355180π⨯=154π,设这个圆锥底面圆的半径为R,∴2πR=154π,∴R=158,即这个圆锥底面圆的半径为158.故答案为:158.考点:1.正多边形和圆;2.圆锥的计算;3.作图—复杂作图.25.(宁德)图(1)是一个蒙古包的照片,这个蒙古包可以近似看成是圆锥和圆柱组成的几何体,如图(2)所示.(1)请画出这个几何体的俯视图;(2)图(3)是这个几何体的正面示意图,已知蒙古包的顶部离地面的高度EO1=6米,圆柱部分的高OO1=4米,底面圆的直径BC=8米,求∠EAO的度数(结果精确到0.1°).【答案】(1)答案见试题解析;(2)26.6°.(2)连接EO1,如图所示,∵EO1=6米,OO1=4米,∴EO=EO1﹣OO1=6﹣4=2米,∵AD=BC=8米,∴OA=OD=4米,在Rt△AOE中,tan∠EAO=2142EOOA==,则∠EAO≈26.6°.考点:1.圆锥的计算;2.圆柱的计算;3.作图-三视图.26.(玉林防城港)如图,在⊙O中,AB是直径,点D是⊙O上一点且∠BOD=60°,过点D作⊙O的切线CD交AB的延长线于点C,E为AD的中点,连接DE,EB.(1)求证:四边形BCDE是平行四边形;(2)已知图中阴影部分面积为6π,求⊙O的半径r.【答案】(1)证明见试题解析;(2)6.考点:1.切线的性质;2.平行四边形的判定;3.扇形面积的计算;4.综合题.27.(扬州)如图,已知⊙O的直径AB=12cm,AC是⊙O的弦,过点C作⊙O的切线交BA的延长线于点P,连接BC.(1)求证:∠PCA=∠B;(2)已知∠P=40°,点Q在优弧ABC上,从点A开始逆时针运动到点C停止(点Q与点C不重合),当△ABQ与△ABC的面积相等时,求动点Q所经过的弧长.【答案】(1)证明见试题解析;(2)53π或133π或233π.【解析】试题分析:(1)连接OC,由PC是⊙O的切线,得到∠1+∠PCA=90°,由AB是⊙O的直径,得到∠2+∠B=90°,从而得到结论;(2)△ABQ与△ABC的面积相等时,有三种情况,即:①当∠AOQ=∠AOC=50°时;②当∠BOQ=∠AOC=50°时;③当∠BOQ=50°时,即∠AOQ=230°时;分别求得点Q所经过的弧长即可.试题解析:(1)连接OC,∵PC是⊙O的切线,∴∠PCO=90°,∴∠1+∠PCA=90°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠2+∠B=90°,∵OC=OA,∴∠1=∠2,∴∠PCA=∠B;考点:1.切线的性质;2.弧长的计算;3.分类讨论;4.综合题;5.轨迹.【题组】1.(·扬州)如图,已知正方形边长为1,若圆与正方形的四条边都相切,则阴影部分的面积与下列各数最接近的是()A.1.0 B.2.0 C.3.0 D.4.0【答案】B.【解析】试题分析:∵正方形的边长为1,圆与正方形的四条边都相切,∴22S S S10.510.250.215ππ=-=-⋅=-≈阴影正方形圆.∵0.215最接近0.2,∴阴影部分的面积与下列各数最接近的是0.2故选B.考点:1.圆和正方形的面积;2.无理数的大小估计;3.转换思想的应用.2.(·金华)一张圆心角为45°的扇形纸板和圆形纸板按如图方式剪得一个正方形,边长都为1,则扇形纸板和圆形纸板的面积比是()A.5:4 B.5:2 C52 D52【答案】A.故选A.考点:1.等腰直角三角形的判定和性质;2.勾股定理;3.扇形面积和圆面积的计算.3.(·辽宁省本溪市)底面半径为4,高为3的圆锥的侧面积是()A.12π B.15π C.20π D.36π【答案】B.【解析】试题分析:∵圆锥的底面半径为3,高为4,∴母线长为5,∴圆锥的侧面积为:πrl=π×3×5=15π,故选B.考点:圆锥的计算.4.(·山东省莱芜市)一个圆锥的侧面展开图是半径为R的半圆,则该圆锥的高是()A.R B.12R C3R D.32R【答案】D.【解析】试题分析:圆锥的底面周长是:πR;设圆锥的底面半径是r,则2πr=πR.解得:r=12R2213()22R R-=.故选D.考点:圆锥的计算.5.(·贵州安顺市)已知圆锥的母线长为6cm,底面圆的半径为3cm,则此圆锥侧面展开图的圆心角是()A . 30°B . 60°C .90°D .180°【答案】D .考点:圆锥的计算.6.(湖南衡阳市)圆心角为120,弧长为12π的扇形半径为 ( ) A .6 B .9 C .18 D .36 【答案】C .【解析】试卷分析:12012180rππ=,解得:r=18.故选C .考点:圆的计算.7. (南京) 如图,沿一条母线将圆锥侧面剪开并展开,得到一个扇形,若圆锥底面圆半径r=2cm ,扇形圆心角120θ=︒,则该圆锥母线长l 为 cm .【答案】6. 【解析】试题分析:∵圆锥底面圆半径r=2cm , ∴根据圆的周长公式,得圆的周长为2r 4ππ=,∵侧面展开后所得扇形弧长等于圆的周长,∴扇形弧长4π=.又∵侧面展开后所得扇形的圆心角为120°,∴根据扇形的弧长公式,侧面展开后所得扇形的弧长为()120l4l 6180cm ππ⋅⋅=⇒=.考点:圆锥和扇形的计算. 8.(·呼和浩特)一个底面直径是80cm ,母线长为90cm 的圆锥的侧面展开图的圆心角的度数为 . 【答案】1600.考点:圆锥的计算.9.(·潍坊)如图,两个半径均为3的⊙O1与⊙O2相交于A 、B 两点,且每个圆都经过另一个圆的圆心,则图中阴影部分的面积为 .(结果保留π)【答案】233π-.【解析】试题分析:如图,连接O1O2,过点O1作O1H ⊥AO2于点H ,由题意可得:AO1=O1O2=AO2=3,∴△AO1O2是等边三角形.∴11233HO O O sin60322=︒=⋅=.∴()12122AO O AO O 6031333S 3S 223,2460ππ∆⨯=⨯⨯===扇形.∴12212AO O AO AO O 33S S S 24π∆=-=-弓形扇形.∴图中阴影部分的面积为:33423324ππ⎛⎫-=- ⎪ ⎪⎝⎭ .考点:1.扇形面积的计算;2.等边三角形的判定和性质;3.相交两圆的性质;4. 锐角三角函数定义;5.特殊角的三角函数值;6.转换思想的应用. 10.(·重庆A )如图,△OAB 中,OA=OB=4,∠A=30°,AB 与⊙O 相切于点C ,则图中阴影部分的面积为 .(结果保留π)【答案】4433π-.考点:1.切线的性质;2.等腰三角形的性质;3.含30度角的直角三角形的性质;4.勾股定理;5.扇形面积的计算;6.转换思想的应用.☞考点归纳归纳 1:弧长公式 基础知识归纳:n °的圆心角所对的弧长l 的计算公式为180n r l π=注意问题归纳:①在弧长的计算公式中,n 是表示1°的圆心角的倍数,n 和180都不要带单位.②若圆心角的单位不全是度,则需要先化为度后再计算弧长. ③题设未标明精确度的,可以将弧长用π表示.④正确区分弧、弧的度数、弧长三个概念,度数相等的弧,弧长不一定相等,弧长相等的弧不一定是等弧,只有在同圆或等圆中,才有等弧的概念,才是三者的统一. 【例1】在半径为2的圆中,弦AB 的长为2,则AB 的长等于( )A .3πB .2πC .23πD .32π【答案】C .考点:弧长的计算. 归纳 2:扇形面积 基础知识归纳:扇形面积公式:lR R n S 213602==π扇注意问题归纳:其中n 是扇形的圆心角度数,R 是扇形的半径,l 是扇形的弧长.【例2】如图,将长为8cm 的铁丝AB 首尾相接围成半径为2cm 的扇形,则S 扇形= cm²【答案】4. 【解析】试题分析:设围成扇形的角度为n ,∵将长为8cm 的铁丝AB 首尾相接围成半径为2cm 的扇形,∴围成扇形的弧长为4cm .∴根据弧长公式,得n 23604n 180ππ⋅⋅=⇒=,∴根据扇形面积公式,得()223602S 4cm 360π⋅⋅==.考点:扇形的计算. 归纳 3:圆锥的侧面积 基础知识归纳:圆锥的侧面积:122S l r rlππ=•=,其中l 是圆锥的母线长,r 是圆锥的地面半径.注意问题归纳:①圆锥的母线与展开后所得扇形的半径相等.②圆锥的底面周长与展开后所得扇形的弧长相等.【例3】一个圆锥的高为4cm ,底面圆的半径为3cm ,则这个圆锥的侧面积为( ) A . 12πcm2 B .15πcm2 C .20πcm2 D .30πcm2考点:圆锥的计算.归纳 4:阴影部分面积基本方法归纳:求阴影面积常用的方法:①直接用公式法;②和差法;③割补法.注意问题归纳:求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.【例4】如图,扇形OAB中,∠AOB=60°,扇形半径为4,点C在AB上,CD⊥OA,垂足为点D,当△OCD的面积最大时,图中阴影部分的面积为.π-.【答案】24考点:扇形面积的计算.☞1年模拟1.(湖北省宜昌市兴山县校级模拟)劳技课上,小颖将一顶自制的圆锥形纸帽戴在头上,已知纸帽底面圆半径为10cm,母线长50cm,则这顶纸帽的侧面积为()cm2.A.250π B.500π C.750π D.1000π【解析】试题分析:底面圆的半径为10cm ,则底面周长=20πcm ,侧面面积=π×10×50=500πcm2.故选B .考点:圆锥的计算.2.(湖北省广水市校级模拟)如图,圆锥体的高h=2cm ,底面半径r=2cm ,则圆锥体的全面积为( )cm2.A .4π B .8π C .12π D .(4+4)π【答案】C . 【解析】试题分析:底面圆的半径为2,则底面周长=4π,因为底面半径为2cm 、高为23cm ,所以圆锥的母线长为4cm ,即可求得侧面面积=12×4π×4=8π;底面积为=4π,所以全面积为:8π+4π=12πcm2.故选C . 考点:圆锥的有关计算.3.(山东省高密市模拟考试)如果圆锥的母线长为5cm ,底面半径为2cm ,那么这个圆锥的侧面积是( )A .210cmB .210cm π C .220cm D .220cm π 【答案】B .考点:1.圆锥的侧面展开图;2.扇形的面积计算.4.(山东省新泰市模拟考试)如图,Rt ABC △中,90ACB ∠=,30CAB ∠=,2BC =,O H ,分别为边AB AC ,的中点,将ABC △绕点B 顺时针旋转120到11A BC △的位置,则整个旋转过程中线段OH 所扫过部分的面积(即阴影部分面积)为( )A .77π338-B .47π338+C .πD .4π33+【答案】C .【解析】试题分析:连接BH ,BH1,∵O 、H 分别为边AB ,AC 的中点,将△ABC 绕点B 顺时针旋转120°到△A1BC1的位置,∴△OBH ≌△O1BH1,利用勾股定理可求得BH=437+=,所以利用扇形面积公式可得()()22360132********BH BC πππ=⨯-=-.故选C .考点:扇形面积的计算.5.(江苏省兴化顾庄等三校校级模拟)若粮仓顶部是圆锥形,且这个圆锥的高为2m ,母线长为2.5m ,为防雨需在粮仓顶部铺上油毡,则这块油毡的面积是 m2.【答案】154π.考点:圆锥的计算.6.(河南省三门峡市模拟考试)如图,在Rt △ABC 中,∠ABC =90°,AB =8,BC =6,分别以A 、C 为圆心,以2AC的长为半径作圆,将Rt △ABC 截去两个扇形,则剩余(阴影)部分的面积为 .【答案】24-254πcm2.【解析】试题分析:如图:∵Rt△ABC中,∠ABC=90°,AB=8,BC=6,∴AC=2286+=10cm,△ABC的面积是:12AB•BC=12×8×6=24cm2.∴S阴影部分=12×6×8-2905360π⨯=24-254πcm2,故阴影部分的面积是:24-254πcm2.考点:扇形面积的计算.7.(湖北省武汉市校级模拟)如图,在边长为1的正方形组成的网格中,△ABC的顶点均在格点上,点A、B、C的坐标分别是A(-2,3)、B(-1,2)、C(-3,1),△ABC 绕点O顺时针旋转90°后得到△A1B1C1.(1)在正方形网格中作出△A1B1C1;(2)求点A经过的路径弧AA1的长度;(结果保留π)(3)在y轴上找一点D,使DB+DB1的值最小,并直接写出D点坐标.【答案】(1)图形详见解析;(2132;(3)(0,53).试题解析:解:(1)如图如下:考点:作图—旋转变换;待定系数法求解析式;弧长公式.8.(广东省中山市校级模拟)如图,AB是的直径,点D在上,∠DAB=45°,BC∥AD,CD∥AB.(1)、判断直线CD 与的位置关系,并说明理由;(2)、若的半径为1,求图中阴影部分的面积(结果保留π).【答案】(1)、相切;(2)、324.【解析】试题分析:(1)、连接OD,根据OA=OD,∠ODA=45°得出∠AOD=90°,根据CD∥AB 得出∠ODC=90°,从而说明切线;(2)、首先求出梯形OBCD的面积,然后利用梯形的面积减去扇形OBD的面积求出阴影部分的面积.考点:切线的判定、扇形的面积计算.9.(山东省博兴县校级模拟)如图,点B、C、D都在半径为6的⊙O上,过点C作AC∥BD交OB延长线于点A,连接CD,且∠CDB=∠OBD=30°.(1)求证:AC是⊙O的切线;(2)求弦BD的长;(3)求图中阴影部分的面积.【答案】(1)见解析;(2)3;(3)6π.【解析】试题分析:(1)连接OC交BD于点E,根据∠CDB=∠OBD=30°得出∠COB=60°,∠OEB=90°,根据AC∥BD得到∠OCA=90°;(2)根据OB=6,OE⊥BD,∠OEB=30°,求出OE和BE的长度,然后计算出BD的长度;(3)根据△OBE和△CDE全等,将阴影部分的面积转化成扇形OBC的面积,然后根据扇形的面积计算公式进行求解.试题解析:(1)证明:连接OC,交BD于点E.∵∠CDB=∠OBD=30°∴∠COB=60°,∠OEB=90°∵AC∥BD ∴∠OCA=∠OEB=90°∴OC⊥AC ∴AC是⊙O的切线.(2)∵∠OEB=90°,∠OBD=30°∴OC⊥BD,321==OB OE∴BE=DE=33273622==-∴362==DEBD(3)∵OE=CE,∠OEB=∠CED=90°,BE=DE,∴△OEB≌△CED∴ππ63606602=⋅==OBCSS扇形阴影考点:切线的判定、垂径定理、扇形的面积计算.10.(山东省高密市模拟考试)如图,BE是⊙O的直径,点A在EB的延长线上,弦PD⊥BE,垂足为C,连接OD,∠AOD=∠APC.(1)求证:AP是⊙O的切线.(2)若⊙O的半径是4,AP=43,求图中阴影部分的面积.【答案】(1)见解析(2)16433π-.考点:1.切线的证明;2.勾股定理;3.特殊角的三角函数值;4.扇形的面积计算.。
2022年中考数学试题汇编:圆(选择题)1.(2022•聊城)如图,AB,CD是⊙O的弦,延长AB,CD相交于点P.已知∠P=30°,∠AOC=80°,则的度数是()A.30°B.25°C.20°D.10°2.(2022•营口)如图,点A,B,C,D在⊙O上,AC⊥BC,AC=4,∠ADC=30°,则BC的长为()A.4B.8C.4D.4 3.(2022•青岛)如图,正六边形ABCDEF内接于⊙O,点M在上,则∠CME的度数为()A.30°B.36°C.45°D.60°4.(2022•铜仁市)如图,OA,OB是⊙O的两条半径,点C在⊙O上,若∠AOB=80°,则∠C的度数为()A.30°B.40°C.50°D.60°5.(2022•铜仁市)如图,在边长为6的正方形ABCD中,以BC为直径画半圆,则阴影部分的面积是()A.9B.6C.3D.12 6.(2022•广安)蒙古包可以近似地看作由圆锥和圆柱组成.下图是一个蒙古包的示意图,底面圆半径DE=2m,圆锥的高AC=1.5m,圆柱的高CD=2.5m,则下列说法错误的是()A.圆柱的底面积为4πm2B.圆柱的侧面积为10πm2C.圆锥的母线AB长为2.25mD.圆锥的侧面积为5πm27.(2022•遵义)如图,在正方形ABCD中,AC和BD交于点O,过点O的直线EF交AB 于点E(E不与A,B重合),交CD于点F.以点O为圆心,OC为半径的圆交直线EF 于点M,N.若AB=1,则图中阴影部分的面积为()A.﹣B.﹣C.﹣D.﹣8.(2022•内江)如图,正六边形ABCDEF内接于⊙O,半径为6,则这个正六边形的边心距OM和的长分别为()A.4,B.3,πC.2,D.3,2π9.(2022•大庆)已知圆锥的底面半径为5,高为12,则它的侧面展开图的面积是()A.60πB.65πC.90πD.120π10.(2022•哈尔滨)如图,AD,BC是⊙O的直径,点P在BC的延长线上,P A与⊙O相切于点A,连接BD,若∠P=40°,则∠ADB的度数为()A.65°B.60°C.50°D.25°11.(2022•包头)如图,AB,CD是⊙O的两条直径,E是劣弧的中点,连接BC,DE.若∠ABC=22°,则∠CDE的度数为()A.22°B.32°C.34°D.44°12.(2022•长沙)如图,P A,PB是⊙O的切线,A、B为切点,若∠AOB=128°,则∠P 的度数为()A.32°B.52°C.64°D.72°13.(2022•吉林)如图,在△ABC中,∠ACB=90°,AB=5,BC=4.以点A为圆心,r 为半径作圆,当点C在⊙A内且点B在⊙A外时,r的值可能是()A.2B.3C.4D.5 14.(2022•赤峰)如图所示,圆锥形烟囱帽的底面半径为12cm,侧面展开图为半圆形,则它的母线长为()A.10cm B.20cm C.5cm D.24cm 15.(2022•梧州)如图,⊙O是△ABC的外接圆,且AB=AC,∠BAC=36°,在上取点D(不与点A,B重合),连接BD,AD,则∠BAD+∠ABD的度数是()A.60°B.62°C.72°D.73°16.(2022•赤峰)如图,AB是⊙O的直径,将弦AC绕点A顺时针旋转30°得到AD,此时点C的对应点D落在AB上,延长CD,交⊙O于点E,若CE=4,则图中阴影部分的面积为()A.2πB.2C.2π﹣4D.2π﹣2 17.(2022•湖北)一个扇形的弧长是10πcm,其圆心角是150°,此扇形的面积为()A.30πcm2B.60πcm2C.120πcm2D.180πcm2 18.(2022•广西)如图,在△ABC中,CA=CB=4,∠BAC=α,将△ABC绕点A逆时针旋转2α,得到△AB′C′,连接B′C并延长交AB于点D,当B′D⊥AB时,的长是()A.πB.πC.πD.π19.(2022•贺州)某餐厅为了追求时间效率,推出一种液体“沙漏”免单方案(即点单完成后,开始倒转“沙漏”,“沙漏”漏完前,客人所点的菜需全部上桌,否则该桌免费用餐).“沙漏”是由一个圆锥体和一个圆柱体相通连接而成.某次计时前如图(1)所示,已知圆锥体底面半径是6cm,高是6cm;圆柱体底面半径是3cm,液体高是7cm.计时结束后如图(2)所示,求此时“沙漏”中液体的高度为()A.2cm B.3cm C.4cm D.5cm20.(2022•毕节市)如图,一件扇形艺术品完全打开后,AB,AC夹角为120°,AB的长为45cm,扇面BD的长为30cm,则扇面的面积是()A.375πcm2B.450πcm2C.600πcm2D.750πcm2 21.(2022•鄂州)工人师傅为检测该厂生产的一种铁球的大小是否符合要求,设计了一个如图(1)所示的工件槽,其两个底角均为90°,将形状规则的铁球放入槽内时,若同时具有图(1)所示的A、B、E三个接触点,该球的大小就符合要求.图(2)是过球心及A、B、E三点的截面示意图,已知⊙O的直径就是铁球的直径,AB是⊙O的弦,CD切⊙O于点E,AC⊥CD、BD⊥CD,若CD=16cm,AC=BD=4cm,则这种铁球的直径为()A.10cm B.15cm C.20cm D.24cm 22.(2022•雅安)如图,已知⊙O的周长等于6π,则该圆内接正六边形ABCDEF的边心距OG为()A.3B.C.D.3 23.(2022•无锡)在Rt△ABC中,∠C=90°,AC=3,BC=4,以AC所在直线为轴,把△ABC旋转1周,得到圆锥,则该圆锥的侧面积为()A.12πB.15πC.20πD.24π24.(2022•无锡)如图,AB是圆O的直径,弦AD平分∠BAC,过点D的切线交AC于点E,∠EAD=25°,则下列结论错误的是()A.AE⊥DE B.AE∥OD C.DE=OD D.∠BOD=50°25.(2022•荆州)如图,以边长为2的等边△ABC顶点A为圆心、一定的长为半径画弧,恰好与BC边相切,分别交AB,AC于D,E,则图中阴影部分的面积是()A.﹣B.2﹣πC.D.﹣26.(2022•十堰)如图,⊙O是等边△ABC的外接圆,点D是弧AC上一动点(不与A,C 重合),下列结论:①∠ADB=∠BDC;②DA=DC;③当DB最长时,DB=2DC;④DA+DC =DB,其中一定正确的结论有()A.1个B.2个C.3个D.4个27.(2022•河北)某款“不倒翁”(图1)的主视图是图2,P A,PB分别与所在圆相切于点A,B.若该圆半径是9cm,∠P=40°,则的长是()A.11πcm B.πcm C.7πcm D.πcm 28.(2022•宜昌)如图,四边形ABCD内接于⊙O,连接OB,OD,BD,若∠C=110°,则∠OBD=()A.15°B.20°C.25°D.30°29.(2022•台湾)如图,AB为圆O的一弦,且C点在AB上.若AC=6,BC=2,AB的弦心距为3,则OC的长度为何?()A.3B.4C.D.30.(2022•台湾)有一直径为AB的圆,且圆上有C、D、E、F四点,其位置如图所示.若AC=6,AD=8,AE=5,AF=9,AB=10,则下列弧长关系何者正确?()A.+=,+=B.+=,+≠C.+≠,+=D.+≠,+≠31.(2022•山西)如图,△ABC内接于⊙O,AD是⊙O的直径,若∠B=20°,则∠CAD 的度数是()A.60°B.65°C.70°D.75°32.(2022•山西)如图,扇形纸片AOB的半径为3,沿AB折叠扇形纸片,点O恰好落在上的点C处,图中阴影部分的面积为()A.3π﹣3B.3π﹣C.2π﹣3D.6π﹣33.(2022•娄底)如图,等边△ABC内切的图形来自我国古代的太极图,等边三角形内切圆中的黑色部分和白色部分关于等边△ABC的内心成中心对称,则圆中的黑色部分的面积与△ABC的面积之比是()A.B.C.D.34.(2022•武汉)如图,在四边形材料ABCD中,AD∥BC,∠A=90°,AD=9cm,AB=20cm,BC=24cm.现用此材料截出一个面积最大的圆形模板,则此圆的半径是()A.cm B.8cm C.6cm D.10cm 35.(2022•湖北)如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8,以点C为圆心,CA的长为半径画弧,交AB于点D,则的长为()A.πB.πC.πD.2π36.(2022•眉山)如图是不倒翁的主视图,不倒翁的圆形脸恰好与帽子边沿P A,PB分别相切于点A,B,不倒翁的鼻尖正好是圆心O,若∠OAB=28°,则∠APB的度数为()A.28°B.50°C.56°D.62°37.(2022•台州)一个垃圾填埋场,它在地面上的形状为长80m,宽60m的矩形,有污水从该矩形的四周边界向外渗透了3m,则该垃圾填埋场外围受污染土地的面积为()A.(840+6π)m2B.(840+9π)m2C.840m2D.876m2 38.(2022•邵阳)如图,⊙O是等边△ABC的外接圆,若AB=3,则⊙O的半径是()A.B.C.D.39.(2022•广元)如图,AB是⊙O的直径,C、D是⊙O上的两点,若∠CAB=65°,则∠ADC的度数为()A.25°B.35°C.45°D.65°40.(2022•嘉兴)如图,在⊙O中,∠BOC=130°,点A在上,则∠BAC的度数为()A.55°B.65°C.75°D.130°41.(2022•陕西)如图,△ABC内接于⊙O,∠C=46°,连接OA,则∠OAB=()A.44°B.45°C.54°D.67°42.(2022•泰安)如图,AB是⊙O的直径,∠ACD=∠CAB,AD=2,AC=4,则⊙O的半径为()A.2B.3C.2D.43.(2022•泰安)如图,四边形ABCD中,∠A=60°,AB∥CD,DE⊥AD交AB于点E,以点E为圆心,DE为半径,且DE=6的圆交CD于点F,则阴影部分的面积为()A.6π﹣9B.12π﹣9C.6π﹣D.12π﹣44.(2022•株洲)如图所示,等边△ABC的顶点A在⊙O上,边AB、AC与⊙O分别交于点D、E,点F是劣弧上一点,且与D、E不重合,连接DF、EF,则∠DFE的度数为()A.115°B.118°C.120°D.125°45.(2022•甘肃)如图,一条公路(公路的宽度忽略不计)的转弯处是一段圆弧(),点O是这段弧所在圆的圆心,半径OA=90m,圆心角∠AOB=80°,则这段弯路()的长度为()A.20πm B.30πm C.40πm D.50πm 46.(2022•温州)如图,AB,AC是⊙O的两条弦,OD⊥AB于点D,OE⊥AC于点E,连结OB,OC.若∠DOE=130°,则∠BOC的度数为()A.95°B.100°C.105°D.130°47.(2022•达州)如图所示的曲边三角形可按下述方法作出:作等边△ABC,分别以点A,B,C为圆心,以AB长为半径作,,,三弧所围成的图形就是一个曲边三角形.如果一个曲边三角形的周长为2π,则此曲边三角形的面积为()A.2π﹣2B.2π﹣C.2πD.π﹣48.(2022•连云港)如图,有一个半径为2的圆形时钟,其中每个刻度间的弧长均相等,过9点和11点的位置作一条线段,则钟面中阴影部分的面积为()A.π﹣B.π﹣C.π﹣2D.π﹣49.(2022•滨州)如图,在⊙O中,弦AB、CD相交于点P.若∠A=48°,∠APD=80°,则∠B的大小为()A.32°B.42°C.52°D.62°50.(2022•凉山州)家具厂利用如图所示直径为1米的圆形材料加工成一种扇形家具部件,已知扇形的圆心角∠BAC=90°,则扇形部件的面积为()A.米2B.米2C.米2D.米2 51.(2022•安徽)已知⊙O的半径为7,AB是⊙O的弦,点P在弦AB上.若P A=4,PB =6,则OP=()A.B.4C.D.5 52.(2022•成都)如图,正六边形ABCDEF内接于⊙O,若⊙O的周长等于6π,则正六边形的边长为()A.B.C.3D.2 53.(2022•泸州)如图,AB是⊙O的直径,OD垂直于弦AC于点D,DO的延长线交⊙O 于点E.若AC=4,DE=4,则BC的长是()A.1B.C.2D.454.(2022•德阳)一个圆锥的底面直径是8,母线长是9,则圆锥侧面展开图的面积是()A.16πB.52πC.36πD.72π55.(2022•丽水)某仿古墙上原有一个矩形的门洞,现要将它改为一个圆弧形的门洞,圆弧所在的圆外接于矩形,如图.已知矩形的宽为2m,高为2m,则改建后门洞的圆弧长是()A.m B.m C.m D.(+2)m56.(2022•重庆)如图,AB是⊙O的切线,B为切点,连接AO交⊙O于点C,延长AO交⊙O于点D,连接BD.若∠A=∠D,且AC=3,则AB的长度是()A.3B.4C.3D.4 57.(2022•重庆)如图,AB是⊙O的直径,C为⊙O上一点,过点C的切线与AB的延长线交于点P,若AC=PC=3,则PB的长为()A.B.C.D.3 58.(2022•自贡)P为⊙O外一点,PT与⊙O相切于点T,OP=10,∠OPT=30°,则PT 长为()A.5B.5C.8D.959.(2022•遂宁)如图,圆锥底面圆半径为7cm,高为24cm,则它侧面展开图的面积是()A.cm2B.cm2C.175πcm2D.350πcm2 60.(2022•南充)如图,AB为⊙O的直径,弦CD⊥AB于点E,OF⊥BC于点F,∠BOF =65°,则∠AOD为()A.70°B.65°C.50°D.45°参考答案与试题解析1.(2022•聊城)如图,AB,CD是⊙O的弦,延长AB,CD相交于点P.已知∠P=30°,∠AOC=80°,则的度数是()A.30°B.25°C.20°D.10°【分析】根据圆周角定理和圆心角、弧、弦的关系定理解答即可.【解答】解:∵∠AOC=80°,∴∠OAC+∠OCA=100°,∵∠P=30°,∴∠P AO+∠PCO=50°,∵OA=OB,OC=OD,∴∠OBA=∠OAB,∠OCD=∠ODC,∴∠OBA+∠ODC=50°,∴∠BOA+∠COD=260°,∴∠BOD=360°﹣80°﹣260°=20°.∴的度数20°.故选:C.【点评】本题主要考查了圆周角定理和圆心角、弧、弦的关系定理,熟练掌握相关的定理是解答本题的关键.2.(2022•营口)如图,点A,B,C,D在⊙O上,AC⊥BC,AC=4,∠ADC=30°,则BC的长为()A.4B.8C.4D.4【分析】连接AB,可得△ABC是直角三角形,利用圆周角定理可得∠ABC=∠ADC=30°,在Rt△ABC中,AC=4,利用三角函数可求出BC的长.【解答】解:连接AB,如图所示,∵AC⊥BC,∴∠ACB=90°.∵∠ADC=30°,∴∠ABC=∠ADC=30°.∴在Rt△ABC中,tan∠ABC=,∴BC=.∵AC=4,∴BC==4.故选:A.【点评】本题考查了圆周角定理,掌握“同弧所对的圆周角相等”是解题的关键.3.(2022•青岛)如图,正六边形ABCDEF内接于⊙O,点M在上,则∠CME的度数为()A.30°B.36°C.45°D.60°【分析】由正六边形的性质得出∠COE=120°,由圆周角定理求出∠CME=60°.【解答】解:连接OC,OD,OE,∵多边形ABCDEF是正六边形,∴∠COD=∠DOE=60°,∴∠COE=2∠COD=120°,∴∠CME=∠COE=60°,故选:D.【点评】本题考查了正六边形的性质、圆周角定理;熟练掌握正六边形的性质,由圆周角定理求出∠COM=120°是解决问题的关键.4.(2022•铜仁市)如图,OA,OB是⊙O的两条半径,点C在⊙O上,若∠AOB=80°,则∠C的度数为()A.30°B.40°C.50°D.60°【分析】根据圆周角定理即可求解.【解答】解:∵OA,OB是⊙O的两条半径,点C在⊙O上,∠AOB=80°,∴∠C==40°.故选:B.【点评】本题考查的是圆周角定理,熟知在同圆或者在等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答本题关键.5.(2022•铜仁市)如图,在边长为6的正方形ABCD中,以BC为直径画半圆,则阴影部分的面积是()A.9B.6C.3D.12【分析】设AC与半圆交于点E,半圆的圆心为O,连接BE,OE,证明BE=CE,得到弓形BE的面积=弓形CE的面积,则.【解答】解:设AC与半圆交于点E,半圆的圆心为O,连接BE,OE,∵四边形ABCD是正方形,∴∠OCE=45°,∵OE=OC,∴∠OEC=∠OCE=45°,∴∠EOC=90°,∴OE垂直平分BC,∴BE=CE,∴弓形BE的面积=弓形CE的面积,∴,故选:A.【点评】本题主要考查了求不规则图形的面积,正方形的性质,等腰直角三角形的性质,圆的性质,熟知相关知识是解题的关键.6.(2022•广安)蒙古包可以近似地看作由圆锥和圆柱组成.下图是一个蒙古包的示意图,底面圆半径DE=2m,圆锥的高AC=1.5m,圆柱的高CD=2.5m,则下列说法错误的是()A.圆柱的底面积为4πm2B.圆柱的侧面积为10πm2C.圆锥的母线AB长为2.25mD.圆锥的侧面积为5πm2【分析】利用圆的面积公式对A选项进行判断;利用圆柱的侧面积=底面圆的周长×高可对B选项进行判断;根据勾股定理可对C选项进行判断;由于圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,则利用扇形的面积公式可对D选项进行判断.【解答】解:∵底面圆半径DE=2m,∴圆柱的底面积为4πm2,所以A选项不符合题意;∵圆柱的高CD=2.5m,∴圆柱的侧面积=2π×2×2.5=10πcm2),所以B选项不符合题意;∵底面圆半径DE=2m,即BC=2cm,圆锥的高AC=1.5m,∴圆锥的母线长AB==2.5(m),所以C选项符合题意;∴圆锥的侧面积=×2π×2×2.5=5π(m2),所以D选项不符合题意.故选:C.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了圆柱的计算.7.(2022•遵义)如图,在正方形ABCD中,AC和BD交于点O,过点O的直线EF交AB 于点E(E不与A,B重合),交CD于点F.以点O为圆心,OC为半径的圆交直线EF 于点M,N.若AB=1,则图中阴影部分的面积为()A.﹣B.﹣C.﹣D.﹣【分析】图中阴影部分的面积等于扇形DOC的面积减去△DOC的面积.【解答】解:以OD为半径作弧DN,∵四边形ABCD是正方形,∴OB=OD=OC,∠DOC=90°,∵∠EOB=∠FOD,∴S扇形BOM=S扇形DON,∴S阴影=S扇形DOC﹣S△DOC=﹣×1×1=﹣,故选:B.【点评】本题考查了正方形的性质,扇形的面积,关键是求出阴影部分的面积等于扇形DOC的面积减去△DOC的面积.8.(2022•内江)如图,正六边形ABCDEF内接于⊙O,半径为6,则这个正六边形的边心距OM和的长分别为()A.4,B.3,πC.2,D.3,2π【分析】连接OB、OC,根据正六边形的性质求出∠BOC,根据等边三角形的判定定理得到△BOC为等边三角形,根据垂径定理求出BM,根据勾股定理求出OM,根据弧长公式求出的长.【解答】解:连接OB、OC,∵六边形ABCDEF为正六边形,∴∠BOC==60°,∵OB=OC,∴△BOC为等边三角形,∴BC=OB=6,∵OM⊥BC,∴BM=BC=3,∴OM===3,的长为:=2π,故选:D.【点评】本题考查的是正多边形和圆、弧长的计算,正确求出正六边形的中心角是解题的关键.9.(2022•大庆)已知圆锥的底面半径为5,高为12,则它的侧面展开图的面积是()A.60πB.65πC.90πD.120π【分析】先利用勾股定理求出圆锥侧面展开图扇形的半径,利用侧面展开图与底面圆的关系求出侧面展开图的弧长,再利用扇形面积公式即可求出圆锥侧面展开图的面积.【解答】解:圆锥侧面展开图扇形的半径为:=13,其弧长为:2×π×5=10π,∴圆锥侧面展开图的面积为:=65π.故选:B.【点评】本题主要考查圆锥的计算,掌握侧面展开图与底面圆的关系是解题关键.10.(2022•哈尔滨)如图,AD,BC是⊙O的直径,点P在BC的延长线上,P A与⊙O相切于点A,连接BD,若∠P=40°,则∠ADB的度数为()A.65°B.60°C.50°D.25°【分析】根据切线的性质得出∠OAP=90°,进而得出∠BOD的度数,再利用等腰三角形的性质得出∠ADB的度数即可.【解答】解:∵P A与⊙O相切于点A,∠P=40°,∴∠OAP=90°,∴∠BOD=∠AOP=90°﹣∠P=50°,∵OB=OD,∴∠ADB=∠OBD=(180°﹣∠BOD)÷2=(180°﹣50°)÷2=65°,故选:A.【点评】本题主要考查切线的性质,熟练掌握切线的性质及等腰三角形的性质是解题的关键.11.(2022•包头)如图,AB,CD是⊙O的两条直径,E是劣弧的中点,连接BC,DE.若∠ABC=22°,则∠CDE的度数为()A.22°B.32°C.34°D.44°【分析】连接OE,根据等腰三角形的性质求出∠OCB,根据三角形内角和定理求出∠BOC,进而求出∠COE,再根据圆周角定理计算即可.【解答】解:连接OE,∵OC=OB,∠ABC=22°,∴∠OCB=∠ABC=22°,∴∠BOC=180°﹣22°×2=136°,∵E是劣弧的中点,∴=,∴∠COE=×136°=68°,由圆周角定理得:∠CDE=∠COE=×68°=34°,故选:C.【点评】本题考查的是圆周角定理、三角形内角和定理、等腰三角形的性质,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.12.(2022•长沙)如图,P A,PB是⊙O的切线,A、B为切点,若∠AOB=128°,则∠P 的度数为()A.32°B.52°C.64°D.72°【分析】利用切线的性质可得∠OAP=∠OBP=90°,然后利用四边形内角和是360°,进行计算即可解答.【解答】解:∵P A,PB是⊙O的切线,A、B为切点,∴∠OAP=∠OBP=90°,∵∠AOB=128°,∴∠P=360°﹣∠OAP﹣∠OBP﹣∠P=52°,故选:B.【点评】本题考查了切线的性质,熟练掌握切线的性质是解题的关键.13.(2022•吉林)如图,在△ABC中,∠ACB=90°,AB=5,BC=4.以点A为圆心,r 为半径作圆,当点C在⊙A内且点B在⊙A外时,r的值可能是()A.2B.3C.4D.5【分析】由勾股定理求出AC的长度,再由点C在⊙A内且点B在⊙A外求解.【解答】解:在Rt△ABC中,由勾股定理得AC==4,∵点C在⊙A内且点B在⊙A外,∴3<r<5,故选:C.【点评】本题考查点与圆的位置关系,解题关键是掌握勾股定理.14.(2022•赤峰)如图所示,圆锥形烟囱帽的底面半径为12cm,侧面展开图为半圆形,则它的母线长为()A.10cm B.20cm C.5cm D.24cm【分析】根据弧长公式列方程求解即可.【解答】解:设母线的长为R,由题意得,πR=2π×12,解得R=24,∴母线的长为24cm,故选:D.【点评】本题主要考查弧长的计算,根据展开后的半圆弧长等于圆锥形烟囱帽的底面周长列方程求解是解题的关键.15.(2022•梧州)如图,⊙O是△ABC的外接圆,且AB=AC,∠BAC=36°,在上取点D(不与点A,B重合),连接BD,AD,则∠BAD+∠ABD的度数是()A.60°B.62°C.72°D.73°【分析】利用等腰三角形的性质可得∠ABC=∠C=72°,从而利用圆内接四边形的性质可求出∠D=108°,然后利用三角形内角和定理进行计算即可解答.【解答】解:∵AB=AC,∠BAC=36°,∴∠ABC=∠C=72°,∵四边形ADBC是圆内接四边形,∴∠D+∠C=180°,∴∠D=180°﹣∠C=108°,∴∠BAD+∠ABD=180°﹣∠D=72°,故选:C.【点评】本题考查了三角形的外接圆与外心,等腰三角形的性质,圆内接四边形的性质,熟练掌握等腰三角形的性质,以及圆内接四边形的性质是解题的关键.16.(2022•赤峰)如图,AB是⊙O的直径,将弦AC绕点A顺时针旋转30°得到AD,此时点C的对应点D落在AB上,延长CD,交⊙O于点E,若CE=4,则图中阴影部分的面积为()A.2πB.2C.2π﹣4D.2π﹣2【分析】连接OE,OC,BC,推出△EOC是等腰直角三角形,根据扇形面积减三角形面积计算即可.【解答】解:连接OE,OC,BC,由旋转知AC=AD,∠CAD=30°,∴∠BOC=60°,∠ACE=(180°﹣30°)÷2=75°,∴∠BCE=90°﹣∠ACE=15°,∴∠BOE=2∠BCE=30°,∴∠EOC=90°,即△EOC为等腰直角三角形,∵CE=4,∴OE=OC=2,∴S阴影=S扇形OEC﹣S△OEC=﹣×=2π﹣4,故选:C.【点评】本题主要考查旋转的性质及扇形面积的计算,熟练掌握扇形面积的计算是解题的关键.17.(2022•湖北)一个扇形的弧长是10πcm,其圆心角是150°,此扇形的面积为()A.30πcm2B.60πcm2C.120πcm2D.180πcm2【分析】先根据题意可算出扇形的半径,再根据扇形面积公式即可得出答案.【解答】解:根据题意可得,设扇形的半径为rcm,则l=,即10π=,解得:r=12,∴S===60π(cm2).故选:B.【点评】本题主要考查了扇形面积的计算,熟练掌握扇形面积的计算方法进行求解是解决本题的关键.18.(2022•广西)如图,在△ABC中,CA=CB=4,∠BAC=α,将△ABC绕点A逆时针旋转2α,得到△AB′C′,连接B′C并延长交AB于点D,当B′D⊥AB时,的长是()A.πB.πC.πD.π【分析】根据旋转的性质可得AC′∥B′D,则可得∠C′AD=∠C′AB′+∠B′AB=90°,即可算出α的度数,根据已知可算出AD的长度,根据弧长公式即可得出答案.【解答】解:根据旋转的性质可得,AC′∥B′D,∵B′D⊥AB,∴∠C′AD=∠C′AB′+∠B′AB=90°,∵∠C′AD=α,∴α+2α=90°,∴α=30°,∵AC=4,∴AD=AC•cos30°=4×=2,∴,∴的长度l==.故选:B.【点评】本题主要考查了弧长的计算及旋转的性质,熟练掌握弧长的计算及旋转的性质进行求解是解决本题的关键.19.(2022•贺州)某餐厅为了追求时间效率,推出一种液体“沙漏”免单方案(即点单完成后,开始倒转“沙漏”,“沙漏”漏完前,客人所点的菜需全部上桌,否则该桌免费用餐).“沙漏”是由一个圆锥体和一个圆柱体相通连接而成.某次计时前如图(1)所示,已知圆锥体底面半径是6cm,高是6cm;圆柱体底面半径是3cm,液体高是7cm.计时结束后如图(2)所示,求此时“沙漏”中液体的高度为()A.2cm B.3cm C.4cm D.5cm【分析】由圆锥体底面半径是6cm,高是6cm,可得CD=DE,根据圆锥、圆柱体积公式可得液体的体积为63πcm3,圆锥的体积为72πcm3,即知计时结束后,圆锥中没有液体的部分体积为9πcm3,设计时结束后,“沙漏”中液体的高度AD为xcm,可得π•(6﹣x)2•(6﹣x)=9π,即可解得答案.【解答】解:如图:∵圆锥的圆锥体底面半径是6cm,高是6cm,∴△ABC是等腰直角三角形,∴△CDE也是等腰直角三角形,即CD=DE,由已知可得:液体的体积为π×32×7=63π(cm3),圆锥的体积为π×62×6=72π(cm3),∴计时结束后,圆锥中没有液体的部分体积为72π﹣63π=9π(cm3),设计时结束后,“沙漏”中液体的高度AD为xcm,则CD=DE=(6﹣x)cm,∴π•(6﹣x)2•(6﹣x)=9π,∴(6﹣x)3=27,解得x=3,∴计时结束后,“沙漏”中液体的高度为3cm,故选:B.【点评】本题考查圆柱体、圆锥体体积问题,解题的关键是掌握圆柱体、圆锥体体积公式,列出方程解决问题.20.(2022•毕节市)如图,一件扇形艺术品完全打开后,AB,AC夹角为120°,AB的长为45cm,扇面BD的长为30cm,则扇面的面积是()A.375πcm2B.450πcm2C.600πcm2D.750πcm2【分析】先求出AD的长,再根据扇形的面积公式求出扇形BAC和扇形DAE的面积即可.【解答】解:∵AB的长是45cm,扇面BD的长为30cm,∴AD=AB﹣BD=15cm,∵∠BAC=120°,∴扇面的面积S=S扇形BAC﹣S扇形DAE=﹣=600π(cm2),故选:C.【点评】本题考查了扇形的面积计算,能熟记扇形的面积公式是解此题的关键,注意:圆心角为n°,半径为r的扇形的面积S=.21.(2022•鄂州)工人师傅为检测该厂生产的一种铁球的大小是否符合要求,设计了一个如图(1)所示的工件槽,其两个底角均为90°,将形状规则的铁球放入槽内时,若同时具有图(1)所示的A、B、E三个接触点,该球的大小就符合要求.图(2)是过球心及A、B、E三点的截面示意图,已知⊙O的直径就是铁球的直径,AB是⊙O的弦,CD切⊙O于点E,AC⊥CD、BD⊥CD,若CD=16cm,AC=BD=4cm,则这种铁球的直径为()A.10cm B.15cm C.20cm D.24cm【分析】连接OE,交AB于点F,连接OA,∵AC⊥CD、BD⊥CD,由矩形的判断方法得出四边形ACDB是矩形,得出AB∥CD,AB=CD=16cm,由切线的性质得出OE⊥CD,得出OE⊥AB,得出四边形EFBD是矩形,AF=AB=×16=8(cm),进而得出EF=BD=4cm,设⊙O的半径为rcm,则OA=rcm,OF=OE﹣EF=(r﹣4)cm,由勾股定理得出方程r2=82+(r﹣4)2,解方程即可求出半径,继而求出这种铁球的直径.【解答】解:如图,连接OE,交AB于点F,连接OA,∵AC⊥CD、BD⊥CD,∴AC∥BD,∵AC=BD=4cm,∴四边形ACDB是平行四边形,∴四边形ACDB是矩形,∴AB∥CD,AB=CD=16cm,∵CD切⊙O于点E,∴OE⊥CD,∴OE⊥AB,∴四边形EFBD是矩形,AF=AB=×16=8(cm),∴EF=BD=4cm,设⊙O的半径为rcm,则OA=rcm,OF=OE﹣EF=(r﹣4)cm,在Rt△AOF中,OA2=AF2+OF2,∴r2=82+(r﹣4)2,解得:r=10,∴这种铁球的直径为20cm,故选:C.【点评】本题考查了垂径定理的应用,勾股定理的应用,掌握矩形的判定与性质,平行四边形的判定与性质,切线的性质,垂径定理,勾股定理是解决问题的关键.22.(2022•雅安)如图,已知⊙O的周长等于6π,则该圆内接正六边形ABCDEF的边心距OG为()A.3B.C.D.3【分析】连接OC,OD,由正六边形ABCDEF可求出∠COD=60°,进而可求出∠COG =30°,根据30°角的锐角三角函数值即可求出边心距OG的长.【解答】解:连接OC,OD,∵正六边形ABCDEF是圆的内接多边形,∴∠COD=60°,∵OC=OD,OG⊥CD,∴∠COG=30°,∵⊙O的周长等于6π,∴OC=3cm,∴OG=3cos30°=,故选:C.【点评】本题考查了正多边形和圆、正六边形的性质、等腰三角形的判定与性质;熟练掌握正六边形的性质是解决问题的关键.23.(2022•无锡)在Rt△ABC中,∠C=90°,AC=3,BC=4,以AC所在直线为轴,把△ABC旋转1周,得到圆锥,则该圆锥的侧面积为()A.12πB.15πC.20πD.24π【分析】运用公式s=πlr(其中勾股定理求解得到的母线长l为5)求解.【解答】解:在Rt△ABC中,∠C=90°,AC=3,BC=4,∴AB===5,由已知得,母线长l=5,半径r为4,∴圆锥的侧面积是s=πlr=5×4×π=20π.故选:C.【点评】本题考查了圆锥的计算,要学会灵活的运用公式求解.24.(2022•无锡)如图,AB是圆O的直径,弦AD平分∠BAC,过点D的切线交AC于点E,∠EAD=25°,则下列结论错误的是()A.AE⊥DE B.AE∥OD C.DE=OD D.∠BOD=50°【分析】根据切线的性质得到OD⊥DE,证明OD∥AC,由此判断A、B选项;过点O 作OF⊥AC于F,利用矩形的性质、直角三角形的性质判断C选项;利用三角形外角性质求得∠BOD的度数,从而判断D选项.【解答】解:∵弦AD平分∠BAC,∠EAD=25°,∴∠OAD=∠ODA=25°.∴∠BOD=2∠OAD=50°.故选项D不符合题意;∵∠OAD=∠CAD,∴∠CAD=∠ODA,∴OD∥AC,即AE∥OD,故选B不符合题意;∵DE是⊙O的切线,∴OD⊥DE.∴DE⊥AE.故选项A不符合题意;如图,过点O作OF⊥AC于F,则四边形OFED是矩形,∴OF=DE.在直角△AFO中,OA>OF.∵OD=OA,∴DE<OD.故选项C符合题意.故选:C.【点评】本题主要考查了切线的性质和圆周角定理.切线的性质:如果一条直线符合下列三个条件中的任意两个,那么它一定满足第三个条件,这三个条件是:①直线过圆心;②直线过切点;③直线与圆的切线垂直.25.(2022•荆州)如图,以边长为2的等边△ABC顶点A为圆心、一定的长为半径画弧,恰好与BC边相切,分别交AB,AC于D,E,则图中阴影部分的面积是()A.﹣B.2﹣πC.D.﹣【分析】作AF⊥BC,由勾股定理求出AF,然后根据S阴影=S△ABC﹣S扇形ADE得出答案.【解答】解:由题意,以A为圆心、一定的长为半径画弧,恰好与BC边相切,设切点为F,连接AF,则AF⊥BC.在等边△ABC中,AB=AC=BC=2,∠BAC=60°,∴CF=BF=1.在Rt△ACF中,AF==,∴S阴影=S△ABC﹣S扇形ADE=×2×﹣=﹣,故选:D.【点评】本题主要考查了等边三角形的性质,求扇形面积,理解切线的性质,将阴影部分的面积转化为三角形的面积﹣扇形的面积是解题的关键.26.(2022•十堰)如图,⊙O是等边△ABC的外接圆,点D是弧AC上一动点(不与A,C 重合),下列结论:①∠ADB=∠BDC;②DA=DC;③当DB最长时,DB=2DC;④DA+DC =DB,其中一定正确的结论有()A.1个B.2个C.3个D.4个【分析】由△ABC是等边三角形,及同弧所对圆周角相等可得∠ADB=∠BDC,即可判断①正确;由点D是弧AC上一动点,可判断②错误;根据DB最长时,DB为⊙O直径,可判定③正确;在DB上取一点E,使DE=AD,可得△ADE是等边三角形,从而△ABE ≌△ACD(SAS),有BE=CD,可判断④正确.【解答】解:∵△ABC是等边三角形,∴∠BAC=∠ACB=60°,∵=,=,∴∠ADB=∠ACB=60°,∠BDC=∠BAC=60°,∴∠ADB=∠BDC,故①正确;∵点D是弧AC上一动点,∴与不一定相等,∴DA与DC不一定相等,故②错误;当DB最长时,DB为⊙O直径,∴∠BDC=90°,∵∠BDC=60°,∴∠DBC=30°,∴DB=2DC,故③正确;在DB上取一点E,使DE=AD,如图:∵∠ADB=60°,∴△ADE是等边三角形,∴AD=AE,∠DAE=60°,∵∠BAC=60°,∴∠BAE=∠CAD,∵AB=AC,∴△ABE≌△ACD(SAS),∴BE=CD,∴BD=BE+DE=CD+AD,故④正确;∴正确的有①③④,共3个,故选:C.【点评】本题考查等边三角形及外接圆,涉及三角形全等的判定与性质,解题的关键是作辅助线,构造三角形全等解决问题.27.(2022•河北)某款“不倒翁”(图1)的主视图是图2,P A,PB分别与所在圆相切于点A,B.若该圆半径是9cm,∠P=40°,则的长是()A.11πcm B.πcm C.7πcm D.πcm【分析】根据题意,先找到圆心O,然后根据P A,PB分别与所在圆相切于点A,B.∠P=40°可以得到∠AOB的度数,然后即可得到优弧AMB对应的圆心角,再根据弧长公式计算即可.【解答】解:作AO⊥P A,BO⊥PB,AO和BO相交于点O,如图,∵P A,PB分别与所在圆相切于点A,B.∴∠OAP=∠OBP=90°,∵∠P=40°,∴∠AOB=140°,∴优弧AMB对应的圆心角为360°﹣140°=220°,∴优弧AMB的长是:=11π(cm),故选:A.【点评】本题考查弧长的计算、切线的性质,解答本题的关键是求出优弧AMB的度数.28.(2022•宜昌)如图,四边形ABCD内接于⊙O,连接OB,OD,BD,若∠C=110°,则∠OBD=()A.15°B.20°C.25°D.30°【分析】根据圆内接四边形的性质,可以得到∠A的度数,再根据圆周角和圆心角的关系,可以得到∠BOD的度数,然后根据OB=OD,即可得到∠OBD的度数.【解答】解:∵四边形ABCD是圆内接四边形,∠C=110°,∴∠A=70°,∵∠BOD=2∠A=140°,∵OB=OD,∴∠OBD=∠ODB,∵∠OBD+∠ODB+∠BOD=180°,∴∠OBD=20°,故选:B.【点评】本题考查圆内接四边形的性质、圆周角定理,解答本题的关键是明确题意,利用数形结合的思想解答.29.(2022•台湾)如图,AB为圆O的一弦,且C点在AB上.若AC=6,BC=2,AB的弦心距为3,则OC的长度为何?()A.3B.4C.D.【分析】根据垂径定理可以得到CD的长,根据题意可知OD=3,然后根据勾股定理可以求得OC的长.【解答】解:作OD⊥AB于点D,如图所示,由题意可知:AC=6,BC=2,OD=3,∴AB=8,∴AD=BD=4,∴CD=2,∴OC===,故选:D.【点评】本题考查垂径定理、勾股定理,解答本题的关键是求出CD的长.30.(2022•台湾)有一直径为AB的圆,且圆上有C、D、E、F四点,其位置如图所示.若AC=6,AD=8,AE=5,AF=9,AB=10,则下列弧长关系何者正确?()。
中考数学圆经典必考题型中考试题(附答案)解答题1.(已知:如图,△ ABC 内接于O O 过点B 作的切线,交 CA 的延长线于点 E / EB & 2① 求证:AB= AC1AB ② 若tan / ABE=丄,(i )求 的值;(ii )求当 AC= 2时,AE 的长. 2BC=4cm 求O o 的半径.2.如图,PA 为O O 的切线, A 为切点,O 0的割线PBC 过点0与O O 分别交于B 、C, PA= 8cm PB3.已知:如图,BC 是O 0的直径,AC 切O 0于点C AB 交O 0于点D,若AD : DB= 2 : 3, AC= 10,求 sin B 的值.4.如图,PC 为O 0的切线,C 为切点,PAB 是过0的割线,1若tan B= _ , PC= 10cm 求三角形BCD的面积.25•如图,在两个半圆中,大圆的弦MNW小圆相切,D为切点,且MN AB MN a, ON CD分别为两圆的半径,求阴影部分的面积.6.已知,如图,以△ ABC的边AB作直径的O O分别并AC BC于点D E,弦FG// AB S A CDE S△ ABC= 1 : 4, DE= 5cm FG= 8cm,求梯形AFG啲面积.7.如图所示:PA为O O的切线,A为切点,PBC是过点O的割线,PA= 10, PB= 5,求:(1)O O的面积(注:用含n的式子表示);(2)cos / BAP的值.参考答案1.( 1)v BE 切O O 于点 B ,「. / ABE=Z C./ EBC= 2/ C,即 / ABH / ABC= 2/C,/ C +Z ABO 2 / C,/ ABC=Z C, ••• AB= AC.(2)①连结AO 交BC 于点F ,AB- AC, AOL BC 且 BF = FC.AF 在 Rt A ABF 中, =tan / ABF BF1 又 tan / ABF= tan C = tan / ABE=2 AF = 1 BF.AB AB .5BC 2BF4 ②在△ EBA M^ ECB 中 ,^EA 2- EA- (EA^ AC ),又 EA M 0 , 5 11EA= AC EA= — x 2 = 10 .5 11 11 22 •设O 的半径为r ,由切割线定理,得 PA = PB- PCAC 切O O 于点C,线段ADB 为O O 的割线,2AC = AD- ABAB= AM DB= 2k + 3k = 5k ,2 210 = 2k X 5k,••• k = 10,AB= AF 2 * * * BF 2BF 2 AF = 1BF 2/ E =Z E , / EBA=Z ECB△ EBA^A ECBEAEBBE 2 AB BC ,解之,得 EA ECk> 0,「. k= 10 .AB= 5k= 10 .AC切O O于C, BC为O O的直径,ACL BC在Rt A ACB中, sin B=虫10 10 .AB 5 屁5CD L AB于点D,/ADC=Z BD= 90°,/ 2= 90°—/ BAC=Z B.1tan B=2tan / 2=—.2AD CD 1 ACCD DB 2 CB .设AD= x (x > 0), CD= 2x, DB= 4x, AB= 5x .•/ PC切O O于点C,点B在O O上,• / 1 = / B./ P=/ P,「. △ PAC^ PCBPA AC 1PC CB 2 .PC= 10,「. PA= 5,PC 切O O 于点C, PAB 是O 0的割线,2PC = PA- PB210 = 5 (5 + 5 x ).解得 x = 3.AD= 3, CD= 6, DB= 12.1 1S ^BCD = CD" DB= — x 6X 12 = 36.2 22即三角形BCD 的面积36cm .PA= 10,二 PB= 20.2由切割线定理,得 PC = PA- PBA 內 DB= x + 4x = 15,解得 x = 3,CD= 2x = 6, DB= 4x = 12.S A BCD = ^CD- DB= 1 x 6X 12= 36.2 22即三角形BCD 的面积36cm .5.解:如图取 MN 的中点E 连结OE解法二:同解法一,由△ PAC^A PCB 得 PA PC AC CBPB 101220 AB= PB- PA= 15,2 2 2 a在 Rt A NOE 中 NO- OE = EN =2 6.解:T / CDE=/ CBA / DCE=/ BCA /• △ CDE^A ABC2S CDEDE S ABC AB DE = S CDE =任=1AB S ABC ' 42 ' 51 即 ,解得 AB= 10 (cm ,AB 2作OML FG 垂足为M11 则 FM= ^FG=丄^ 8= 4 (cm),22连结OF 11 OA= AB= — x 10= 5 (cm ).2 2OF= OA= 5 (cm ).在Rt A OMF 中由勾股定理,得 OM = . OF 2 FM 2 = -52 42 = 3 (cm ).A B FG10 Q 2 ••• 梯形 AFG 啲面积= -------------- • OM= -------- x 3 = 27 (cm ).2 27. 2 1 a n2 n ・ — =—a 2 2 8 2 2 1n( NO — OE ) 2 (平方单位). (2) CBAP AC PA △ ACP^A BAP —— P P AB PBAC 2AB 1S阴影 ⑴PA 是。
2011山东中考数学总复习圆(22)圆3 〖考试内容〗弧长,扇形的面积.圆锥的侧面积、全面积 〖考试要求〗会计算弧长及扇形的面积,会计算圆锥的侧面积和全面积. 〖考点复习〗 1.弧长[例1]半径为1的⊙O 中,120º的圆心角所对的弧长是( ) A .3πB .23π C .π D .32π2.扇形的面积[例2].一个扇形的圆心角是120°,它的面积为3πcm 2,那么这个扇形的半径是( ) A 、3cm B、3cm C、6cm D、9cm 3.圆锥的侧面积[例3一个底面半径为5cm ,母线长为16cm 的圆锥,它的侧面展开图的面积是……( ) A 、80πcm 2 B 、40πcm 2C 、80cm 2D 、40cm 2[例4]如图,圆锥的母线长为5cm ,高线长是4cm ,则圆锥的底面积是( )cm 2 A 、3π B 、9π C 、16π D 、25π 〖考题训练〗1.如图,是排洪水管的横截面,若此管道的半径为54cm ,水面以上部分的弓形弧的弧长为30πcm ,则这段弓形弧所对的圆心角的度数为_________º2.如图,当半径为30cm 的转动轮转过120︒角时,传送带上的物体A 平移的距离为 cm 。
3.在一个地球仪的赤道上用铁丝打一个箍,现将铁丝箍半径增大1米,需增加m米长的铁丝,假设地球的赤道上也有一个铁箍,同样半径增大1米,需增加n米长的铁丝,则m与n的大小关系是( )A 、m>nB 、m<nC 、m=nD 、不能确定4.如图,水平位置的圆柱形油桶的截面半径是R ,油面高为23R ,截面上有油的弓形(阴影部分)的面积为____。
(结果不取近似值)5.如图,AB 是⊙O 的直径,点D 、E 是半圆的三等分点,AE 、BD 的延长线交于点C 。
若CE =2,则图中阴影部分的面积是( )A 、43π- 3B 、23πC 、23π- 3D 、13π6.如图是小明制作的一个圆锥形纸帽的示意图.围成这个纸帽的纸的面积为cm 2(π取3.14).7.已知圆锥的底面周长为20πcm ,母线长为10cm ,那么这个圆锥的侧面积是_________㎝2(结果保留π).8.小红要过生日了,为了筹备生日聚会,准备自己动手用纸板制作圆锥形的生日礼帽。
中考数学 圆的综合综合试题附详细答案一、圆的综合1.如图,四边形OABC 是平行四边形,以O 为圆心,OA 为半径的圆交AB 于D ,延长AO 交O 于E ,连接CD ,CE ,若CE 是⊙O 的切线,解答下列问题:(1)求证:CD 是⊙O 的切线;(2)若BC=4,CD=6,求平行四边形OABC 的面积.【答案】(1)证明见解析(2)24【解析】试题分析:(1)连接OD ,求出∠EOC=∠DOC ,根据SAS 推出△EOC ≌△DOC ,推出∠ODC=∠OEC=90°,根据切线的判定推出即可;(2)根据切线长定理求出CE=CD=4,根据平行四边形性质求出OA=OD=4,根据平行四边形的面积公式=2△COD 的面积即可求解.试题解析:(1)证明:连接OD ,∵OD=OA ,∴∠ODA=∠A ,∵四边形OABC 是平行四边形,∴OC ∥AB ,∴∠EOC=∠A ,∠COD=∠ODA ,∴∠EOC=∠DOC ,在△EOC 和△DOC 中,OE OD EOC DOC OC OC =⎧⎪∠=∠⎨⎪=⎩∴△EOC ≌△DOC (SAS ),∴∠ODC=∠OEC=90°,即OD ⊥DC ,∴CD 是⊙O 的切线;(2)由(1)知CD 是圆O 的切线,∴△CDO 为直角三角形,∵S △CDO =12CD•OD , 又∵OA=BC=OD=4,∴S△CDO=12×6×4=12,∴平行四边形OABC的面积S=2S△CDO=24.2.如图1,直角梯形OABC中,BC∥OA,OA=6,BC=2,∠BAO=45°.(1)OC的长为;(2)D是OA上一点,以BD为直径作⊙M,⊙M交AB于点Q.当⊙M与y轴相切时,sin∠BOQ=;(3)如图2,动点P以每秒1个单位长度的速度,从点O沿线段OA向点A运动;同时动点D以相同的速度,从点B沿折线B﹣C﹣O向点O运动.当点P到达点A时,两点同时停止运动.过点P作直线PE∥OC,与折线O﹣B﹣A交于点E.设点P运动的时间为t (秒).求当以B、D、E为顶点的三角形是直角三角形时点E的坐标.【答案】(1)4;(2)35;(3)点E的坐标为(1,2)、(53,103)、(4,2).【解析】分析:(1)过点B作BH⊥OA于H,如图1(1),易证四边形OCBH是矩形,从而有OC=BH,只需在△AHB中运用三角函数求出BH即可.(2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG,如图1(2),则有OH=2,BH=4,MN⊥OC.设圆的半径为r,则MN=MB=MD=r.在Rt△BHD中运用勾股定理可求出r=2,从而得到点D与点H重合.易证△AFG∽△ADB,从而可求出AF、GF、OF、OG、OB、AB、BG.设OR=x,利用BR2=OB2﹣OR2=BG2﹣RG2可求出x,进而可求出BR.在Rt△ORB中运用三角函数就可解决问题.(3)由于△BDE的直角不确定,故需分情况讨论,可分三种情况(①∠BDE=90°,②∠BED=90°,③∠DBE=90°)讨论,然后运用相似三角形的性质及三角函数等知识建立关于t的方程就可解决问题.详解:(1)过点B作BH⊥OA于H,如图1(1),则有∠BHA=90°=∠COA,∴OC∥BH.∵BC∥OA,∴四边形OCBH是矩形,∴OC=BH,BC=OH.∵OA =6,BC =2,∴AH =0A ﹣OH =OA ﹣BC =6﹣2=4.∵∠BHA =90°,∠BAO =45°,∴tan ∠BAH =BH HA=1,∴BH =HA =4,∴OC =BH =4. 故答案为4. (2)过点B 作BH ⊥OA 于H ,过点G 作GF ⊥OA 于F ,过点B 作BR ⊥OG 于R ,连接MN 、DG ,如图1(2).由(1)得:OH =2,BH =4.∵OC 与⊙M 相切于N ,∴MN ⊥OC .设圆的半径为r ,则MN =MB =MD =r .∵BC ⊥OC ,OA ⊥OC ,∴BC ∥MN ∥OA .∵BM =DM ,∴CN =ON ,∴MN =12(BC +OD ),∴OD =2r ﹣2,∴DH =OD OH -=24r -.在Rt △BHD 中,∵∠BHD =90°,∴BD 2=BH 2+DH 2,∴(2r )2=42+(2r ﹣4)2.解得:r =2,∴DH =0,即点D 与点H 重合,∴BD ⊥0A ,BD =AD .∵BD 是⊙M 的直径,∴∠BGD =90°,即DG ⊥AB ,∴BG =AG .∵GF ⊥OA ,BD ⊥OA ,∴GF ∥BD ,∴△AFG ∽△ADB , ∴AF AD =GF BD =AG AB =12,∴AF =12AD =2,GF =12BD =2,∴OF =4,∴OG同理可得:OB AB ,∴BG =12AB .设OR =x ,则RG x .∵BR ⊥OG ,∴∠BRO =∠BRG =90°,∴BR 2=OB 2﹣OR 2=BG 2﹣RG 2,∴(2﹣x 2=()2﹣(x )2.解得:x =5,∴BR 2=OB 2﹣OR 2=(2﹣(5)2=365,∴BR =5.在Rt △ORB 中,sin ∠BOR =BR OB35. 故答案为35. (3)①当∠BDE =90°时,点D 在直线PE 上,如图2.此时DP =OC =4,BD +OP =BD +CD =BC =2,BD =t ,OP =t . 则有2t =2.解得:t =1.则OP =CD =DB =1.∵DE ∥OC ,∴△BDE ∽△BCO ,∴DE OC =BD BC =12,∴DE =2,∴EP =2,∴点E的坐标为(1,2).②当∠BED=90°时,如图3.∵∠DBE=OBC,∠DEB=∠BCO=90°,∴△DBE∽△OBC,∴BEBC =2DB BEOB∴,=25,∴BE=5t.∵PE∥OC,∴∠OEP=∠BOC.∵∠OPE=∠BCO=90°,∴△OPE∽△BCO,∴OEOB =25OPBC∴,=2t,∴OE=5t.∵OE+BE=OB=255,∴t+55t=25.解得:t=53,∴OP=53,OE=55,∴PE=22OE OP-=103,∴点E的坐标为(51033,).③当∠DBE=90°时,如图4.此时PE=PA=6﹣t,OD=OC+BC﹣t=6﹣t.则有OD=PE,EA=22PE PA+=2(6﹣t)=62﹣2?t,∴BE=BA﹣EA=42﹣(62﹣2t)=2t﹣22.∵PE∥OD,OD=PE,∠DOP=90°,∴四边形ODEP是矩形,∴DE=OP=t,DE∥OP,∴∠BED=∠BAO=45°.在Rt△DBE中,cos∠BED=BEDE=22,∴DE=2BE,∴t=22(t﹣22)=2t﹣4.解得:t=4,∴OP=4,PE=6﹣4=2,∴点E的坐标为(4,2).综上所述:当以B、D、E为顶点的三角形是直角三角形时点E的坐标为(1,2)、(51033,)、(4,2).点睛:本题考查了圆周角定理、切线的性质、相似三角形的判定与性质、三角函数的定义、平行线分线段成比例、矩形的判定与性质、勾股定理等知识,还考查了分类讨论的数学思想,有一定的综合性.3.如图,已知△ABC中,AC=BC,以BC为直径的⊙O交AB于E,过点E作EG⊥AC于G,交BC的延长线于F.(1)求证:AE=BE;(2)求证:FE是⊙O的切线;(3)若FE=4,FC=2,求⊙O的半径及CG的长.【答案】(1)详见解析;(2)详见解析;(3).【解析】(1)证明:连接CE,如图1所示:∵BC是直径,∴∠BEC=90°,∴CE⊥AB;又∵AC=BC,∴AE=BE.(2)证明:连接OE,如图2所示:∵BE=AE,OB=OC,∴OE是△ABC的中位线,∴OE∥AC,AC=2OE=6.又∵EG⊥AC,∴FE⊥OE,∴FE是⊙O的切线.(3)解:∵EF是⊙O的切线,∴FE2=FC•FB.设FC=x,则有2FB=16,∴FB=8,∴BC=FB﹣FC=8﹣2=6,∴OB=OC=3,即⊙O的半径为3;∴OE=3.∵OE∥AC,∴△FCG∽△FOE,∴,即,解得:CG=.点睛:本题利用了等腰三角形三线合一定理,三角形中位线的判定,切割线定理,以及勾股定理,还有平行线分线段成比例定理,切线的判定等知识.4.图1和图2,半圆O的直径AB=2,点P(不与点A,B重合)为半圆上一点,将图形延BP折叠,分别得到点A,O的对称点A′,O′,设∠ABP=α.(1)当α=15°时,过点A′作A′C∥AB,如图1,判断A′C与半圆O的位置关系,并说明理由.(2)如图2,当α= °时,BA′与半圆O相切.当α= °时,点O′落在上.(3)当线段BO′与半圆O只有一个公共点B时,求α的取值范围.【答案】(1)A′C与半圆O相切;理由见解析;(2)45;30;(3)0°<α<30°或45°≤α<90°.【解析】试题分析:(1)过O作OD⊥A′C于点D,交A′B于点E,利用含30°角的直角三角形的性质可求得DE+OE=A′B=AB=OA,可判定A′C与半圆相切;(2)当BA′与半圆相切时,可知OB⊥A′B,则可知α=45°,当O′在上时,连接AO′,则可知BO′=AB,可求得∠O′BA=60°,可求得α=30°;(3)利用(2)可知当α=30°时,线段O′B与圆交于O′,当α=45°时交于点B,结合题意可得出满足条件的α的范围.试题解析:(1)相切,理由如下:如图1,过O作OD过O作OD⊥A′C于点D,交A′B于点E,∵α=15°,A′C∥AB,∴∠ABA′=∠CA′B=30°,∴DE=A′E,OE=BE,∴DO=DE+OE=(A′E+BE)=AB=OA,∴A′C与半圆O相切;(2)当BA′与半圆O相切时,则OB⊥BA′,∴∠OBA′=2α=90°,∴α=45°,当O′在上时,如图2,连接AO′,则可知BO′=AB,∴∠O′AB=30°,∴∠ABO′=60°,∴α=30°,(3)∵点P,A不重合,∴α>0,由(2)可知当α增大到30°时,点O′在半圆上,∴当0°<α<30°时点O′在半圆内,线段BO′与半圆只有一个公共点B;当α增大到45°时BA′与半圆相切,即线段BO′与半圆只有一个公共点B.当α继续增大时,点P逐渐靠近点B,但是点P,B不重合,∴α<90°,∴当45°≤α<90°线段BO′与半圆只有一个公共点B.综上所述0°<α<30°或45°≤α<90°.考点:圆的综合题.5.如图,AB为⊙O的直径,点E在⊙O上,过点E的切线与AB的延长线交于点D,连接BE,过点O作BE的平行线,交⊙O于点F,交切线于点C,连接AC(1)求证:AC是⊙O的切线;(2)连接EF,当∠D=°时,四边形FOBE是菱形.【答案】(1)见解析;(2)30.【解析】【分析】(1)由等角的转换证明出OCA OCE ∆∆≌,根据圆的位置关系证得AC 是⊙O 的切线. (2)根据四边形FOBE 是菱形,得到OF=OB=BF=EF ,得证OBE ∆为等边三角形,而得出60BOE ∠=︒,根据三角形内角和即可求出答案.【详解】(1)证明:∵CD 与⊙O 相切于点E ,∴OE CD ⊥,∴90CEO ∠=︒,又∵OC BE P ,∴COE OEB ∠=∠,∠OBE=∠COA∵OE=OB ,∴OEB OBE ∠=∠,∴COE COA ∠=∠,又∵OC=OC ,OA=OE ,∴OCA OCE SAS ∆∆≌(), ∴90CAO CEO ∠=∠=︒,又∵AB 为⊙O 的直径,∴AC 为⊙O 的切线;(2)解:∵四边形FOBE 是菱形,∴OF=OB=BF=EF ,∴OE=OB=BE ,∴OBE ∆为等边三角形,∴60BOE ∠=︒,而OE CD ⊥,∴30D ∠=︒.故答案为30.【点睛】本题主要考查与圆有关的位置关系和圆中的计算问题,熟练掌握圆的性质是本题的解题关键.6.如图,已知在△ABC 中,AB=15,AC=20,tanA=12,点P 在AB 边上,⊙P 的半径为定长.当点P 与点B 重合时,⊙P 恰好与AC 边相切;当点P 与点B 不重合时,⊙P 与AC 边相交于点M 和点N .(1)求⊙P的半径;(2)当AP=65时,试探究△APM与△PCN是否相似,并说明理由.【答案】(1)半径为35;(2)相似,理由见解析.【解析】【分析】(1)如图,作BD⊥AC,垂足为点D,⊙P与边AC相切,则BD就是⊙P的半径,利用解直角三角形得出BD与AD的关系,再利用勾股定理可求得BD的长;(2)如图,过点P作PH⊥AC于点H,作BD⊥AC,垂足为点D,根据垂径定理得出MN=2MH,PM=PN,再利用勾股定理求出PH、AH、MH、MN的长,从而求出AM、NC的长,然后求出AMMP、PNNC的值,得出AMMP=PNNC,利用两边对应成比例且夹角相等的两三角形相似即可证明.【详解】(1)如图,作BD⊥AC,垂足为点D,∵⊙P与边AC相切,∴BD就是⊙P的半径,在Rt△ABD中,tanA= 1BD2AD =,设BD=x,则AD=2x,∴x2+(2x)2=152,解得:5∴半径为5(2)相似,理由见解析,如图,过点P作PH⊥AC于点H,作BD⊥AC,垂足为点D,∴PH垂直平分MN,∴PM=PN,在Rt△AHP中,tanA=12PHAH =,设PH=y,AH=2y,y 2+(2y )2=(65)2 解得:y=6(取正数), ∴PH=6,AH=12,在Rt △MPH 中,MH=()22356-=3,∴MN=2MH=6,∴AM=AH-MH=12-3=9,NC=AC-MN-AM=20-6-9=5,∴35535AM MP ==,355PN NC =, ∴AM MP =PN NC, 又∵PM=PN ,∴∠PMN=∠PNM ,∴∠AMP=∠PNC ,∴△AMP ∽△PNC.【点睛】本题考查了解直角三角形、垂径定理、相似三角形的判定与性质等,综合性较强,有一定的难度,正确添加辅助线、灵活应用相关的性质与定理是解题的关键.7.如图.在△ABC 中,∠C =90°,AC =BC ,AB =30cm ,点P 在AB 上,AP =10cm ,点E 从点P 出发沿线段PA 以2c m/s 的速度向点A 运动,同时点F 从点P 出发沿线段PB 以1c m/s 的速度向点B 运动,点E 到达点A 后立刻以原速度沿线段AB 向点B 运动,在点E 、F 运动过程中,以EF 为边作正方形EFGH ,使它与△ABC 在线段AB 的同侧,设点E 、F 运动的时间为t (s )(0<t <20).(1)当点H 落在AC 边上时,求t 的值;(2)设正方形EFGH与△ABC重叠部分的面积为S.①试求S关于t的函数表达式;②以点C为圆心,12t为半径作⊙C,当⊙C与GH所在的直线相切时,求此时S的值.【答案】(1)t=2s或10s;(2)①S=22 2 9?(02)75050(210)240400?(1020)t tt t tt t t⎧<≤⎪⎪-+-<≤⎨⎪-+<<⎪⎩;②100cm2.【解析】试题分析:(1)如图1中,当0<t≤5时,由题意AE=EH=EF,即10﹣2t=3t,t=2;如图2中,当5<t<20时,AE=HE,2t﹣10=10﹣(2t﹣10)+t,t=10;(2)分四种切线讨论a、如图3中,当0<t≤2时,重叠部分是正方形EFGH,S=(3t)2=9t2.b、如图4中,当2<t≤5时,重叠部分是五边形EFGMN.c、如图5中,当5<t<10时,重叠部分是五边形EFGMN.d、如图6中,当10<t<20时,重叠部分是正方形EFGH.分别计算即可;②分两种情形分别列出方程即可解决问题.试题解析:解:(1)如图1中,当0<t≤5时,由题意得:AE=EH=EF,即10﹣2t=3t,t=2如图2中,当5<t<20时,AE=HE,2t﹣10=10﹣(2t﹣10)+t,t=10.综上所述:t=2s或10s时,点H落在AC边上.(2)①如图3中,当0<t≤2时,重叠部分是正方形EFGH,S=(3t)2=9t2如图4中,当2<t≤5时,重叠部分是五边形EFGMN,S=(3t)2﹣12(5t﹣10)2=﹣72t2+50t﹣50.如图5中,当5<t<10时,重叠部分是五边形EFGMN,S=(20﹣t)2﹣12(30﹣3t)2=﹣72t2+50t﹣50.如图6中,当10<t<20时,重叠部分是正方形EFGH,S=(20﹣t)2=t2﹣40t+400.综上所述:S=2229?(02)75050(210)240400?(1020)t tt t tt t t⎧<≤⎪⎪-+-<≤⎨⎪-+<<⎪⎩.②如图7中,当0<t≤5时,12t+3t=15,解得:t=307,此时S=100cm2,当5<t<20时,12t+20﹣t=15,解得:t=10,此时S=100.综上所述:当⊙C与GH所在的直线相切时,求此时S的值为100cm2点睛:本题考查了圆综合题、正方形的性质、等腰直角三角形的性质、切线的性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,注意不能漏解,属于中考压轴题.8.已知:AB是⊙0直径,C是⊙0外一点,连接BC交⊙0于点D,BD=CD,连接AD、AC.(1)如图1,求证:∠BAD=∠CAD(2)如图2,过点C作CF⊥AB于点F,交⊙0于点E,延长CF交⊙0于点G.过点作EH⊥AG于点H,交AB于点K,求证AK=2OF;(3)如图3,在(2)的条件下,EH交AD于点L,若0K=1,AC=CG,求线段AL的长.图1 图2 图3 【答案】(1)见解析(2)见解析(3)12105【解析】试题分析:(1)由直径所对的圆周角等于90°,得到∠ADB =90°,再证明△ABD ≌△ACD 即可得到结论;(2)连接BE .由同弧所对的圆周角相等,得到∠GAB =∠BEG .再证△KFE ≌△BFE ,得到BF =KF =BK .由OF =OB -BF ,AK =AB -BK ,即可得到结论.(3)连接CO 并延长交AG 于点M ,连接BG .设∠GAB =α.先证CM 垂直平分AG ,得到AM =GM ,∠AGC +∠GCM =90°.再证∠GAF =∠GCM =α.通过证明△AGB ≌△CMG ,得到BG =GM =12AG .再证明∠BGC =∠MCG =α.设BF =KF =a , 可得GF =2a ,AF =4a . 由OK =1,得到OF =a +1,AK =2(a +1),AF = 3a +2,得到3a +2=4a ,解出a 的值,得到AF ,AB ,GF ,FC 的值.由tanα=tan ∠HAK =12HK AH =, AK =6,可以求出 AH 的长.再由1tan tan 3BAD BCF ∠=∠=,利用公式tan ∠GAD =tan tan 1tan tan GAF BAD GAF BAD∠+∠-∠⋅∠,得到∠GAD =45°,则AL =2AH ,即可得到结论.试题解析:解:(1)∵AB 为⊙O 的直径,∴∠ADB =90°,∴∠ADC =90°. ∵BD =CD ,∠BDA =∠CDA ,AD =AD ,∴△ABD ≌△ACD ,∴∠BAD =∠CAD . (2)连接BE .∵BG =BG ,∴∠GAB =∠BEG . ∵CF ⊥AB ,∴∠KFE =90°.∵EH ⊥AG ,∴∠AHE =∠KFE =90°,∠AKH =∠EKF ,∴∠HAK =∠KEF =∠BEF . ∵FE =FE ,∠KFE =∠BFE =90°,∴△KFE ≌△BFE ,∴BF =KF =BK .∵ OF =OB -BF ,AK =AB -BK ,∴AK =2OF .(3)连接CO 并延长交AG 于点M ,连接BG .设∠GAB =α.∵AC =CG , ∴点C 在AG 的垂直平分线上.∵ OA =OG ,∴点O 在AG 的垂直平分线上, ∴CM 垂直平分AG ,∴AM =GM ,∠AGC +∠GCM =90°. ∵AF ⊥CG ,∴∠AGC +∠GAF =90°,∴∠GAF =∠GCM =α. ∵AB 为⊙O 的直径,∴∠AGB = 90°,∴∠AGB =∠CMG =90°. ∵AB =AC =CG ,∴△AGB ≌△CMG ,∴BG =GM =12AG .在Rt △AGB 中, 1tan tan 2GB GAB AG α∠=== . ∵∠AMC =∠AGB = 90°,∴BG ∥CM , ∴∠BGC =∠MCG =α. 设BF =KF =a , 1tan tan 2BF BGF GF α∠===,∴GF =2a ,1tan tan 2GF GAF AF α∠=== ,AF =4a .∵OK =1,∴OF =a +1,AK =2OF =2(a +1),∴AF =AK +KF =a +2(a +1)=3a +2,∴3a +2=4a ,∴a =2, AK =6,∴AF =4a =8,AB =AC =CG =10,GF =2a =4,FC =CG -GF =6. ∵tanα=tan ∠HAK =12HK AH =,设KH =m ,则AH =2m ,∴AK 22(2)m m +=6,解得:m =655,∴AH =2m 125.在Rt △BFC 中,1tan 3BF BCF FC ∠== .∵∠BAD +∠ABD =90°, ∠FBC +∠BCF =90°,∴∠BCF =∠BAD ,1tan tan 3BAD BCF ∠=∠= ,∴tan ∠GAD =tan tan 1tan tan GAF BADGAF BAD ∠+∠-∠⋅∠=1123111123+=-⨯,∴∠GAD =45°,∴HL=AH ,AL 2AH 12109.如图1,四边形ABCD是正方形,点E是边BC上一点,点F在射线CM上,∠AEF=90°,AE=EF,过点F作射线BC的垂线,垂足为H,连接AC.(1) 试判断BE与FH的数量关系,并说明理由;(2) 求证:∠ACF=90°;(3) 连接AF,过A,E,F三点作圆,如图2. 若EC=4,∠CEF=15°,求的长.图1 图2【答案】(1)BE="FH" ;理由见解析(2)证明见解析(3)=2π【解析】试题分析:(1)由△ABE≌△EHF(SAS)即可得到BE=FH(2)由(1)可知AB=EH,而BC=AB,FH=EB,从而可知△FHC是等腰直角三角形,∠FCH 为45°,而∠ACB也为45°,从而可证明(3)由已知可知∠EAC=30°,AF是直径,设圆心为O,连接EO,过点E作EN⊥AC于点N,则可得△ECN为等腰直角三角形,从而可得EN的长,进而可得AE的长,得到半径,得到所对圆心角的度数,从而求得弧长试题解析:(1)BE=FH.理由如下:∵四边形ABCD是正方形∴∠B=90°,∵FH⊥BC ∴∠FHE=90°又∵∠AEF=90°∴∠AEB+∠HEF="90°" 且∠BAE+∠AEB=90°∴∠HEF=∠BAE ∴∠AEB=∠EFH 又∵AE=EF∴△ABE≌△EHF(SAS)∴BE=FH(2)∵△ABE≌△EHF∴BC=EH,BE=FH 又∵BE+EC=EC+CH ∴BE="CH"∴CH=FH∴∠FCH=45°,∴∠FCM=45°∵AC是正方形对角线,∴∠ACD=45°∴∠ACF=∠FCM +∠ACD =90°(3)∵AE=EF,∴△AEF是等腰直角三角形△AEF外接圆的圆心在斜边AF的中点上.设该中点为O.连结EO得∠AOE=90°过E作EN⊥AC于点NRt△ENC中,EC=4,∠ECA=45°,∴EN=NC=Rt△ENA中,EN =又∵∠EAF=45°∠CAF=∠CEF=15°(等弧对等角)∴∠EAC=30°∴AE=Rt△AFE中,AE== EF,∴AF=8AE所在的圆O半径为4,其所对的圆心角为∠AOE=90°=2π·4·(90°÷360°)=2π考点:1、正方形;2、等腰直角三角形;3、圆周角定理;4、三角函数10.如图,等边△ABC内接于⊙O,P是弧AB上任一点(点P不与A、B重合),连AP,BP,过C作CM∥BP交PA的延长线于点M,(1)求证:△PCM为等边三角形;(2)若PA=1,PB=2,求梯形PBCM的面积.【答案】(1)见解析;(2153 4【解析】【分析】(1)利用同弧所对的圆周角相等即可求得题目中的未知角,进而判定△PCM为等边三角形;(2)利用上题中得到的相等的角和等边三角形中相等的线段证得两三角形全等,进而利用△PCM 为等边三角形,进而求得PH 的长,利用梯形的面积公式计算梯形的面积即可. 【详解】(1)证明:作PH ⊥CM 于H , ∵△ABC 是等边三角形, ∴∠APC=∠ABC=60°, ∠BAC=∠BPC=60°, ∵CM ∥BP , ∴∠BPC=∠PCM=60°, ∴△PCM 为等边三角形;(2)解:∵△ABC 是等边三角形,△PCM 为等边三角形, ∴∠PCA+∠ACM=∠BCP+∠PCA , ∴∠BCP=∠ACM , 在△BCP 和△ACM 中,BC AC BCP ACM CP CM =⎧⎪∠=∠⎨⎪=⎩, ∴△BCP ≌△ACM (SAS ), ∴PB=AM ,∴CM=CP=PM=PA+AM=PA+PB=1+2=3, 在Rt △PMH 中,∠MPH=30°, ∴PH=332, ∴S 梯形PBCM =12(PB+CM )×PH=12×(2+3)×33=1534.【点睛】本题考查圆周角定理、等边三角形的判定、全等三角形的性质及梯形的面积计算方法,是一道比较复杂的几何综合题.11.如图,△ABC中,AC=BC=10,cosC=35,点P是AC边上一动点(不与点A、C重合),以PA长为半径的⊙P与边AB的另一个交点为D,过点D作DE⊥CB于点E.(1)当⊙P与边BC相切时,求⊙P的半径.(2)连接BP交DE于点F,设AP的长为x,PF的长为y,求y关于x的函数解析式,并直接写出x的取值范围.(3)在(2)的条件下,当以PE长为直径的⊙Q与⊙P相交于AC边上的点G时,求相交所得的公共弦的长.【答案】(1)409R=;(2)25880320xy x xx=-++(3)505-【解析】【分析】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=35,则sinC=45,sinC=HPCP=10RR-=45,即可求解;(2)首先证明PD∥BE,则EB BFPD PF=,即:2024588x yxxx-+--=,即可求解;(3)证明四边形PDBE为平行四边形,则AG=EP=BD,即:AB=DB+AD=AG+AD=5【详解】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=35,则sinC=45,sinC=HPCP=10RR-=45,解得:R=409;(2)在△ABC中,AC=BC=10,cosC=35,设AP=PD=x,∠A=∠ABC=β,过点B作BH⊥AC,则BH=ACsinC=8,同理可得:CH=6,HA=4,AB=45,则:tan∠CAB=2,BP=228+(4)x-=2880x x-+,DA=25x,则BD=45﹣25x,如下图所示,PA=PD,∴∠PAD=∠CAB=∠CBA=β,tanβ=2,则cosβ5,sinβ5,EB =BDcosβ=(45﹣25x )×5=4﹣25x , ∴PD ∥BE , ∴EB BF PD PF =,即:2024588x y x xx y -+--=, 整理得:y =25x x 8x 803x 20-++; (3)以EP 为直径作圆Q 如下图所示,两个圆交于点G ,则PG =PQ ,即两个圆的半径相等,则两圆另外一个交点为D , GD 为相交所得的公共弦,∵点Q 是弧GD 的中点, ∴DG ⊥EP ,∵AG 是圆P 的直径,∴∠GDA =90°,∴EP ∥BD ,由(2)知,PD ∥BC ,∴四边形PDBE 为平行四边形,∴AG =EP =BD ,∴AB =DB+AD =AG+AD =5设圆的半径为r ,在△ADG 中,AD =2rcosβ5DG 5AG =2r , 5=52r 51+, 则:DG 550﹣5 相交所得的公共弦的长为50﹣5【点睛】本题考查的是圆知识的综合运用,涉及到解直角三角形、勾股定理等知识,其中(3),要关键是根据题意正确画图,此题用大量的解直角三角形的内容,综合难度很大.12.设C 为线段AB 的中点,四边形BCDE 是以BC 为一边的正方形,以B 为圆心,BD 长为半径的⊙B 与AB 相交于F 点,延长EB 交⊙B 于G 点,连接DG 交于AB 于Q 点,连接AD .求证:(1)AD 是⊙B 的切线;(2)AD =AQ ;(3)BC 2=CF×EG .【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析.【解析】【分析】()1连接BD ,由DC AB ⊥,C 为AB 的中点,由线段垂直平分线的性质,可得AD BD =,再根据正方形的性质,可得90ADB ∠=o ;()2由BD BG =与//CD BE ,利用等边对等角与平行线的性质,即可求得122.52G CDG BDG BCD ∠=∠=∠=∠=o ,继而求得67.5ADQ AQD ∠=∠=o ,由等角对等边,可证得AD AQ =; ()3易求得67.5GDE GDB BDE DFE ∠=∠+∠==∠o ,90DCF E ∠=∠=o ,即可证得Rt DCF V ∽Rt GED V ,根据相似三角形的对应边成比例,即可证得结论.【详解】证明:()1连接BD ,Q 四边形BCDE 是正方形,45DBA ∴∠=o ,90DCB ∠=o ,即DC AB ⊥,C Q 为AB 的中点,CD ∴是线段AB 的垂直平分线,AD BD ∴=,45DAB DBA ∴∠=∠=o ,90ADB ∴∠=o ,即BD AD ⊥,BD Q 为半径,AD ∴是B e 的切线;()2BD BG =Q ,BDG G ∴∠=∠,//CD BE Q ,CDG G ∴∠=∠,122.52G CDG BDG BCD ∴∠=∠=∠=∠=o , 9067.5ADQ BDG ∴∠=-∠=o o ,9067.5AQB BQG G ∠=∠=-∠=o o , ADQ AQD ∴∠=∠,AD AQ ∴=;()3连接DF ,在BDF V 中,BD BF =,BFD BDF ∴∠=∠,又45DBF ∠=o Q ,67.5BFD BDF ∴∠=∠=o ,22.5GDB ∠=o Q ,在Rt DEF V 与Rt GCD V 中,67.5GDE GDB BDE DFE ∠=∠+∠==∠o Q ,90DCF E ∠=∠=o ,Rt DCF ∴V ∽Rt GED V ,CF CD ED EG∴=, 又CD DE BC ==Q ,2BC CF EG ∴=⋅.【点睛】本题考查了相似三角形的判定与性质、切线的判定与性质、正方形的性质以及等腰三角形的判定与性质.解题的关键是注意掌握数形结合思想的应用,注意辅助线的作法.13.如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,∠D =60°且AB =6,过O 点作OE ⊥AC ,垂足为E .(1)求OE 的长;(2)若OE的延长线交⊙O于点F,求弦AF、AC和弧CF围成的图形(阴影部分)的面积.(结果保留π)【答案】(1)OE的长为32;(2)阴影部分的面积为3 2π【解析】(1)OE=32(2)S=32π14.如图1,⊙O的直径AB=12,P是弦BC上一动点(与点B,C不重合),∠ABC=30°,过点P作PD⊥OP交⊙O于点D.(1)如图2,当PD∥AB时,求PD的长;(2)如图3,当弧DC=弧AC时,延长AB至点E,使BE=12AB,连接DE.①求证:DE是⊙O的切线;②求PC的长.【答案】(1)6;(2)①证明见解析;33.【解析】试题分析:(1)根据题意首先得出半径长,再利用锐角三角三角函数关系得出OP,PD的长;(2)①首先得出△OBD是等边三角形,进而得出∠ODE=∠OFB=90°,求出答案即可;②首先求出CF的长,进而利用直角三角形的性质得出PF的长,进而得出答案.试题解析:(1)如图2,连接OD,∵OP⊥PD,PD∥AB,∴∠POB=90°,∵⊙O的直径AB=12,∴OB=OD=6,在Rt△POB中,∠ABC=30°,∴OP=OB•tan30°=6×=2,在Rt△POD中,PD===;(2)①如图3,连接OD,交CB于点F,连接BD,∵,∴∠DBC=∠ABC=30°,∴∠ABD=60°,∵OB=OD,∴△OBD是等边三角形,∴OD⊥FB,∵BE=AB,∴OB=BE,∴BF∥ED,∴∠ODE=∠OFB=90°,∴DE是⊙O的切线;②由①知,OD⊥BC,∴CF=FB=OB•cos30°=6×=3,在Rt△POD中,OF=DF,∴PF=DO=3(直角三角形斜边上的中线,等于斜边的一半),∴CP=CF﹣PF=3﹣3.考点:圆的综合题15.已知:如图,以等边三角形ABC一边AB为直径的⊙O与边AC、BC分别交于点D、E,过点D作DF⊥BC,垂足为F.(1)求证:DF为⊙O的切线;(2)若等边三角形ABC 的边长为4,求图中阴影部分的面积.【答案】(1)见解析(2)332 23π-【解析】试题分析:(1)连接DO,要证明DF为⊙O的切线只要证明∠FDP=90°即可;(2)首先由已知可得到CD,CF的长,从而利用勾股定理可求得DF的长;再连接OE,求得CF,EF的长,从而利用S直角梯形FDOE﹣S扇形OED求得阴影部分的面积.试题解析:(1)证明:连接DO.∵△ABC是等边三角形,∴∠A=∠C=60°.∵OA=OD,∴△OAD是等边三角形.∴∠ADO=60°,∵DF⊥BC,∴∠CDF=90°﹣∠C=30°,∴∠FDO=180°﹣∠ADO﹣∠CDF=90°,∴DF为⊙O的切线;(2)∵△OAD是等边三角形,∴AD=AO=AB=2.∴CD=AC﹣AD=2.Rt△CDF中,∵∠CDF=30°,∴CF=CD=1.∴DF=,连接OE,则CE=2.∴CF=1,∴EF=1.∴S直角梯形FDOE=(EF+OD)•DF=,∴S扇形OED==,∴S阴影=S直角梯形FDOE﹣S扇形OED=﹣.【点睛】此题考查学生对切线的判定及扇形的面积等知识点的掌握情况,当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线.也考查了等边三角形的性质和利用割补法计算补规则图形的面积.。
山东省2019年、2020年数学中考试题分类(11)——圆一.选择题(共20小题)1.(2020•东营)用一个半径为3,面积为3π的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径为()A.πB.2πC.2 D.12.(2020•临沂)如图,在⊙O中,AB为直径,∠AOC=80°.点D为弦AC的中点,点E为上任意一点.则∠CED的大小可能是()A.10°B.20°C.30°D.40°3.(2020•泰安)如图,点A,B的坐标分别为A(2,0),B(0,2),点C为坐标平面内一点,BC=1,点M为线段AC的中点,连接OM,则OM的最大值为()A.+1 B.+C.2+1 D.2﹣4.(2020•青岛)如图,BD是⊙O的直径,点A,C在⊙O上,=,AC交BD于点G.若∠COD=126°,则∠AGB的度数为()A.99°B.108°C.110°D.117°5.(2020•泰安)如图,P A是⊙O的切线,点A为切点,OP交⊙O于点B,∠P=10°,点C在⊙O上,OC∥AB.则∠BAC等于()A.20°B.25°C.30°D.50°6.(2020•德州)如图,圆内接正六边形的边长为4,以其各边为直径作半圆,则图中阴影部分的面积为()A.24﹣4πB.12+4πC.24+8πD.24+4π7.(2020•滨州)在⊙O中,直径AB=15,弦DE⊥AB于点C,若OC:OB=3:5,则DE的长为()A.6 B.9 C.12 D.158.(2020•泰安)如图,△ABC是⊙O的内接三角形,AB=BC,∠BAC=30°,AD是直径,AD=8,则AC 的长为()A.4 B.4C.D.29.(2020•聊城)如图,AB是⊙O的直径,弦CD⊥AB,垂足为点M,连接OC,DB.如果OC∥DB,OC =2,那么图中阴影部分的面积是()A.πB.2πC.3πD.4π10.(2020•聊城)如图,有一块半径为1m,圆心角为90°的扇形铁皮,要把它做成一个圆锥形容器(接缝忽略不计),那么这个圆锥形容器的高为()A.m B.m C.m D.m11.(2020•济宁)如图,在△ABC中,点D为△ABC的内心,∠A=60°,CD=2,BD=4.则△DBC的面积是()A.4B.2C.2 D.412.(2019•莱芜区)如图,点A、B,C,D在⊙O上,AB=AC,∠A=40°,BD∥AC,若⊙O的半径为2.则图中阴影部分的面积是()A.﹣B.﹣C.﹣D.﹣13.(2019•烟台)如图,AB是⊙O的直径,直线DE与⊙O相切于点C,过A,B分别作AD⊥DE,BE⊥DE,垂足为点D,E,连接AC,BC,若AD=,CE=3,则的长为()A.B.πC.πD.π14.(2019•菏泽)如图,AB是⊙O的直径,C,D是⊙O上的两点,且BC平分∠ABD,AD分别与BC,OC相交于点E,F,则下列结论不一定成立的是()A.OC∥BD B.AD⊥OC C.△CEF≌△BED D.AF=FD15.(2019•潍坊)如图,四边形ABCD内接于⊙O,AB为直径,AD=CD,过点D作DE⊥AB于点E,连接AC交DE于点F.若sin∠CAB=,DF=5,则BC的长为()A.8 B.10 C.12 D.1616.(2019•青岛)如图,线段AB经过⊙O的圆心,AC,BD分别与⊙O相切于点C,D.若AC=BD=4,∠A=45°,则的长度为()A.πB.2πC.2πD.4π17.(2019•泰安)如图,将⊙O沿弦AB折叠,恰好经过圆心O,若⊙O的半径为3,则劣的长为()A.πB.πC.2πD.3π18.(2019•泰安)如图,△ABC是⊙O的内接三角形,∠A=119°,过点C的圆的切线交BO于点P,则∠P的度数为()A.32°B.31°C.29°D.61°19.(2019•枣庄)如图,在边长为4的正方形ABCD中,以点B为圆心,AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是(结果保留π)()A.8﹣πB.16﹣2πC.8﹣2πD.8﹣π20.(2019•德州)如图,点O为线段BC的中点,点A,C,D到点O的距离相等,若∠ABC=40°,则∠ADC的度数是()A.130°B.140°C.150°D.160°二.填空题(共10小题)21.(2020•东营)如图,在Rt△AOB中,OB=2,∠A=30°,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(其中点Q为切点),则线段PQ长度的最小值为.22.(2020•潍坊)如图,四边形ABCD是正方形,曲线DA1B1C1D1A2…是由一段段90度的弧组成的.其中:的圆心为点A,半径为AD;的圆心为点B,半径为BA1;的圆心为点C,半径为CB1;的圆心为点D,半径为DC1;…,…的圆心依次按点A,B,C,D 循环.若正方形ABCD的边长为1,则的长是.23.(2020•菏泽)如图,在菱形OABC中,OB是对角线,OA=OB=2,⊙O与边AB相切于点D,则图中阴影部分的面积为.24.(2020•青岛)如图,在△ABC中,O为BC边上的一点,以O为圆心的半圆分别与AB,AC相切于点M,N.已知∠BAC=120°,AB+AC=16,的长为π,则图中阴影部分的面积为.25.(2020•枣庄)如图,AB是⊙O的直径,P A切⊙O于点A,线段PO交⊙O于点C.连接BC,若∠P=36°,则∠B=.26.(2020•泰安)如图,点O是半圆圆心,BE是半圆的直径,点A,D在半圆上,且AD∥BO,∠ABO=60°,AB=8,过点D作DC⊥BE于点C,则阴影部分的面积是.27.(2020•滨州)如图,⊙O是正方形ABCD的内切圆,切点分别为E、F、G、H,ED与⊙O相交于点M,则sin∠MFG的值为.28.(2020•德州)若一个圆锥的底面半径是2cm,母线长是6cm,则该圆锥侧面展开图的圆心角是度.29.(2020•聊城)如图,在⊙O中,四边形OABC为菱形,点D在上,则∠ADC的度数是.30.(2019•莱芜区)用一块圆心角为120°的扇形铁皮,围成一个底面直径为10cm的圆锥形工件的侧面,那么这个圆锥的高是cm.三.解答题(共10小题)31.(2020•东营)如图,在△ABC中,以AB为直径的⊙O交AC于点M,弦MN∥BC交AB于点E,且ME=3,AE=4,AM=5.(1)求证:BC是⊙O的切线;(2)求⊙O的直径AB的长度.32.(2020•淄博)如图,△ABC内接于⊙O,AD平分∠BAC交BC边于点E,交⊙O于点D,过点A作AF ⊥BC于点F,设⊙O的半径为R,AF=h.(1)过点D作直线MN∥BC,求证:MN是⊙O的切线;(2)求证:AB•AC=2R•h;(3)设∠BAC=2α,求的值(用含α的代数式表示).33.(2020•烟台)如图,在▱ABCD中,∠D=60°,对角线AC⊥BC,⊙O经过点A,B,与AC交于点M,连接AO并延长与⊙O交于点F,与CB的延长线交于点E,AB=EB.(1)求证:EC是⊙O的切线;(2)若AD=2,求的长(结果保留π).34.(2020•潍坊)如图,AB为⊙O的直径,射线AD交⊙O于点F,点C为劣弧的中点,过点C作CE ⊥AD,垂足为E,连接AC.(1)求证:CE是⊙O的切线;(2)若∠BAC=30°,AB=4,求阴影部分的面积.35.(2020•威海)如图,△ABC的外角∠BAM的平分线与它的外接圆相交于点E,连接BE,CE,过点E 作EF∥BC,交CM于点D.求证:(1)BE=CE;(2)EF为⊙O的切线.36.(2020•临沂)已知⊙O1的半径为r1,⊙O2的半径为r2.以O1为圆心,以r1+r2的长为半径画弧,再以线段O1O2的中点P为圆心,以O1O2的长为半径画弧,两弧交于点A,连接O1A,O2A,O1A交⊙O1于点B,过点B作O2A的平行线BC交O1O2于点C.(1)求证:BC是⊙O2的切线;(2)若r1=2,r2=1,O1O2=6,求阴影部分的面积.37.(2020•菏泽)如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,过点D作⊙O的切线交AC于点E.(1)求证:DE⊥AC;(2)若⊙O的半径为5,BC=16,求DE的长.38.(2020•枣庄)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠BAC=2∠CBF.(1)求证:BF是⊙O的切线;(2)若⊙O的直径为4,CF=6,求tan∠CBF.39.(2020•德州)如图,点C在以AB为直径的⊙O上,点D是半圆AB的中点,连接AC,BC,AD,BD.过点D作DH∥AB交CB的延长线于点H.(1)求证:直线DH是⊙O的切线;(2)若AB=10,BC=6,求AD,BH的长.40.(2020•聊城)如图,在△ABC中,AB=BC,以△ABC的边AB为直径作⊙O,交AC于点D,过点D 作DE⊥BC,垂足为点E.(1)试证明DE是⊙O的切线;(2)若⊙O的半径为5,AC=6,求此时DE的长.山东省2019年、2020年数学中考试题分类(11)——圆一.选择题(共20小题)1.(2020•东营)用一个半径为3,面积为3π的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径为()A.πB.2πC.2 D.1【答案】D【解答】解:根据圆锥侧面展开图是扇形,扇形面积公式:S=πrl(r为圆锥的底面半径,l为扇形半径),得3πr=3π,∴r=1.所以圆锥的底面半径为1.故选:D.2.(2020•临沂)如图,在⊙O中,AB为直径,∠AOC=80°.点D为弦AC的中点,点E为上任意一点.则∠CED的大小可能是()A.10°B.20°C.30°D.40°【答案】C【解答】解:连接OD、OE,∵OC=OA,∴△OAC是等腰三角形,∵点D为弦AC的中点,∴∠DOC=40°,∠BOC=100°,设∠BOE=x,则∠COE=100°﹣x,∠DOE=100°﹣x+40°,∵OC=OE,∠COE=100°﹣x,∴∠OEC=∠OCE=40°+x,∵OD<OE,∠DOE=100°﹣x+40°=140°﹣x,∴∠OED<20°+x,∴∠CED=∠OEC﹣∠OED>(40°+x)﹣(20°+x)=20°,∵∠CED<∠ABC=40°,∴20°<∠CED<40°故选:C.3.(2020•泰安)如图,点A,B的坐标分别为A(2,0),B(0,2),点C为坐标平面内一点,BC=1,点M为线段AC的中点,连接OM,则OM的最大值为()A.+1 B.+C.2+1 D.2﹣【答案】B【解答】解:如图,∵点C为坐标平面内一点,BC=1,∴C在⊙B上,且半径为1,取OD=OA=2,连接CD,∵AM=CM,OD=OA,∴OM是△ACD的中位线,∴OM=CD,当OM最大时,即CD最大,而D,B,C三点共线时,当C在DB的延长线上时,OM最大,∵OB=OD=2,∠BOD=90°,∴BD=2,∴CD=2+1,∴OM=CD=,即OM的最大值为+;故选:B.4.(2020•青岛)如图,BD是⊙O的直径,点A,C在⊙O上,=,AC交BD于点G.若∠COD=126°,则∠AGB的度数为()A.99°B.108°C.110°D.117°【答案】B【解答】解:∵BD是⊙O的直径,∴∠BAD=90°,∵=,∴∠B=∠D=45°,∵∠DAC=∠COD=×126°=63°,∴∠AGB=∠DAC+∠D=63°+45°=108°.故选:B.5.(2020•泰安)如图,P A是⊙O的切线,点A为切点,OP交⊙O于点B,∠P=10°,点C在⊙O上,OC∥AB.则∠BAC等于()A.20°B.25°C.30°D.50°【答案】B【解答】解:连接OA,∵P A是⊙O的切线,∴OA⊥AP,∴∠P AO=90°,∴∠AOP=90°﹣∠P=80°,∵OA=OB,∴∠OAB=∠OBA=50°,∵OC∥AB,∴∠BOC=∠OBA=50°,由圆周角定理得,∠BAC=∠BOC=25°,故选:B.6.(2020•德州)如图,圆内接正六边形的边长为4,以其各边为直径作半圆,则图中阴影部分的面积为()A.24﹣4πB.12+4πC.24+8πD.24+4π【答案】A【解答】解:设正六边形的中心为O,连接OA,OB.由题意,OA=OB=AB=4,∴S弓形AmB=S扇形OAB﹣S△AOB=﹣×42=π﹣4,∴S阴=6•(S半圆﹣S弓形AmB)=6•(•π•22﹣π+4)=24﹣4π,故选:A.7.(2020•滨州)在⊙O中,直径AB=15,弦DE⊥AB于点C,若OC:OB=3:5,则DE的长为()A.6 B.9 C.12 D.15【答案】C【解答】解:如图所示:连接OD,∵直径AB=15,∴BO=7.5,∵OC:OB=3:5,∴CO=4.5,∴DC==6,∴DE=2DC=12.故选:C.8.(2020•泰安)如图,△ABC是⊙O的内接三角形,AB=BC,∠BAC=30°,AD是直径,AD=8,则AC 的长为()A.4 B.4C.D.2【答案】B【解答】解:连接CD,∵AB=BC,∠BAC=30°,∴∠ACB=∠BAC=30°,∴∠B=180°﹣30°﹣30°=120°,∴∠D=180°﹣∠B=60°,∵AD是直径,∴∠ACD=90°,∵∠CAD=30°,AD=8,∴CD=AD=4,∴AC===4,故选:B.9.(2020•聊城)如图,AB是⊙O的直径,弦CD⊥AB,垂足为点M,连接OC,DB.如果OC∥DB,OC =2,那么图中阴影部分的面积是()A.πB.2πC.3πD.4π【答案】B【解答】解:连接OD,BC,∵CD⊥AB,OC=OD,∴DM=CM,∠COB=∠BOD,∵OC∥BD,∴∠COB=∠OBD,∴∠BOD=∠OBD,∴OD=DB,∴△BOD是等边三角形,∴∠BOD=60°,∴∠BOC=60°,∵DM=CM,∴S△OBC=S△OBD,∵OC∥DB,∴S△OBD=S△CBD,∴S△OBC=S△DBC,∴图中阴影部分的面积==2π,故选:B.10.(2020•聊城)如图,有一块半径为1m,圆心角为90°的扇形铁皮,要把它做成一个圆锥形容器(接缝忽略不计),那么这个圆锥形容器的高为()A.m B.m C.m D.m【答案】C【解答】解:设底面半径为rm,则2πr=,解得:r=,所以其高为:=(m),故选:C.11.(2020•济宁)如图,在△ABC中,点D为△ABC的内心,∠A=60°,CD=2,BD=4.则△DBC的面积是()A.4B.2C.2 D.4【答案】B【解答】解:过点B作BH⊥CD的延长线于点H.∵点D为△ABC的内心,∠A=60°,∴∠DBC+∠DCB=(∠ABC+∠ACB)=(180°﹣∠A),∴∠BDC=90°+∠A=90°+×60°=120°,则∠BDH=60°,∵BD=4,∴DH=2,BH=2,∵CD=2,∴△DBC的面积=CD•BH==2,故选:B.12.(2019•莱芜区)如图,点A、B,C,D在⊙O上,AB=AC,∠A=40°,BD∥AC,若⊙O的半径为2.则图中阴影部分的面积是()A.﹣B.﹣C.﹣D.﹣【答案】B【解答】解:如图所示,连接BC、OD、OB,∵∠A=40°,AB=AC,∴∠ACB=70°,∵BD∥AC,∴∠ABD=∠A=40°,∴∠ACD=∠ABD=40°,∴∠BCD=30°,则∠BOD=2∠BCD=60°,又OD=OB,∴△BOD是等边三角形,则图中阴影部分的面积是S扇形BOD﹣S△BOD=﹣×22=π﹣,故选:B.13.(2019•烟台)如图,AB是⊙O的直径,直线DE与⊙O相切于点C,过A,B分别作AD⊥DE,BE⊥DE,垂足为点D,E,连接AC,BC,若AD=,CE=3,则的长为()A.B.πC.πD.π【答案】D【解答】解:连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∵直线DE与⊙O相切于点C,∴OC⊥DE,∵AD⊥DE,BE⊥DE,∴AD∥OC∥BE,∵OA=OB,∴DC=CE=3,∵AD=,∴tan∠ACD==,∴∠ACD=30°,∴∠ACO=90°﹣30°=60°,∵OA=OC,∴△AOC是等边三角形,∴OA=AC,∵AC===2∴⊙O的半径为2,∴的长为:=π,故选:D.14.(2019•菏泽)如图,AB是⊙O的直径,C,D是⊙O上的两点,且BC平分∠ABD,AD分别与BC,OC相交于点E,F,则下列结论不一定成立的是()A.OC∥BD B.AD⊥OC C.△CEF≌△BED D.AF=FD【答案】C【解答】解:∵AB是⊙O的直径,BC平分∠ABD,∴∠ADB=90°,∠OBC=∠DBC,∴AD⊥BD,∵OB=OC,∴∠OCB=∠OBC,∴∠DBC=∠OCB,∴OC∥BD,选项A成立;∴AD⊥OC,选项B成立;∴AF=FD,选项D成立;∵△CEF和△BED中,没有相等的边,∴△CEF与△BED不全等,选项C不成立;故选:C.15.(2019•潍坊)如图,四边形ABCD内接于⊙O,AB为直径,AD=CD,过点D作DE⊥AB于点E,连接AC交DE于点F.若sin∠CAB=,DF=5,则BC的长为()A.8 B.10 C.12 D.16【答案】C【解答】解:连接BD,如图,∵AB为直径,∴∠ADB=∠ACB=90°,∵AD=CD,∴∠DAC=∠DCA,而∠DCA=∠ABD,∴∠DAC=∠ABD,∵DE⊥AB,∴∠ABD+∠BDE=90°,而∠ADE+∠BDE=90°,∴∠ABD=∠ADE,∴∠ADE=∠DAC,∴FD=F A=5,在Rt△AEF中,∵sin∠CAB==,∴EF=3,∴AE==4,DE=5+3=8,∵∠ADE=∠DBE,∠AED=∠BED,∴△ADE∽△DBE,∴DE:BE=AE:DE,即8:BE=4:8,∴BE=16,∴AB=4+16=20,在Rt△ABC中,∵sin∠CAB==,∴BC=20×=12.故选:C.16.(2019•青岛)如图,线段AB经过⊙O的圆心,AC,BD分别与⊙O相切于点C,D.若AC=BD=4,∠A=45°,则的长度为()A.πB.2πC.2πD.4π【答案】B【解答】解:连接OC、OD,∵AC,BD分别与⊙O相切于点C,D.∴OC⊥AC,OD⊥BD,∵∠A=45°,∴∠AOC=45°,∴AC=OC=4,∵AC=BD=4,OC=OD=4,∴OD=BD,∴∠BOD=45°,∴∠COD=180°﹣45°﹣45°=90°,∴的长度为:=2π,故选:B.17.(2019•泰安)如图,将⊙O沿弦AB折叠,恰好经过圆心O,若⊙O的半径为3,则劣的长为()A.πB.πC.2πD.3π【答案】C【解答】解:连接OA、OB,作OC⊥AB于C,由题意得,OC=OA,∴∠OAC=30°,∵OA=OB,∴∠OBA=∠OAC=30°,∴∠AOB=120°,∴劣的长==2π,故选:C.18.(2019•泰安)如图,△ABC是⊙O的内接三角形,∠A=119°,过点C的圆的切线交BO于点P,则∠P的度数为()A.32°B.31°C.29°D.61°【答案】A【解答】解:设BP与圆O交于点D,连接OC、CD,如图所示:∵PC是⊙O的切线,∴PC⊥OC,∴∠OCP=90°,∵∠A=119°,∴∠ODC=180°﹣∠A=61°,∵OC=OD,∴∠OCD=∠ODC=61°,∴∠DOC=180°﹣2×61°=58°,∴∠P=90°﹣∠DOC=32°;故选:A.19.(2019•枣庄)如图,在边长为4的正方形ABCD中,以点B为圆心,AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是(结果保留π)()A.8﹣πB.16﹣2πC.8﹣2πD.8﹣π【答案】C【解答】解:S阴=S△ABD﹣S扇形BAE=×4×4﹣=8﹣2π,故选:C.20.(2019•德州)如图,点O为线段BC的中点,点A,C,D到点O的距离相等,若∠ABC=40°,则∠ADC的度数是()A.130°B.140°C.150°D.160°【答案】B【解答】解:由题意得到OA=OB=OC=OD,作出圆O,如图所示,∴四边形ABCD为圆O的内接四边形,∴∠ABC+∠ADC=180°,∵∠ABC=40°,∴∠ADC=140°,故选:B.二.填空题(共10小题)21.(2020•东营)如图,在Rt△AOB中,OB=2,∠A=30°,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(其中点Q为切点),则线段PQ长度的最小值为2.【答案】见试题解答内容【解答】解:连接OP、OQ,作OP′⊥AB于P′,∵PQ是⊙O的切线,∴OQ⊥PQ,∴PQ==,当OP最小时,线段PQ的长度最小,当OP⊥AB时,OP最小,在Rt△AOB中,∠A=30°,∴OA==6,在Rt△AOP′中,∠A=30°,∴OP′=OA=3,∴线段PQ长度的最小值==2,故答案为:2.22.(2020•潍坊)如图,四边形ABCD是正方形,曲线DA1B1C1D1A2…是由一段段90度的弧组成的.其中:的圆心为点A,半径为AD;的圆心为点B,半径为BA1;的圆心为点C,半径为CB1;的圆心为点D,半径为DC1;…,…的圆心依次按点A,B,C,D 循环.若正方形ABCD的边长为1,则的长是4039π.【答案】见试题解答内容【解答】解:由图可知,曲线DA1B1C1D1A2…是由一段段90度的弧组成的,半径每次比前一段弧半径+1,AD=AA1=1,BA1=BB1=2,……,AD n﹣1=AA n=4(n﹣1)+1,BA n=BB n=4(n﹣1)+2,故的半径为BA2020=BB2020=4(2020﹣1)+2=8078,的弧长=.故答案为:4039π.23.(2020•菏泽)如图,在菱形OABC中,OB是对角线,OA=OB=2,⊙O与边AB相切于点D,则图中阴影部分的面积为2﹣π.【答案】见试题解答内容【解答】解:连接OD,∵四边形OABC为菱形,∴OA=AB,∵OA=OB,∴OA=OB=AB,∴△OAB为等边三角形,∴∠A=∠AOB=60°,∵AB是⊙O的切线,∴OD⊥AB,∴OD=OA•sin A=,同理可知,△OBC为等边三角形,∴∠BOC=60°,∴图中阴影部分的面积=2×﹣=2﹣π,故答案为:2﹣π.24.(2020•青岛)如图,在△ABC中,O为BC边上的一点,以O为圆心的半圆分别与AB,AC相切于点M,N.已知∠BAC=120°,AB+AC=16,的长为π,则图中阴影部分的面积为24﹣3﹣3π.【答案】见试题解答内容【解答】解:如图,连接OM、ON,∵半圆分别与AB,AC相切于点M,N.∴OM⊥AB,ON⊥AC,∵∠BAC=120°,∴∠MON=60°,∴∠MOB+∠NOC=120°,∵的长为π,∴=π,∴r=3,∴OM=ON=r=3,连接OA,在Rt△AON中,∠AON=30°,ON=3,∴AN=,∴AM=AN=,∴BM+CN=AB+AC﹣(AM+AN)=16﹣2,∴S阴影=S△OBM+S△OCN﹣(S扇形MOE+S扇形NOF)=3×(BM+CN)﹣()=(16﹣2)﹣3π=24﹣3﹣3π.故答案为:24﹣3﹣3π.25.(2020•枣庄)如图,AB是⊙O的直径,P A切⊙O于点A,线段PO交⊙O于点C.连接BC,若∠P=36°,则∠B=27°.【答案】见试题解答内容【解答】解:∵P A切⊙O于点A,∴∠OAP=90°,∵∠P=36°,∴∠AOP=54°,∵=,∴∠B=∠AOP=27°.故答案为:27°.26.(2020•泰安)如图,点O是半圆圆心,BE是半圆的直径,点A,D在半圆上,且AD∥BO,∠ABO=60°,AB=8,过点D作DC⊥BE于点C,则阴影部分的面积是π﹣8.【答案】见试题解答内容【解答】解:连接OA,∵∠ABO=60°,OA=OB,∴△AOB是等边三角形,∵AB=8,∴⊙O的半径为8,∵AD∥OB,∴∠DAO=∠AOB=60°,∵OA=OD,∴∠AOD=60°,∵∠AOB=∠AOD=60°,∴∠DOE=60°,∵DC⊥BE于点C,∴CD=OD=4,OC==4,∴BC=8+4=12,S阴影=S△AOB+S扇形OAD+S扇形ODE﹣S△BCD=×+2×﹣=﹣8故答案为﹣8.27.(2020•滨州)如图,⊙O是正方形ABCD的内切圆,切点分别为E、F、G、H,ED与⊙O相交于点M,则sin∠MFG的值为.【答案】见试题解答内容【解答】解:∵⊙O是正方形ABCD的内切圆,∴AE=AB,EG=BC;根据圆周角的性质可得:∠MFG=∠MEG.∵sin∠MFG=sin∠MEG==,∴sin∠MFG=.故答案为:.28.(2020•德州)若一个圆锥的底面半径是2cm,母线长是6cm,则该圆锥侧面展开图的圆心角是120度.【答案】见试题解答内容【解答】解:圆锥侧面展开图的弧长是:2π×2=4π(cm),设圆心角的度数是n度.则=4π,解得:n=120.故答案为:120.29.(2020•聊城)如图,在⊙O中,四边形OABC为菱形,点D在上,则∠ADC的度数是60°.【答案】见试题解答内容【解答】解:∵四边形ABCD内接于⊙O,∴∠B+∠D=180°,∵四边形OABC为菱形,∴∠B=∠AOC,∴∠D+∠AOC=180°,∵∠AOC=2∠D,∴3∠D=180°,∴∠ADC=60°,故答案为60°.30.(2019•莱芜区)用一块圆心角为120°的扇形铁皮,围成一个底面直径为10cm的圆锥形工件的侧面,那么这个圆锥的高是10cm.【答案】见试题解答内容【解答】解:设圆锥的母线长为l,则=10π,解得:l=15,∴圆锥的高为:=10,故答案为:10三.解答题(共10小题)31.(2020•东营)如图,在△ABC中,以AB为直径的⊙O交AC于点M,弦MN∥BC交AB于点E,且ME=3,AE=4,AM=5.(1)求证:BC是⊙O的切线;(2)求⊙O的直径AB的长度.【答案】见试题解答内容【解答】(1)证明:∵在△AME中,ME=3,AE=4,AM=5,∴AM2=ME2+AE2,∴△AME是直角三角形,∴∠AEM=90°,又∵MN∥BC,∴∠ABC=∠AEM=90°,∴AB⊥BC,∵AB为直径,∴BC是⊙O的切线;(2)解:连接OM,如图,设⊙O的半径是r,在Rt△OEM中,OE=AE﹣OA=4﹣r,ME=3,OM=r,∵OM2=ME2+OE2,∴r2=32+(4﹣r)2,解得:r=,∴AB=2r=.32.(2020•淄博)如图,△ABC内接于⊙O,AD平分∠BAC交BC边于点E,交⊙O于点D,过点A作AF ⊥BC于点F,设⊙O的半径为R,AF=h.(1)过点D作直线MN∥BC,求证:MN是⊙O的切线;(2)求证:AB•AC=2R•h;(3)设∠BAC=2α,求的值(用含α的代数式表示).【答案】(1)见解答;(2)见解答;(3)2cosα.【解答】解:(1)如图1,连接OD,∵AD平分∠BAC,∴∠BAD=∠CAD,∴=,又∵OD是半径,∴OD⊥BC,∵MN∥BC,∴OD⊥MN,∴MN是⊙O的切线;(2)如图2,连接AO并延长交⊙O于H,连接BH,∵AH是直径,∴∠ABH=90°=∠AFC,又∵∠AHB=∠ACF,∴△ACF∽△AHB,∴,∴AB•AC=AF•AH=2R•h;(3)如图3,过点D作DQ⊥AB于Q,DP⊥AC,交AC延长线于P,连接CD,∵∠BAC=2α,AD平分∠BAC,∴∠BAD=∠CAD=α,∴=,∴BD=CD,∵∠BAD=∠CAD,DQ⊥AB,DP⊥AC,∴DQ=DP,∴Rt△DQB≌Rt△DPC(HL),∴BQ=CP,∵DQ=DP,AD=AD,∴Rt△DQA≌Rt△DP A(HL),∴AQ=AP,∴AB+AC=AQ+BQ+AC=2AQ,∵cos∠BAD=,∴AD=,∴==2cosα.33.(2020•烟台)如图,在▱ABCD中,∠D=60°,对角线AC⊥BC,⊙O经过点A,B,与AC交于点M,连接AO并延长与⊙O交于点F,与CB的延长线交于点E,AB=EB.(1)求证:EC是⊙O的切线;(2)若AD=2,求的长(结果保留π).【答案】见试题解答内容【解答】(1)证明:连接OB,连接OM,∵四边形ABCD是平行四边形,∴∠ABC=∠D=60°,∵AC⊥BC,∴∠ACB=90°,∴∠BAC=30°,∵BE=AB,∴∠E=∠BAE,∵∠ABC=∠E+∠BAE=60°,∴∠E=∠BAE=30°,∵OA=OB,∴∠ABO=∠OAB=30°,∴∠OBC=30°+60°=90°,∴OB⊥CE,∴EC是⊙O的切线;(2)解:∵四边形ABCD是平行四边形,∴BC=AD=2,过O作OH⊥AM于H,则四边形OBCH是矩形,∴OH=BC=2,∴OA==4,∠AOM=2∠AOH=60°,∴的长度==.34.(2020•潍坊)如图,AB为⊙O的直径,射线AD交⊙O于点F,点C为劣弧的中点,过点C作CE ⊥AD,垂足为E,连接AC.(1)求证:CE是⊙O的切线;(2)若∠BAC=30°,AB=4,求阴影部分的面积.【答案】见试题解答内容【解答】解:(1)连接BF,OC,∵AB是⊙O的直径,∴∠AFB=90°,即BF⊥AD,∵CE⊥AD,∴BF∥CE,连接OC,∵点C为劣弧的中点,∴OC⊥BF,∵BF∥CE,∴OC⊥CE,∵OC是⊙O的半径,∴CE是⊙O的切线;(2)连接OF,CF,∵OA=OC,∠BAC=30°,∴∠BOC=60°,∵点C为劣弧的中点,∴,∴∠FOC=∠BOC=60°,∵OF=OC,∴∠OCF=∠COB,∴CF∥AB,∴S△ACF=S△COF,∴阴影部分的面积=S扇形COF,∵AB=4,∴FO=OC=OB=2,∴S扇形FOC=,即阴影部分的面积为:.35.(2020•威海)如图,△ABC的外角∠BAM的平分线与它的外接圆相交于点E,连接BE,CE,过点E 作EF∥BC,交CM于点D.求证:(1)BE=CE;(2)EF为⊙O的切线.【答案】见试题解答内容【解答】证明:(1)∵四边形ACBE是圆内接四边形,∴∠EAM=∠EBC,∵AE平分∠BAM,∴∠BAE=∠EAM,∵∠BAE=∠BCE,∴∠BCE=∠EAM,∴∠BCE=∠EBC,∴BE=CE;(2)如图,连接EO并延长交BC于H,连接OB,OC,∵OB=OC,EB=EC,∴直线EO垂直平分BC,∴EH⊥BC,∴EH⊥EF,∵OE是⊙O的半径,∴EF为⊙O的切线.36.(2020•临沂)已知⊙O1的半径为r1,⊙O2的半径为r2.以O1为圆心,以r1+r2的长为半径画弧,再以线段O1O2的中点P为圆心,以O1O2的长为半径画弧,两弧交于点A,连接O1A,O2A,O1A交⊙O1于点B,过点B作O2A的平行线BC交O1O2于点C.(1)求证:BC是⊙O2的切线;(2)若r1=2,r2=1,O1O2=6,求阴影部分的面积.【答案】见试题解答内容【解答】(1)证明:连接AP,∵以线段O1O2的中点P为圆心,以O1O2的长为半径画弧,∴O1P=AP=O2P=,∴∠O1AO2=90°,∵BC∥O2A,∴∠O1BC=∠O1AO2=90°,过点O2作O2D⊥BC交BC的延长线于点D,∴四边形ABDO2是矩形,∴AB=O2D,∵O1A=r1+r2,∴O2D=r2,∴BC是⊙O2的切线;(2)解:∵r1=2,r2=1,O1O2=6,∴O1A=,∴∠AO2C=30°,∵BC∥O2A,∴∠BCE=AO2C=30°,∴O1C=2O1B=4,∴BC===2,∴S阴影===﹣=2﹣π.37.(2020•菏泽)如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,过点D作⊙O的切线交AC于点E.(1)求证:DE⊥AC;(2)若⊙O的半径为5,BC=16,求DE的长.【答案】见试题解答内容【解答】(1)证明:连接AD、OD.∵AB是圆O的直径,∴∠ADB=90°.∴∠ADO+∠ODB=90°.∵DE是圆O的切线,∴OD⊥DE.∴∠EDA+∠ADO=90°.∴∠EDA=∠ODB.∵OD=OB,∴∠ODB=∠OBD.∴∠EDA=∠OBD.∵AC=AB,AD⊥BC,∴∠CAD=∠BAD.∵∠DBA+∠DAB=90°,∴∠EAD+∠EDA=90°.∴∠DEA=90°.∴DE⊥AC.(2)解:∵∠ADB=90°,AB=AC,∴BD=CD,∵⊙O的半径为5,BC=16,∴AC=10,CD=8,∴AD==6,∵S△ADC=AC•DE,∴DE===.38.(2020•枣庄)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠BAC=2∠CBF.(1)求证:BF是⊙O的切线;(2)若⊙O的直径为4,CF=6,求tan∠CBF.【答案】见试题解答内容【解答】(1)证明:连接AE,∵AB是⊙O的直径,∴∠AEB=90°,∴∠1+∠2=90°.∵AB=AC,∴2∠1=∠CAB.∵∠BAC=2∠CBF,∴∠1=∠CBF∴∠CBF+∠2=90°即∠ABF=90°∵AB是⊙O的直径,∴直线BF是⊙O的切线;(2)解:过C作CH⊥BF于H,∵AB=AC,⊙O的直径为4,∴AC=4,∵CF=6,∠ABF=90°,∴BF===2,∵∠CHF=∠ABF,∠F=∠F,∴△CHF∽△ABF,∴=,∴=,∴CH=,∴HF===,∴BH=BF﹣HF=2﹣=,∴tan∠CBF===.39.(2020•德州)如图,点C在以AB为直径的⊙O上,点D是半圆AB的中点,连接AC,BC,AD,BD.过点D作DH∥AB交CB的延长线于点H.(1)求证:直线DH是⊙O的切线;(2)若AB=10,BC=6,求AD,BH的长.【答案】见试题解答内容【解答】(1)证明:连接OD,∵AB为⊙O的直径,点D是半圆AB的中点,∴∠AOD=AOB=90°,∵DH∥AB,∴∠ODH=90°,∴OD⊥DH,∴直线DH是⊙O的切线;(2)解:连接CD,∵AB为⊙O的直径,∴∠ADB=∠ACB=90°,∵点D是半圆AB的中点,∴=,∴AD=DB,∴△ABD是等腰直角三角形,∵AB=10,∴AD=10sin∠ABD=10sin45°=10×=5,∵AB=10,BC=6,∴AC==8,∵四边形ABCD是圆内接四边形,∴∠CAD+∠CBD=180°,∵∠DBH+∠CBD=180°,∴∠CAD=∠DBH,由(1)知∠AOD=90°,∠OBD=45°,∴∠ACD=45°,∵DH∥AB,∴∠BDH=∠OBD=45°,∴∠ACD=∠BDH,∴△ACD∽△BDH,∴,∴=,解得:BH=.40.(2020•聊城)如图,在△ABC中,AB=BC,以△ABC的边AB为直径作⊙O,交AC于点D,过点D 作DE⊥BC,垂足为点E.(1)试证明DE是⊙O的切线;(2)若⊙O的半径为5,AC=6,求此时DE的长.【答案】见试题解答内容【解答】(1)证明:连接OD、BD,∵AB是⊙O直径,∴∠ADB=90°,∴BD⊥AC,∵AB=BC,∴D为AC中点,∵OA=OB,∴OD∥BC,∵DE⊥BC,∴DE⊥OD,∵OD为半径,∴DE是⊙O的切线;(2)由(1)知BD是AC的中线,∴AD=CD==3,∵⊙O的半径为5,∴AB=10,∴BD===,∵AB=AC,∴∠A=∠C,∵∠ADB=∠CED=90°,∴△CDE∽△ABD,∴,即=,∴DE=3.。
第20章 圆20.1 点和圆的位置关系20.1.1 如图所示,AB 是半圆的直径,O 是圆心,CD ⊥AB ,DE ⊥OC .如果AD 、BD 和CD 的长都是有理数,有下列命题:甲:OE 的长是有理数;乙:DE 的长是有理数;丙:图中所有字母表示出的线段的长都是有理数.那么,上述命题之中( )B(A)只有甲正确 (B)只有乙正确 (C)只有甲、乙正确 (D)甲、乙、丙都正确 20.1.2△ABC 的边长为a 、b 、c ,其外接圆的面积为S ;△A ´B ´C ´的边长为a ´、b ´、c ´,其外接圆的面积为S ´.若a <a ´,b <b ´,c <c ´,则S 与S ´的大小关系是( ).(A)S <S ´ (B)S =S ´ (C)S >S ´ (D)不能确定20.1.3 如图所示,正三角形ABC 内接于⊙O ,M 、N 分别是AB 、AC 的中点,延长MN 交⊙O 于D ,连结BD 交AC 于P ,则PC PA=.20.1.4 如图所示,扇形OAB 的半径为2,∠AOB 为直角,M 是以OB 为直径的半圆的圆心,MP ∥OA,MP 与半圆相交于N 点,则图中阴影部分的面积为 .ABM★20.1.5 在⊙O 上有一点A ,在⊙O 外有一点B ,求证:∠OAB >∠OBA .★20.1.6 在已知AB 为⊙O 的弦,C 、D 为AB 的三等分点.求证:(1)∠AOC =∠BOD .(2)∠COD =∠DOB .★20.1.7 锐角三角形ABC 的三边是a 、b 、c ,它的外心到三边的距离分别为m 、n 、p ,那么m :n :p 等于( ).(A )cb a 1:1:1 (B )a :b :c (C )cosAcosB :cosC (D )sinA :sinB :sinC★20.1.8 已知⊙O 的半径是10,点P 到圆心的O 的距离是8,经过点P 且长为整数的弦有( )条.(A )16 (B )14 (C )12 (D )9★★20.1.9 如图所示,AD 是半圆直径,AD =4,B 、C 为半圆上两点,弦AB =BC =1,则弦CD 的长为_______.★★20.1.10 在等腰三角形ABC 的两腰AB 、BC 上分别取K 、L 两点,使得AK +LC =KL .过KL 的中点M 作BC 的平行线,交AC 边于点N .试求∠KNL 的度数.★20.1.11 圆内两条非直线的弦相交,试证:它们不能互相平分.★★20.1.12 已知⊙O 外接于△ABC ,AB 、BC 、CA 都不是⊙O 的直径,且⊙O 的任一条直径所在的直线都不能使A 、B 、C 三点在这条直线的同侧.(1)△ABC 是什么三角形?为什么?(2)试证明:△ABC 的三个角中,任一个角的正弦大于其他两个角的余弦.★★★20.1.13 一个上底与下底分别为AD 与BC 的梯形外切与一个圆,梯形的两条对角线相交于点E.试证:∠AED不是锐角.★★20.1.14在Rt△ABC中,∠ACB=90°,M是AB上一点,且AM2+BM2+CM2=2AM+2BM+2CM-3.若P是线段AC内一动点,⊙O是过P、M、C三点的圆,过P作PD∥AB交⊙O与点D.(1)求证:M是AB的中点.(2)求PD的长.★★20.1.15已知在⊙O中,内接四边形ABCD的对角线交于M,E、F分别为AB、CD的中点,求证:∠OEM=∠OFM.★★★20.1.16如图所示,在△ABC中,AB=AC,D是底边BC上一点,E是线段AD上一点,且∠BED=2∠CED=∠BAC.求证:BD=2CD.20.2 圆内接四边形与四点共圆★20.2.1如图所示在直角梯形ABCD中,∠A=∠D=90°,AB>CD,△ACD的外接圆交BC于E,若AD=AE,则AB与BC的大小关系是().(A)AB>BC(B)AB<BC(C)AB=BC(D)不能确定★★20.2.2如图所示,在圆内接四边形ABCD中,∠A=52.5°,∠B=97.5°,∠AOB=120°,AB=a,BC=b,CD=c,DA=d,则此四边形的面积S等于().(A )21(ad +bc ) (B )21(ad +cd ) (C )21(ac +bd ) (D )41(ad +bc +ad +cd )★20.2.3 如图所示,正方形ABCD 的中心为O ,面积为1989cm ²,P 为正方形内一点,且∠OPB =45°,PA :PB =5:14,则PB =cm .★20.2.4 已知ABCD 为圆内接四边形,AC 、BD 为对角线,且ADC ABC S △△S =m ,CBD ABD S △△S =n ,则CD AB =.★★20.2.5 如图所示,在圆内接四边形ABCD 中,AB =AD ,AC =1,∠ACD =60°,则四边形ABCD 的面积为.★★★20.2.6 如图所示,EF =CE =CF ,EA =BF =2AB ,且AP =CP =BQ =CQ =PD =DQ =1,求线段BD 的长度.★★★20.2.7 如图所示,四边形ABCD 内接于圆,AB =AD ,且其对角线交于点E ,点F 在线段AC 上,使得∠BFC =∠BAD .若∠BAD =2∠DFC ,请问:DEBE 之值是多少? ★★20.2.8 如图所示,在△ABC 中,AB =AC .任意延长CA 到P ,再延长AB 到Q ,使AP =BQ ,求证:在△ABC 的外心O 与A 、P 、Q 四点共圆.★★20.2.9 已知D 为正三角形ABC 外一点,且DA =DB +DC .求证:A 、B 、C 、D 四点共圆.★★20.2.10 已知在凸五边形ABCDE 中,∠BAE =3α,BC =CD =DE ,且∠BCD =∠CDE =180°—2α.求证:∠BAC =∠CAD =∠DAE .★★★20.2.11 已知△ABC 的外接圆为⊙O ,P 、Q 、R 依次是BC 、CA 、AB 的中点,弦PR 交AB 于D ,弦PQ 交AC 于E .求证:DE ∥BC .★★★20.2.12 已知AB 、CD 分别是单位圆的直径与弦,且AB ⊥CD ,BD =2AD ,E 是BD 的中点,连接AE ,与CD 交于P 点,延长AE ,与圆交于F 点;又连结CF ,与AB 相交于Q 点.(1)试证:EQ ∥CD .(2)求四边形ACQP 的面积.★★20.2.13如图所示,△ABC,△BCD,△CDE都是正三角形,线段FG∥BA.连结DG、EF相交于O,连结CO并延长,与AB的延长线相交于P.求证:CP=EF.★★20.2.14如图所示,在△ABC中,AB=AC,D是BC边上任意一点,C1是C点关于直线AD 的对称点,C1B与AD相交于P,试问:当点D在BC(BC中点除外)运动时,AD·AP的值有何变化?并证明其结论.★★★20.2.15如图所示,NS是⊙O的直径,弦AB和NS垂直,且交NS于M,P为弧⌒ANB上异于N的任一点,PS交AB于R,PM的延长线交⊙O于Q,求证RS>MQ.★★★20.2.16设有一边长为1的正方形,试在这个正方形的内接正三角形中找出一个面积最大和一个面积最小的.并求出这两个三角形的面积.(证明其论断).★★20.2.17如图所示,在△ABC中,AB=AC,其内切圆⊙I在切边BC、CA、AB于点D、E、F、P为弧EF(不含点D的弧)上一点.设线段BP交⊙I于另一点Q,直线EP、EQ分别交直线BC于点M、N.证明:(1)P、F、B、M四点共圆.(2)EM BD EN BP=.20.2.18用边长为1的正方形的四个边为斜边分别向正方形外作四个直角三角形.设点A、B、C、D分别作这四个直角三角形的顶点,O1、O2、O3、O4分别为这四个直角三角形内切圆圆心.试证:(1)四边形ABCD的面积不大于2;(2)四边形O1O2O3O4的面积不大于1.20.3 直线与圆的位置关系20.3.1已知O的半径为3cm,直线l上有一点P,OP=3cm,则直线l与O的关系是()A.相交B.相离C.相切D.相交或相切20.3.2如图所示,A是半径为1的O外的一点,OA=2,AB是O的切线,B是切点,弦BC ∥OA,连接AC,则阴影部分的面积等于()(A).29π(B).6π(C).6π+(D).4πA20.3.3 PA切O于点A,AB是O的弦.若O的半径为1,PA=1,AB,则PB的长为()(A).1 (B)(C).1(D).不能确定20.3.4如图所示,一个半径为10cm的轮子紧靠在一个台阶上,台阶高为5cm,点Q是轮子与台阶的一个接触点,推动轮子使它绕点Q点旋转,一直到它的中心O在Q的正上方为止,轮辐OQ转过的角度是___________P20.3.5如图所示,以一底角为67.5°的等腰梯形ABCD的一腰BC为直径作圆,交大底AB于E,且恰与另一腰AD相切于M,则BE:AE=___________A B20.3.6如图所示,设AB是O中一条小于直径的弦,将△OAB绕圆心O顺时针旋转一个角α(0°<α<360°)得△''OA B.问:在旋转过程中,动弦''A B能否能过弦AB上的每一点?并证明其结论.20.3.7如图所示,已知在△ABC中,AB=AC,O为△ABC的内心,连结A0并延长,与△ABC的外接圆交于D点,过O点作BC边的平行线,分别交AB、AC于E、F.求证:AB、AC均与△EFD的外接圆相切20.3.8如图所示,如果O内切于△ABC的三边,切点为X、Y、Z,那么,△XYZ满足().(A)每个角都等于60°(B)一个角是钝角,其余两个角都是锐角(C)与△ABC相似(D)每个角都等于△ABC中两个角和的一半B20.3.9如图所示,已知在△ABC中,∠A=90°,∠A的平分线AD交BC于D,且DB=3,DC=4,则△ABC内切圆的直径是()(A)145(B)165(C)75(D)842520.3.10如图所示,△ABC为直角三角形,0点为△ABC的内切圆的圆心,D、E、F为切点,则△ABC的面积为().(A)AE·EC(B)AE·AC(C)AF·FB(D)BD·ACFB C20.3.11如图所示,半圆O的直径在梯形ABCD的底边AB上,且与其余三边BC、CD、DA相切,若BC=2,DA=3,则AB的长()(A)等于4 (B)等于5 (C)等于6 (D)不能确定AB20.3.12面积为2的等腰梯形外切于直径为13cm2的圆,则梯形的底角(锐角)度数为_____________.20.3.13如图所示,△ABC是正三角形,点C在矩形ABDE的DE边上,已知△ABC的内切圆半径是1,请问:矩形ABDE的外接圆直径是多少?20.3.14△ABC的内切圆分别切BC、CA及AB于点D、点B及点F.若AD=BE=CF,则△ABC是否必定为正三角形?20.3.15半径为R的圆内切于一个锐角三角形.已知圆上三条切线将此三角形分割出三个直角三角形及一个周长为Q的六边形,请问:这三个直角三角形的内切圆直径之和是多少?20.3.16设M、P分别在正方形ABCD的边BC、CD上,PM与以AB为半径的圆相切于点T,线段PA、MA分别交对角线BD于Q、N.证明:五边形PQNMC内接于圆.20.3.17设△ABC为锐角三角形,过A、B、C三点分别作△ABC外接圆的切线,过A点和过C点的切线分别与过B点的切线相交于M点和N点,作△ABC的高BP,P为垂足.求证:直线BP平分∠MPN.20.3.18如图所示,由OC外一点O引两条切线0A、OB(切点为A、B).设OA、OB的中点分别为M、N,P是直线MN上任一点,由P点向O引切线PQ(Q为切点).求证:PQ=P0.O20.3.19菱形ABCD的内切圆O与各边分别切于E 、F、G、H,在弧EF与弧GH上分别作O的切线交AB于M,交BC于N,交CD于P,交DA于Q.求证:MQ∥NP.20.3.20在直线l上任取某个P点,要求利用圆规与直尺,作出尽可能少的线段来获得通过P 点与l垂直的直线,20.3.21平面上任意给定一个圆及一条与此圆不相交的直线,请使用没有刻度的直尺与圆规作一个正方形,使得此正方形相邻的两个顶点在此给定圆的圆周上,另两个顶点则在所给定的直线上(假设这样的正方形确定存在).20.4 和圆有关的比例线段20.4.1如图所示,ABCD是圆内接四边形,点C是弧BD的中点,切线CE交AD的延长线于E,AC交BD于F,则与AECE相等的两线段的比共有()C(A)5个(B)6个(C)7个(D)8个★20.4.2 如图所示,已知P是⊙O外一点,PT切⊙O于点T,直线PN交⊙O于点M、N,则()(A)PM+PN<2PT(B)PM+PN>2PT(C)PM+PN=2PT(D)PM+PN与2PT的大小不确定★★20.4.3如图所示,边长为26的正三角形ABC内接于圆,弦DE//BC,分别交AB、AC于F、G.如果AF的长x和DF的长y都是正整数,则y的值是()(A) 6 (B)8 (C)12 (D)16★★20.4.4 如图所示,A 、B 、C 、D 四点在同一圆周上,且BC =DC =4,AE =6. 线段BE 和DE 的长都是正整数,则BD 的长等于.★★20.4.5如图所示,若ABBC DBE =∠DCE =∠A =30°,则DE =.EB DA★★20.4.6如图所示,在△ABC 中,AD ⊥BC 于D ,DE ⊥AB 于E ,DF ⊥AC 于F ,P 是FE 的延长线与CB 延长线的交点,如果BD =2,DC =5,则PB =.EB FA★★20.4.7如图所示,已知⊙O 是△ABC 的外接圆,PB 是过B 点的切线交AC 的延长线于P ,PD ⊥AB 于D ,C 是AB 的中点,E 是AB 的中点,求证: PB =2DE .★★20.4.8如图所示,已知ABCD是圆内接四边形,对角线AC、BD交于一点E,且BE=DE. 求证: AB2+BC2 +CD2+DA2=2AC2.★★20.4.9 如图所示,已知Q是圆内接四边形ABCD的对角线交点,PB、PD是圆的切线,P在直线AC上. 求证: (1)QAQC=AB ADCB CD⋅⋅;(2)QAQC=PAPC.★★20.4.10 已知D是△ABC的边AC上的一点,AD:DC=2:1,∠C=45°,∠ADB=60°. 求证: AB是△BCD的外接圆的切线.★★20.4.11 如图所示,四边形ABCD内接于⊙O,延长AD、BC,相交于F,延长AB、DC,相交于E,EP切⊙O于P,FQ切⊙O于Q,求证: EP2+FQ2=EF.FQ★★★20.4.12 如图所示,在Rt △ABC 中,AB 为斜边,CH 为斜边上的高,以A 为圆心,AC 为半径作圆⊙A ,过B 作⊙A 的任一割线交⊙A 于D 、E ,交CH 于F (D 在B 、F 之间); 又作∠ABG =∠ABD ,G 点在圆周上,G 与D 在AB 的两侧,求证: (1) A 、H 、D 、E 四点共圆;(2) E 、H 、G 三点共线;(3) FD 、FE 、BD 、BE 四条线段成比例.E BFCD A G H20.5圆和圆的位置关系★★20.5.1如图所示,在半径为R 的⊙O 内,作AO 的中垂线交AB 于Q ,交⊙O 于M 、N ,以Q 为圆心,MQ 为半径作⊙Q ,交AB 于P ,延长NP 交⊙O 于T ,则MT 等于()(A R (B )R (CR (D★ 20.5.2C 1和C 2 是平面上相切的半径均为1的两个圆. 问在这个平面上有( )个半径为3的圆与它们都相切.(A ) 2 (B )4 (C )5 (D ) 6★★20.5.3 把两个半径为5和一个半径为8的圆形纸片放在桌面上,使它们两两相切,若要用一个大圆形纸片把这三个圆形纸片完全盖住,则这个大圆形纸片的最小半径等于.★★20.5.4 扇形OAB的弦AB=18,半径为6的⊙C恰与OA、OB和AB相切,⊙D又与⊙C、OA 和OB相切(见图),则⊙D的半径为.★★20.5.5 直线上按顺序有四个点A、B、C、D,且AB:BC:CD=2:1:3,以AC、BD为直径作⊙O1、⊙O2,两圆交于E、F(见图),则ED:EA的值是.★20.5.6平面上有一线段AB,长度为5,在此平面上与A、B两点距离分别为2和3 的直线有多少条? ★★20.5.7 如图所示,给出平面上一个锐角三角形ABC,以AB为直径的圆与AB边的高线CC'及其延长线交于M、N,以AC为直径的圆与AC边的高线BB'及其延长线交于P、Q. 求证: M、N、P、Q四点共圆.★★20.5.8 如图所示,过⊙O外一点P作⊙O的切线PN,切点为N,令PN中点为M. 过P和M 的圆与⊙O交于A、B,BA的延长线与PN交于Q. 求证: PM=3MQ.★★20.5.9 如图所示,从半圆上的一点C 向直径AB 引垂线,设垂足为,作⊙O 分别切BC 、CD 、DB 于E 、F 、G . 求证: AC =AG .( P 129-P132)**20.5.10 如图所示,两园⊙O 1、⊙O 2相交与A 、B,⊙O 1的弦BC 交于⊙O 2与E ,⊙O 2的弦BD 交⊙O 1于F求证:(1)若∠DBA=∠CBA ,则DF=CE ;(2)若DF=CE ,则∠DBA=∠CBA***20.5.11 已知点B 在线段AC 上,分别以AB,BC,AC 为直径⊙O 1,⊙O 2。
中考数学复习专题8 圆创作单位:*XXX创作时间:2022年4月12日创作编者:聂明景一、知识点1、与圆有关的角——圆心角、圆周角〔1〕圆周角;〔2〕如图,∠AOB=50度,那么∠〔3〕在上图中,假设AB是圆O的直径,那么∠AOB= 度;性:〔1〕圆是轴对称图形,其对称轴是任意一条的直线;圆是中心对称图形,对称中心为.〔2〕垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.如图,∵CD是圆O的直径,CD⊥AB于E∴ = ,= 3、点和圆的位置关系有三种:点在圆,点在圆,点在圆;例1:圆的半径r等于5厘米,点到圆心的间隔为d,〔1〕当d=2厘米时,有d r,点在圆〔2〕当d=7厘米时,有d r,点在圆〔3〕当d=5厘米时,有d r,点在圆4、直线和圆的位置关系有三种:相、相、相.例2:圆的半径r等于12厘米,圆心到直线l的间隔为d,〔1〕当d=10厘米时,有d r,直线l与圆〔2〕当d=12厘米时,有d r,直线l与圆〔3〕当d=15厘米时,有d r,直线l与圆 5、圆与圆的位置关系:例3:⊙O1的半径为6厘米,⊙O2的半径为8厘米,圆心距为 d,那么:R+r= , R-r= ;〔1〕当d =14厘米时,因为d R+r ,那么⊙O 1和⊙O 2位置关系是: 〔2〕当d =2厘米时, 因为d R -r ,那么⊙O 1和⊙O 2位置关系是: 〔3〕当d =15厘米时,因为 ,那么⊙O 1和⊙O 2位置关系是: 〔4〕当d =7厘米时, 因为 ,那么⊙O 1和⊙O 2位置关系是: 〔5〕当d =1厘米时, 因为 ,那么⊙O 1和⊙O 2位置关系是: 6、切线性质:例4:〔1〕如图,PA 是⊙O 的切线,点A 是切点,那么∠PAO= 度〔2〕如图,PA 、PB 是⊙O 的切线,点A 、B 是切点,那么 = ,∠ =∠ ;7、圆中的有关计算〔1〕弧长的计算公式:例5:假设扇形的圆心角为60°,半径为3,那么这个扇形的弧长是多少?解:因为扇形的弧长=()180 所以l =()180=(答案保存π)〔2〕扇形的面积:例6:①假设扇形的圆心角为60°,半径为3,那么这个扇形的面积为多少?解:因为扇形的面积S=()360所以S=()360= (答案保存π)②假设扇形的弧长为12πcm,半径为6㎝,那么这个扇形的面积是多少? 解:因为扇形的面积S= 所以S= = 〔3〕圆锥:例7:圆锥的母线长为5cm ,半径为4cm ,那么圆锥的侧面积是多少?解:∵圆锥的侧面展开图是 形,展开图的弧长等于 ∴圆锥的侧面积= 8、三角形的外接圆的圆心——三角形的外心——三角形的 交点;三角形的内切圆的圆心——三角形的内心——三角形的 交点;例8:画出以下三角形的外心或者O B PAO BA C内心 〔1〕画三角形ABC 的内切圆, 〔2〕画出三角形DEF 的外接圆,并标出它的内心; 并标出它的外心二、练习:〔一〕填空题1、如图,弦AB 分圆为1:3两段,那么AB的度数= 度,ACB 的度数等于 度;∠AOB= 度,∠AC B= 度, 2、如图,A 、B 、C 为⊙O 上三点,假设AB 、CA 、BC 的度数之比为1∶2∶3,那么∠AOB= ,∠AOC= , ∠AC B = ,3、如图1-3-2,在⊙O 中,弦AB=1.8cm ,圆周角∠ACB=30○ ,那么 ⊙O 的半径等于=_________cm .4、⊙O 的半径为5,圆心O 到弦AB 的间隔 OD=3,那么AD= ,AB 的长为 ;5、如图,⊙O 的半径OA=13㎝,弦AB =24㎝,那么OD= ㎝。
圆专题
一、选择题
1.(2山东德州)如果两圆的半径分别为4和6,圆心距为10,那么这两圆的位置关系是【】
A.内含B.外离C.相交D.外切
2.(山东东营)小明用图中所示的扇形纸片作一个圆锥的侧面,已知扇形
的半径为5cm,弧长是6πcm,那么这个的圆锥的高是【】
A.4cm B.6cm C.8cm D.2cm
3.(2012山东济南3分)已知⊙O1和⊙O2的半径是一元二次方程x2-5x+6=0的两根,若圆心距O1O2=5,则⊙O1和⊙O2的位置关系是【】
A.外离B.外切C.相交D.内切
4.(2012山东临沂3分)如图,AB是⊙O的直径,点E为BC的中点,
AB=4,∠BED=120°,则图中阴影部分的面积之和为【】
A.1B D.
5.(2012山东青岛3分)已知⊙O1与⊙O2的半径分别为4和6,O1O2=2,
则⊙O1与⊙O2的位置关系是【】
A.内切B.相交C.外切D.外离
6.(2012山东泰安3分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,
下列结论不成立的是【】
A.CM=DMB.CB=DB C.∠ACD=∠ADCD.OM=MD
7.(2012山东泰安3分)如图,AB与⊙O相切于点B,AO的延长线交⊙O
于点C,连接BC,若∠ABC=120°,OC=3,则BC的长为【】
A.πB.2πC.3πD.5π
8.(2012山东潍坊3分)已知两圆半径r1、r2分别是方程x2—7x+10=0的两根,两圆的圆心距为7,则两圆的位置关系是【】.
A .相交
B .内切
C .外切
D .外离
9.(2012山东烟台3分)如图,⊙O 1,⊙O ,⊙O 2的半径均为2cm ,⊙O 3,⊙O 4的半径均为1cm ,⊙O 与其他4个圆均相外切,图形既关于O 1O 2所在直线对称,又关于O 3O 4所在直线对称,则四边形O 1O 4O 2O 3的面积为【 】 A .12cm 2
B .24cm 2
C .36cm 2
D .48cm 2
10. (2012山东枣庄3分)如图,直径为10的⊙A 经过点C(0,5)和点O (0,0),B 是y 轴右侧⊙A 优弧上一点,则cos ∠OBC 的值为【】
A .
12 B C .3
5 D .45
二、填空题
1.(2012山东德州4分)如图,“凸轮”的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成.已知正三角形的边长为1,则凸轮的周长等于.
2.(2012山东东营4分)某施工工地安放了一个圆柱形饮水桶的木制支架(如图1),
若不计木条的厚度,其俯视图如图2所示,已知AD 垂直平分BC ,AD=BC=48cm ,则圆柱形饮水桶的底面半径的最大值是cm .
3.(2012山东菏泽4分)如图,PA ,PB 是⊙O 是切线,A ,B 为切点,AC 是⊙O 的直径,若∠P=46°,则∠BAC=度.
4.(2012山东济南3分)如图,在Rt △ABC 中,∠B=90°,AB=6,BC=8,
以其三边为直径向三角形外作三个半圆,矩形EFGH 的各边分别与半圆相切且平行于AB 或BC ,则矩形EFGH 的周长是.
5.(2012山东聊城3分)在半径为6cm 的圆中,60°的圆心角所对的弧长
等于cm(结果保留π).
6.(山东青岛)如图,点A、B、C在⊙O上,∠AOC=60º,则∠ABC=º.
7.(2012山东日照4分)如图1,正方形OCDE的边长为1,阴影部分的面积记作S1;如图2,
最大圆半径r=1,阴影部分的面积记作S2,则S1S2(用“>”、“<”
或“=”填空).
8.(2012山东日照4分)如图,过A、C 、D三点的圆的
圆心为E,过B、F、E三点的圆的圆心为D,如果∠A=63°,
那么∠θ=.
9.(2012山东泰安3分)如图,在半径为5的⊙O中,弦AB=6,点C是优弧AB上一点(不
与A,B重合),则cosC的值为.
10.(2012山东枣庄4分)如图,在以O为圆心的两个同心圆中,大圆的
弦AB与小圆相切于点C,若AB的长为8cm,则图中阴影部分的面积为
cm2.
三.解答题
1.(2012山东滨州8分)如图,PA,PB是⊙O的切线,A,B为切点,
AC是⊙O的直径,∠P=50°,求∠BAC的度数.
2.(2012山东德州10分)如图,点A,E是半圆周上的三等分点,直径BC=2,AD⊥BC,垂足为D,连接BE交AD于F,过A作AG∥BE交BC于G.
(1)判断直线AG与⊙O的位置关系,并说明理由.
(2)求线段AF的长.
3.(2012山东东营9分)如图,AB是⊙O的直径,AM和BN是它的两条切线,DE切⊙O于
点E,交AM于点D,交BN于点C,
(1)求证:OD∥BE;
(2)如果OD=6cm,OC=8cm,求CD的长.
4.(2012山东济宁7分)如图,AB是⊙O的直径,AC是弦,OD⊥AC于点D,过点A作⊙O 的切线AP,AP与OD的延长线交于点P,连接PC、BC.
(1)猜想:线段OD与BC有何数量和位置关系,并证明你的结论.
(2)求证:PC是⊙O的切线.
5.(2012山东聊城10分)如图,⊙O是△ABC的外接圆,AB=AC=10,BC=12,P是上的
一个动点,过点P作BC的平行线交AB的延长线于点D.
(1)当点P在什么位置时,DP是⊙O的切线?请说明理由;
(2)当DP为⊙O的切线时,求线段DP的长.
6.(2012山东临沂9分)如图,点A.B.C分别是⊙O上的点,∠B=60°,AC=3,CD是⊙O 的直径,P是CD延长线上的一点,且AP=AC.
(1)求证:AP是⊙O的切线;
(2)求PD的长.
7.(2012山东威海8分)如图,AB为⊙的直径,弦CD⊥AB,垂
为点E。
K为AC上一动点,AK、DC的延长线相交于点F,连接
CK、KD。
(1)求证:∠AKD=∠CKF;
(2)若,AB=10,CD=6,求tan∠CKF的值。
8.(2012山东潍坊9分)如图,三角形ABC的两个顶点B、C在圆上,顶点A在圆外,AB、AC分别交圆于E、D两点,连结EC、BD.
(1)求证:ΔABD∽ΔACE;
(2)若ΔBEC与ΔBDC的面积相等,试判定三角形ABC的形状.
9.(2012山东烟台8分)如图,AB为⊙O的直径,弦CD⊥AB,垂
足为点E,CF⊥AF,且CF=CE.
(1)求证:CF是⊙O的切线;
(2)若sin∠BAC=2
5
,求CBD
ABC
S
S
∆
∆
的值.
10.(2012山东枣庄8分)如图,AB是⊙O的直径,弦CD⊥AB于点E,过点B作⊙O的切
线,交AC的延长线于点F.已知OA=3,AE=2,
(1)求CD的长;
(2)求BF的长.。